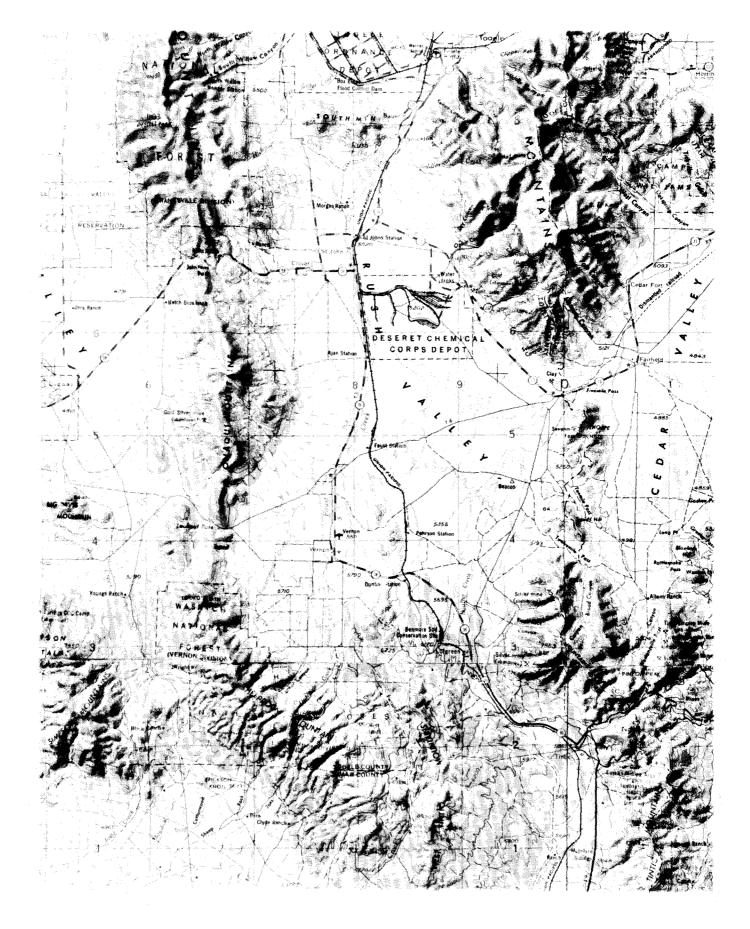
STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES

Technical Publication No. 23


HYDROLOGIC RECONNAISSANCE OF RUSH VALLEY, TOOELE COUNTY, UTAH

by

J. W. Hood, Don Price, and K. M. Waddell Hydrologists, U. S. Geological Survey

Prepared by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources Division of Water Rights

1969

Relief Map of Rush Valley and vicinity (From AMS 1:250,000 series, NK 12-10, Tooele, Utah and NJ 12-1, Delta, Utah)

CONTENTS

Abstract
Introduction
Physiography
Climate
Geology and water-bearing characteristics of the rocks
Consolidated rocks
Unconsolidated rocks
Thickness of unconsolidated rocks
Water resources
Precipitation
Surface water
Ground water
Source
Estimated average annual recharge
Occurrence
Southeastern Rush Valley
Vernon area
Northern Rush Valley
Movement
Storage
Discharge
Wells
Evapotranspiration
Vegetation
Estimated average annual evapotranspiration 28
Subsurface outflow
Discharge toward the east
Discharge toward the north
Ground-water budget
Perennial yield
Chemical quality of water
Mountains

CONTENTS—Continued

;

Chemical quality of water-Continued

Valley							
Changes in chemical quality							
Chemical quality in relation to use							
Irrigation							
Domestic supply							
Land use and development of water supplies							
Past and present							
Future							
Proposals for additional studies							
Selected references							
Basic data							
Publications of the Utah Department of Natural Resources							
Division of Water Rights							

ILLUSTRATIONS

Page

Frontis	piec	e. Relief map of Rush Valley and vicinity
Plate	1.	Hydrogeologic maps of the Rush Valley drainage basin In pocket
Figure	1.	Diagram showing well- and spring-numbering system 4
Figure	2.	Isohyetal map of Rush Valley and vicinity, showing locations of climatologic stations listed in table 1 8
Figure	3.	Graphs showing temperature and freeze data for six stations in and near Rush Valley
Figure	4.	Graph showing cumulative departure of annual precipitation from average annual precipitation at Government Creek and Tooele
Figure	5.	Hydrographs of water levels in selected observation wells 26
Figure	6.	Graphs showing the fluctuation of chemical composition of water from wells (C-6-4)5bdb-1 and (C-6-4)5bdd-1 during the period 1948-63
Figure	7.	Diagram showing the classification of water for irrigation 37

TABLES

Page

Table	1.	Stations at which climatologic data have been collected in and near Rush Valley through 1966
Table	2.	Estimated average annual evaporation, in inches, for period of record at Saltair Salt Plant and Utah Lake Lehi 10
Table	3.	Average monthly and annual precipitation, in inches, at climatologic stations in and near Rush Valley
Table	4.	Distribution of normal annual precipitation in the Rush Valley drainage basin

.

TABLES—Continued

.

Page

+	-	
Table	5.	Summary of record for station 10-1727. Vernon Creek near Vernon
Table	6.	Measured and estimated discharge, in cubic feet per second, at station 10-1727.6 Clover Creek near Clover 20
Table	7.	Estimated potential average annual runoff from the uplands of the Rush Valley drainage basin
Table	8.	Estimated average annual ground-water recharge in Rush Valley
Table	9.	Estimated average annual evapotranspiration in Rush Valley $$. 29
Table	10.	Ground-water budget for Rush Valley
Table	11.	Discharge of streams at miscellaneous sites in the Rush Valley drainage basin
Table	12.	Records of selected wells in Rush Valley
Table	13.	Selected drillers' logs of wells in Rush Valley
Table	14.	Water levels in selected observation wells in Rush Valley 55
Table	15.	Records of selected springs in the Rush Valley drainage basin .56
Table	16.	Chemical analyses of water from selected wells and springs in the Rush Valley drainage basin
Table	17.	Chemical analyses of water from streams in the Rush Valley drainage basin

HYDROLOGIC RECONNAISSANCE OF RUSH VALLEY, TOOELE COUNTY, UTAH

by

J. W. Hood, Don Price, and K. M. Waddell Hydrologists, U. S. Geological Survey

ABSTRACT

Rush Valley is an elongated depression that covers about 250,000 acres and is part of a drainage basin that covers about 470,000 acres. The valley extends about 30 miles from Stockton in T. 4 S., R. 5 W., southward to the Sheeprock Mountains. The main ground-water reservoir is in unconsolidated rocks of late Tertiary(?) and Quaternary age.

The source of all water in Rush Valley is the 550,000 acre-feet of precipitation that falls mainly on the Oquirrh, Stansbury, Onaqui, and Sheeprock Mountains. The estimated maximum potential long-term average annual runoff from the uplands is 70,000 acre-feet of water. No surface water leaves the topographically closed valley.

The estimated average annual ground-water recharge to and discharge from Rush Valley is in the range of 34,000-37,000 acre-feet. Ground water is discharged from the valley by wells, by evapotranspiration (including spring flow), and by subsurface outflow through the east edge of the valley. In 1966, wells discharged about 4,800 acre-feet of water. Evapotranspiration accounts for about 70 percent of the total ground-water discharge, and subsurface outflow accounts for about 14 percent. The estimated perennial yield of ground water in Rush Valley is about 15,000 acre-feet (including current pumpage) if well spacing is carefully planned. Water in excess of this amount would have to be drawn from storage with resulting water-level declines. If water levels were lowered 100 feet, the estimated amount of recoverable water would be 1.6 million acre-feet.

The chemical quality of water in Rush Valley is generally good for irrigation and domestic purposes. The range of concentrations of dissolved solids in water in the drainage basin is 200-2,180 ppm (parts per million). Water from only three sources contained concentrations of dissolved solids in excess of 1,000 ppm.

Development of water in Rush Valley has been largely on the northern and western sides of the valley and at the Deseret Chemical Corps Depot. The main use of the water has been for irrigation. In 1966, an estimated 5,800 acres were irrigated partly with surface water and supplemental ground water and partly with ground water alone. Ground water is the main source of water for future development in the valley. Because Rush Valley is among the more densely populated of the desert basins in western Utah and because of increasing interest in the valley, a detailed water-resources study of Rush Valley is needed immediately.

INTRODUCTION

This report is the third in a series by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data for Rush Valley, to provide an evaluation of the potential water-resources development of the valley, and to identify needed studies that would help provide an understanding of the valley's water supply.

The investigation of Rush Valley was made intermittently during 1966-67, and consisted largely of an office study of all available data for climate, geology, streams, wells, springs, and water use. These data were supplemented with data collected in May 1967 during a rapid field examination of land forms, vegetation, geology, and distribution of water use. Where well records were poor or not available, specific well data were sought. Under a cooperative program with the Utah Geological and Mineralogical Survey, many water sources in the Rush Valley drainage basin were sampled and analyzed (Waddell, 1967). The chemical analyses were supplemented with a few available records from Connor, Mitchell, and others (1958). Selected basic data assembled during the investigation are given in tables 2, 3, 5, 6, and 11-17.

Rush Valley is southwest of Salt Lake City; Stockton, at the north end of the valley is about 40 road miles from Salt Lake City, via the city of Tooele (pl. 1). The valley and alluvial slopes that border the adjacent mountain ranges cover about 250,000 acres (about 400 square miles). The drainage basin of the valley covers approximately 470,000 acres (730 square miles).

The valley is among the more densely populated of the desert basins in western Utah. Communities in the valley include Stockton (population 362, according to the 1960 census), St. John (140), Clover (95), Vernon (511), and the Deseret Chemical Corps Depot. (See frontispiece and pl. 1).

Few published sources of hydrologic data in Rush Valley are available, and in most sources the valley is discussed as part of a broader area. Carpenter (1913) included Rush Valley in a reconnaissance of Box Elder and Tooele Counties, Utah. Snyder (1963) included data on the valley in a description of the availability of stock water in the public domain. Mahoney (1953) discussed Rush and Tooele Valleys as a unit in his appraisal of the general disposition of precipitation in the Bonneville Basin, and Bagley, Jeppson, and Milligan (1964) included the valley in their analysis of water yields in Utah. Gates (1963a, 1965) compiled basic data and described ground-water conditions along the boundary between Rush and Tooele Valleys, and Feltis (1967) described recharge conditions in the Oquirrh Mountains in a report on ground-water conditions in Cedar Valley, on the eastern side of the southern Oquirrh Mountains.

Sources of geologic data are more abundant, and most sources are cited in the section on geology. Stokes (1964) used all available sources in compiling the State geologic map, which is the main basis for the geology shown on plate 1.

Wells, springs, and surface-water data sites other than gaging stations are numbered in this report using the system of numbering wells and springs in Utah, which is based on the cadastral

land-survey system of the Federal Government. The number, in addition to designating the well, spring, or other data site, locates its position to the nearest 10-acre tract in the land net. By this system the State is divided into four quadrants by the Salt Lake Base Line and Meridian. The quadrants are designated by the uppercase letters A, B, C, and D, thus: A, for the northeast quadrant; B, for the northwest; C, for the southwest; and D, for the southeast quadrant. Numbers designating the township and range, respectively, follow the quadrant letter, and the three are enclosed in parentheses. The number after the parentheses designates the section, and the lowercase letters give the location of the well within the section. The first letter indicates the quarter section, which is generally a tract of 160 acres, the second letter indicates the 40-acre tract, and the third letter indicates the 10-acre tract. The number that follows the letters indicates the serial number of the well or spring within the 10-acre tract. Thus, well (C-9-6)1dab-1, in Tooele County, is in the NW¼NE¼SE¼ sec. 1, T. 9 S., R. 6 W., and is the first well constructed or visited in that tract. (See fig. 1).

When the serial (final) number is preceded by an "S" the number designates a spring; if the spring is located only to the nearest 40 acres or larger tract, a suffixed "S" is used without the serial number. Thus, spring (C-5-6)32bba-S1 is the first spring recorded in the NE $\frac{1}{2}$ NW $\frac{1}{2}$ NW $\frac{1}{2}$ Sec. 32, T. 5 S., R. 6 W., and the location of spring (C-7-6)4d-S is known only to be in the SE $\frac{1}{2}$ Sec. 4, T. 7 S., R. 6 W.

When no serial number is suffixed to a location number for a 10-acre tract, the number designates a site at which surface-water data were obtained. For example, (C-5-4)28cdb designates a site where Ophir Creek was sampled for chemical analysis.

PHYSIOGRAPHY

Rush Valley is a part of the Great Basin and is in the area of internal drainage that once was occupied by Lake Bonneville (Gilbert, 1890). Although the drainage basin of Rush Valley is about 40 miles long, the valley is only about 30 miles long and reaches its maximum width of about 17 miles in T. 8 S.

The mountains that frame Rush Valley are folded and faulted blocks of sedimentary, metamorphic, and igneous rocks. The diverse topographic expression in the mountains generally reflects the complex internal structure of the blocks, but the present topographic relief is largely the result of movement along fault systems which as a whole trend northward.

The mountains consist of three main elements—the Oquirrh-East Tintic Mountain chain on the east, the Stansbury-Onaqui chain on the west, and the Sheeprock-West Tintic Mountain area on the south. The highest point on the drainage divide around Rush Valley is Lowe Peak (altitude 10,572 ft) in the Oquirrh Mountains (pl. 1). A substantial part of this massive upland area is above 9,000 feet, and the approaches to the mountains are abrupt. North of Ophir Canyon, the mountain front rises more than 3,000 feet in a little more than 1 mile. The highest point in the Sheeprock Mountains is Dutch Peak (alt 8,964 ft), and substantial parts of the mountains are above 8,000 feet. The highest point on the drainage divide in the southern Stansbury Mountains is Vickory Mountain (alt 10,305 ft); some small areas in the southern Stansbury Mountains range in altitude from 9,000 to 10,000 feet. The lowest point on the drainage divide is the top of the Stockton bar (alt 5,175 ft) near Stockton.

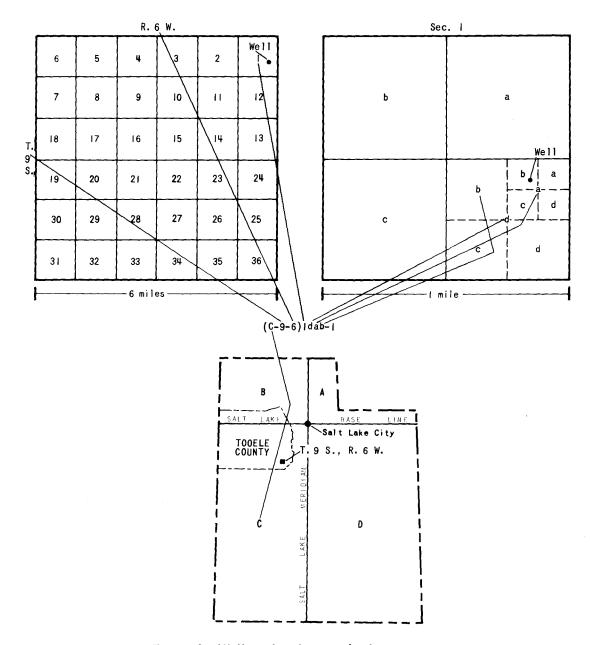


Figure 1.--Well- and spring-numbering system.

CLIMATE

Climatic conditions differ widely from one part of the Rush Valley drainage basin to another. The climate of the valley as a whole is semiarid, whereas that in the highest parts of the Stansbury and Oquirrh Mountains is humid to subalpine. The availability of climatologic data is summarized in table 1, and the locations of climatologic stations are shown in figure 2. Most of the stations are at low altitudes, but short records are available for two high altitude storage gages in the Oquirrh Mountains. Useful regional interpretations of climatic data are also available, such as those described by Peck and Brown (1962), who produced the isohyetal maps of Utah (U. S. Weather Bur., 1963a, 1963b, and fig. 2), and by Ashcroft and Derksen (1963), who provided tables of freezing temperature probabilities.

Average annual precipitation in the Rush Valley drainage basin is less than 10 inches in the central part of the valley (E. L. Peck, oral commun., 1967) and more than 40 inches in the Oquirrh Mountains; most of the valley receives 12 inches per year or less (fig. 2). The amount and distribution of precipitation is discussed in more detail in the section on water resources.

Data on air temperature in Rush Valley have been recorded only at St. John prior to 1930 and intermittently at Vernon since 1953. Based on lengthier records at Tooele, Government Creek, Orr's Ranch, Bauer, and Fairfield stations (fig. 3 and table 1), the average annual air temperature in the lowlands of Rush Valley is estimated to be 47°F and that on the higher part of the alluvial apron around the valley is estimated to be 50°F. The coldest average monthly temperatures at six stations in and near Rush Valley are 22-29°F in January and the warmest are 70-75°F in July. The range of observed daily extremes is from -36° to $+110^{\circ}$ F (fig. 3).

The length of the growing season is of particular importance with regard to the evaluation of transpiration by vegetation. The growing season is about the same length at most stations in the study area. Because the definition of killing frost differs depending on the type of vegetation, the U. S. Weather Bureau (1951-67) publishes freeze data that include the number of days between the last spring and first fall minimum temperatures of 32°F, 28°F, and 24°F. The available freeze data for St. John and for five stations near the valley are included in figure 3. Crops experiencing a killing frost at 32°F have an average growing season of 90-100 days in the lower parts of the valley, and probably have an average growing season of about 130 days on the upper slopes of the alluvial apron.

The semiarid climate and the high summer temperatures in Rush Valley cause high evaporation rates. Table 2 shows the estimated average annual evaporation at Saltair Salt Plant and at Utah Lake Lehi stations. The Saltair station is on the flats southeast of Great Salt Lake, 27 miles north-northeast of Stockton, and the Lehi station is near Utah Lake, and about 25 miles east-southeast of Stockton. The climatic environment at both stations is somewhat different from that in Rush Valley; at Saltair Salt Plant the evaporation is greater, and at Lehi it is believed to be lower. The average annual evaporation in Rush Valley, therefore, is between 43 and 57 inches per year and probably is on the order of 50 inches.

Table 1.—Stations at which climatologic data have been collected in and near Rush Valley through 1966

(Data published by U.S. Weather Bur., 1937, 1951-67, 1957, 1965.)

(P, precipitation; T, temperature)

,

	LO	cation	Altitude		Type of	
Station	Lat.	Long.	(feet)	Period of record	rècord	Remarks
Bauer	40°28'	112°22'	4,965	341 to 12- 59	P,T	In Tooele Valley, 1.5 miles north of Stockton.
Benmore	40° 00'	112°28′	6,200	811 to 517	Ρ	7 miles SSW of Vernon; published as "Vernon" Aug. 1911 - Aug. 1915.
	40°01 <i>'</i>	112°24'	6,100	517 to 1248 150 to 853	P	1 mile east of Benmore, 7.3 miles SSE of Vernon.
	40°03'	112°25′	6,000	357 to 665	P	Storage gage; monthly totals prorated from observed totals.
Bingham Canyon	40° 32'	112°09'	6,170	1240 to 1266	Ρ,Τ	In Oquirrh Mountains west of Jordan Valley.
Eureka	39°57′	112°07′	6,530	330 to 1266	P	Southeast of Rush Valley.
Fairfield	40°16′	112°05′	4,876	9-28-50 to 765	Р,Т	In Cedar Valley; station moved to this location from CAA Station 5 miles NNE; converted to a recording special-purpose gage in 1965.
Fairfield CAA	40°21′	112°03′	4,963	1242 to 950	Р,Т	In Cedar Valley; station moved 5 miles SSW on 9-28-50.
Government Creek	40°03′	112°40′	5,320	1200 to 1149	Р,Т	In Government Creek valley at James Ranch, also called Indian Springs Post Office; late part of record for summers only.
Grantsville Powerhouse	40°31′	112°31′	4,900	1042 to 556	Ρ	In Tooele Valley at mouth of South Willow Canyon.
Middle Canyon	40° 29'	112°12'	7,000	756 to 665	P	Storage gage; monthly totals prorated from observed totals.
Ophir Canyon	40°24′	112°14′	6,900	958 to 665	Ρ	Storage gage; annual totals only do not permit proration of monthly totals.
Orr's Ranch	40°24'	112°45′		119 to 620	P,T	Known as Sells through 1923; record poor through 1920.
	40° 18′	112°44′	4,700	11 -20 to 449	P,T	
St. John	40°16′	112°26′	5,200	511 to 615	Р,Т	6 miles south of St. John Post Office; known as Center Station.
	40° 17′	112°26′	5,132	116 to 816	Р,Т	4 miles south of St. John Post Office; known as Center Station.
	40°21′	112°25′	4,900	1116 to 418	Р,Т	
	40°22′	112°25′	5,016	1118 to 529	Р,Т	At St. John Railroad Station.
Tooele	40° 32'	112° 18′	4,820	396 to 1266	Ρ,Τ	In Tooele Valley.
Vernon	40°05′	112° 27'	5,485	953 to 655 963 to 1266	Ρ,Τ	Record discontinuous.

•

.

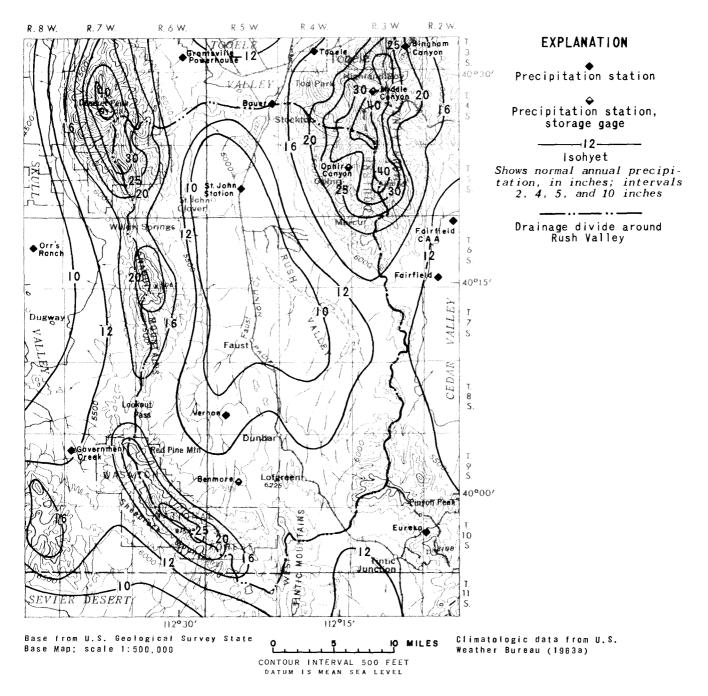


Figure 2.—Isohyetal map of Rush Valley and vicinity showing locations of climatologic stations listed in table 1.

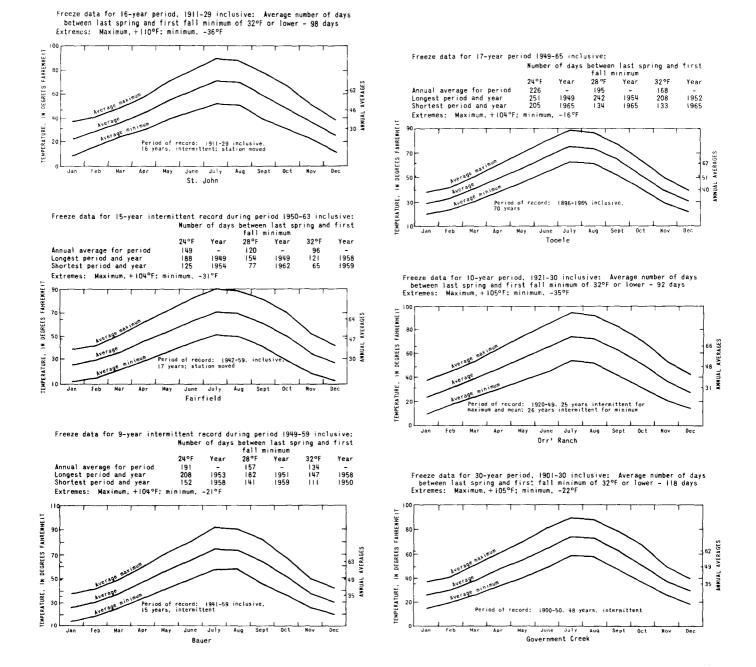


Figure 3.-Temperature and freeze data for six stations in and near Rush Valley.

Table 2.—Estimated average annual evaporation, in inches, for period of record at Saltair Salt Plant and Utah Lake Lehi

(Based on data from U. S. Weather Bureau, 1951-67, 1965. Adjustment to annual evaporation and pan coefficient estimated from Kohler, Nordenson, and Baker, 1959, pls. 3 and 4.)

	Av	erage of	measur	Annual	Annual evaporation						
May	June	July	Aug.	Sept.	Oct.	6-month total	total for pan ¹	from free water surface (rounded) ²			
Saltair	Saltair Salt Plant ³										
9.48	12.33	15.18	13.32	9.01	5.82	65.14	81.43	57			
Utah Lake Lehi⁴											
8.27	9.73	10.79	9.50	6.94	4.06	49.29	61.61	43			

¹ May-October evaporation is estimated to be 80 percent of annual total. Annual total is 6-month total x 1.25.

² Evaporation from free water surface is estimated to be 70 percent of annual pan evaporation.

³ Period of record: 1956-65. Station altitude: 4,210 feet. Location: Latitude 40°46', longitude 112°06', 27 miles north-northeast of Stockton.

⁴ Period of record: 1931-65. Station altitude: 4,497 feet. Location: Latitude 40°22', longitude 111°54', approximately 25 miles east-southeast of Stockton.

GEOLOGY AND WATER-BEARING CHARACTERISTICS OF THE ROCKS

The data from Stokes (1964) and other investigators cited in the following discussion, together with field data, have been used to emphasize the relation of geology to the hydrology of Rush Valley.

Consolidated rocks

The consolidated rocks that form the mountains surrounding Rush Valley are divided into four units: (1) metasedimentary rocks of Precambrian age and the Tintic Quartzite of Early and Middle Cambrian age, (2) Paleozoic sedimentary rocks, which are mainly carbonates, (3) Tertiary intrusive and extrusive igneous rocks, and (4) the Salt Lake Formation of Pliocene age.

The Precambrian rocks consist of about 11,000 feet of argillite, quartzite, and other metamorphic rocks (Cohenour, 1959, p. 17). These rocks and the Tintic Quartzite crop out only in the Sheeprock Mountains, south-southwest of Vernon, and they have mainly low permeability

and act as a conveyance medium of surface runoff of precipitation. The rocks are cut by both high and low angle faults, which provide zones of locally high permeability. Because the rocks are exposed at a high altitude where precipitation is great, they yield some ground water to springs above 6,500 feet and sustain a few perennial streams that are augmented by discharge from mines. The quantity of water stored in the Precambrian rocks is probably small because flow from springs and streams dwindles in August (Cohenour, 1959, p. 120). (See also section on surface water.)

The Paleozoic sedimentary rocks are exposed in most of the mountains and hills of the valley perimeter, and it is known that they underlie younger rocks in a part of Rush Valley. Detailed geologic maps (sources cited in Stokes, 1964) show that much of the section consists of carbonate rocks which have been strongly deformed by folding and repetitive faulting. Steep dips and cross faulting are common.

The Paleozoic sedimentary rocks have low primary permeability, but repeated fracturing by folding and faulting has caused the development of secondary permeability. Fractures and joints in the carbonate rocks have been enlarged by solution as water moves through them. Gilluly (1932) gives examples of secondary permeability for parts of the Oquirrh Mountains. He reports a mine tunnel penetrating "water courses" in limestone at or above 8,000 feet (pl. 29), open fissures in limestone in the west limb of the Ophir anticline (p. 155-156), and water developed in the Honerine Mine northeast of Stockton (p. 160). Gates (1963b, p. K-36) points out the role of the sedimentary rocks in surface-water loss in a canyon in the Oquirrh Mountains northeast of Rush Valley. The intake of water into the rocks probably accounts for the small surface runoff from the Oquirrh Mountains.

Elsewhere the Paleozoic sedimentary rocks apparently drain a part of the ground water from Rush Valley in the area between Fivemile Pass and Twelvemile Pass at the eastern side of the valley. (See section on ground water.) Spring (C-5-5)9cba-S1, which yields about 1,000 gpm (gallons per minute) (table 15), discharges from alluvium where the alluvium directly abuts limestone in a bedrock mass that crops out in the northern part of the valley. The authors believe that the water moves from the bedrock into the alluvium and thence to the surface at the spring.

Some formations of Paleozoic age in the Rush Valley drainage basin appear to be specifically associated with water. Among these are the Manning Canyon Shale and the Oquirrh Formation. The relatively impermeable beds of the Manning Canyon Shale control the location of springs in the southern Stansbury Mountains (Teichert, 1959, p. 66) and the Oquirrh Mountains (Gilluly, 1932, p. 31). Teichert (1959, p. 65) describes the occurrence of springs that discharge at the contact of the Manning Canyon Shale and the Great Blue Limestone along Clover Creek. The largest of these, Clover Creek Spring, (C-5-6)32bba-S1, discharged 4,500 gpm of water on September 21, 1964.

The Oquirrh Formation yields large quantities of water to two wells drilled north of Vernon and provides a specific example of the potentially large yield from fractured zones in clastic rocks. Well (C-8-5)6ddb-1 was drilled to 534 feet and produced water from 430-534 feet by natural flow at rates estimated to be from 900 to 1,450 gpm. The well subsequently was pumped at a measured rate of 4,100 gpm with a drawdown of 13 feet. Well (C-8-5)6ddb-2 was later drilled 40 feet from the first. The second well reportedly was test pumped at a rate of about

8,600 gpm with a drawdown of 61 feet. The water-bearing zone was from 440 to 583 feet and was identified as shattered quartzite of the Oquirrh Formation (M. D. Hubley, written commun., 1967). How much of the shattered rock penetrated is bedrock and how much is weathered debris *in situ* is not known.

The two wells described above are approximately on the trace of a covered fault that trends along Vernon Creek (Stokes, 1964 and pl. 1). By contrast, well (C-8-5)6ccd-1 was drilled about 0.6 mile west of the fault trace to a depth of 730 feet, the last 30 feet being in bedrock. Well (C-8-5)6ccd-1 reportedly was pumped at 700 gpm, but this amount is small compared to the yields of the former two wells that seem to be finished in a fault zone. It appears that the completion of a large yield well in that area depends on localized favorable conditions that can be determined only from more information than was available in the first half of 1967.

The igneous rocks of Tertiary age crop out in the south end of the Rush Valley drainage basin as volcanic flows of early Tertiary age and in the Oquirrh Mountains as small areas of porphyritic intrusive rocks. In both areas, the rocks have low permeability but probably interfere with ground-water recharge and movement only locally.

The distribution of consolidated rocks of Tertiary age in Rush Valley is only partly known because younger unconsolidated rocks cover them. Rocks of Eocene(?) age are described by Disbrow (1957) and Morris (1964, p. L-3), but nothing is known of the hydrology of these rocks and the small areas of outcrop are not shown on plate 1.

Rocks of late Miocene(?) to Pliocene age (Heylmun, 1965, p. 19-20) crop out in the vicinity of Faust. These rocks and others that crop out east of the West Tintic Mountains and near Boulter Summit are referred to as Salt Lake Formation by Stokes (1964). In the vicinity of Faust, the Salt Lake Formation as mapped by Heylmun (1965, fig. 4) is 5,000-8,000 feet thick, dips 15-40° westward, and is strongly faulted. The rocks consist mainly of volcanic tuff, claystone, and limestone. The log of well (C-7-5)27dbb-1 and probably the lower parts of the logs of wells (C-7-3)30acc-1 and (C-8-4)22aad-1 (table 13) are indicative of drillers' descriptions of cuttings from the formation.

In the Vernon area, wells penetrate thick clay beds, some of which contain glass shards (R. E. Marsell, oral commun., 1967) that are characteristic of the Salt Lake Formation. From the presence of these thick clays in numerous wells it is inferred that the formation underlies much of the Vernon area.

Heylmun's description, the data from drillers' logs, and a brief field examination indicate that the Salt Lake Formation in Rush Valley has low permeability.

Unconsolidated rocks

Rocks of late Tertiary(?) to Holocene (Recent) age constitute the principal ground-water reservoir in Rush Valley. Figure 1 shows the broad subdivisions of Tertiary and Quaternary rocks, which are based mainly on surficial distribution of lithologic types; the following discussion, however, describes the ground-water reservoir and its water-bearing characteristics in various areas of the valley.

The unconsolidated rocks in Rush Valley consist of clay, silt, sand, and gravel, and larger debris eroded from older rocks in the drainage basin. Much of the unconsolidated rocks, as reported in drillers' logs (table 13), is fine grained, and a part of the oldest of these rocks is conglomerate (cemented or partly cemented sand and gravel). In general, these rocks are coarsest near the mountains and finest near the center of the valley.

Wells in the southeastern part of the valley probably would yield less than 100 gpm of water because they penetrate few aquifers in the alluvium, colluvium, and older unconsolidated rocks. Near the base of the Oquirrh Mountains, the wells in sec. 5, T. 6 S., R. 4 W., obtain about 350 gpm from the sand, gravel, and conglomerate in the colluvium and alluvium of the alluvial apron. Northwest of Rush Lake, the colluvium and alluvium are mainly clay, but contain some beds of gravel that apparently are derived from the conglomerate and other older rocks of Tertiary and Quaternary age to the west. An irrigation well less than 100 feet deep in the clay and gravel strata yielded 1,100 gpm of water.

On the northwest side of Rush Valley, the unconsolidated rocks consist of 20-100 feet of coarse-grained deposits that rest on a thick section of pre-Lake Bonneville lacustrine(?) clay. The shallow permeable rocks yield 10-100 gpm of water to small-diameter wells; the maximum recorded yield in the area is 250 gpm of water from well (C-5-5)32dbb-1. South of the irrigated area near Clover Creek, few subsurface data are available, but wells near Ajax Station on the Union Pacific Railroad reportedly penetrated only clay.

In the Vernon area, several deep wells penetrated mainly clay below 300 feet. Most wells are finished at shallower depths in older alluvium that consist of thick beds of clay with intercalated thin beds of sand and gravel. The unconsolidated rocks of Quaternary age probably are 100-300 feet thick and have moderate permeability. These deposits and the shallowest underlying deposits of Tertiary age together yield no more than about 500 gpm of water to wells; the average large-diameter well in the Vernon area probably would yield no more than 200-300 gpm of water.

In northern and east-central Rush Valley, 25-100 feet of lakebed sediments (pl. 1) rest on older unconsolidated rocks or on the Salt Lake Formation. These deposits confine the water in the underlying rocks and act as a perching medium elsewhere. Where saturated, they provide for a large capillary rise that conveys ground water to the surface to be discharged by evapotranspiration in the lowlands at and south of Rush Lake.

The younger alluvium, of Holocene age, is hydrologically important only along stream channels where the moderately to highly permeable deposits receive water from or discharge water to the streams. Elsewhere the deposits consist only of thin additions to the alluvial aprons and soils and of semistabilized windblown sand along the south edge of the Oquirrh Mountains.

Thickness of unconsolidated rocks

The total thickness of the unconsolidated rocks differs from one part of the valley to another, depending both on the structure of the underlying consolidated rocks and on the location with respect to the sources of the material. The unconsolidated rocks are about 75 feet thick at the mouth of Ophir Canyon and about 215 feet thick at well (C-8-3)6aad-1 (table 13). By contrast, more than 400 feet of sand, gravel, conglomerate, and clay were penetrated by the supply wells at Deseret Chemical Corps Depot, which is west of the boundary faults near the base of the Oquirrh Mountains.

In the western half of Rush Valley, the thickness of the unconsolidated rocks may exceed 1,000 feet in a strip of the valley from the central part of T. 5 S., R. 5 W., southward to the central part of T. 7 S., R. 5 W. The boundaries of the strip of valley are the inferred faults indicated on plate 1. A group of faults, mainly in Tps. 5 and 6 S., R. 5 W., are inferred from gravity surveys (Cook and Berg, 1961, p. 85; W. W. Johnson, written commun., 1958), and indicate that a bedrock high extends from South Mountain to the junction of State Highways 36 and 58. This bedrock high is confirmed both by the outcrop of Paleozoic sedimentary rock in the northwest corner of T. 5 S., R. 5 W., and the report of bedrock at a depth of 339 feet in well (C-5-5)21dcb-1. The west side of the strip is indicated by the inferred boundary fault west of Clover. Within this strip, well (C-5-5)32adb-1 was jetted to a depth of 1,004 feet (Carpenter, 1913, p. 77). The method of well construction indicates that unconsolidated rocks were penetrated.

The structural trough inferred in the vicinity of St. John may extend southward to the Vernon subbasin and possibly into it. This inference is drawn because the general trend of the bounding faults fits the regional trend of Basin and Range structures, because the structural attitude of the Salt Lake Formation east of Faust Creek suggests that the covered fault that follows the route of Vernon Creek (Stokes, 1964) may extend farther north, and because data from wells in the northwestern part of T. 8 S., R. 5 W., appear to confirm the location of that covered fault. A boundary fault along the base of the Onaqui Mountains, moreover, seems to be indicated by the discontinuous segments of fault from the St. John area southward to the area northeast of Lookout Pass. In this latter area, water-level data indicate a water-table trough that trends northeastward toward the mouth of the Vernon subbasin (fig. 1). Water levels in the area of the trough are deep, and it is inferred that deep permeable unconsolidated rocks are the cause of the trough. The accumulation of a thick section of permeable unconsolidated rocks in the area of the water-table trough, which parallels the inferred direction of boundary faulting, most likely would be related to the inferred faulting.

WATER RESOURCES

Precipitation

The normal annual precipitation in the Rush Valley drainage basin is less than 10 inches in the central lowlands, but reaches maximums of more than 40 inches in the Oquirrh and Stansbury Mountains and lightly more than 25 inches in the Sheeprock Mountains. (See fig. 3).

Precipitation is greatest in the basin in winter and early spring and least in July, August, and September. Table 3 shows the average monthly and annual precipitation at 12 climatologic stations in and near Rush Valley.

Table 3.-Average monthly and annual precipitation, in inches, at climatologic stations in and near Rush Valley

Data from U. S. Weather Bureau (1951-67). Numbers in parentheses show period of record, in years. Annual total is sum of monthly averages. See figure 2 for station locations.

	Bauer	Benmore	Bingham Canyon	Eureka	Fairfield	Government Creek	Grantsville Power House	Middle Canyon	Ophir Canyon	Orr's Ranch	St. John Station	Tooele	Vernon
January	0.96(18)	1.02(49)	1.90(24)	1.48(34)	0.86(15)	1.00(49)	1.20(14)	2.27(9)		0.62(31)	0.36(11)	1.29(69)	0.68(4)
February	.94(17)	1.23(49)	1.85(24)	1.34(34)	.70(15)	1.19(49)	.94(14)	3.81(9)		.88(30)	.64(11)	1.48(69)	.46(4)
March	1.54(16)	1.55(49)	2.37(24)	1.46(34)	.99(15)	1.60(49)	1.59(14)	4.02(9)	-	.87 (31)	.80(11)	1.92(70)	.66(4)
April	1.58(17)	1.29(50)	2.45(24)	1.44(34)	.86(14)	1.32(49)	1.38(14)	4.40(9)	-	.91 (30)	.94(11)	2.06(69)	.74(4)
Мау	1.54(17)	1.21(50)	2.11(25)	1.30(35)	1.21(15)	1.45 (50)	1.29(13)	2.78(9)	•	1.03(28)	1.06(11)	1.80(69)	1.14(3)
June	1.03(16)	.78(50)	1.86(24)	.96(35)	.67(15)	.72(48)	1.18(13)	2.09(9)	-	.51(28)	.46(10)	.94(70)	1.40(4)
July	.85(16)	.85(49)	1.02(24)	1.00(35)	.77(14)	.79(49)	.89(13)	1.05(9)	-	.50(29)	.43(10)	.75(70)	1.25(3)
August	.72(17)	.95 (50)	1.26(24)	1.31(35)	.92(14)	1.01(49)	1.09(13)	1.40(9)		.74(29)	.61 (10)	.89(70)	1.25(3)
September	.48(18)	.69(49)	.82(24)	.72(35)	.74(14)	.70(49)	.53(13)	1.23(9)	-	.50 (29)	.40(10)	.88(70)	.80(5)
October	1.10(18)	1.14(49)	1.36(24)	1.15(35)	.52(14)	1.15(49)	.96(14)	1.62(9)		.99(29)	.79(10)	1.45(70)	.47(5)
November	1.21(18)	1.02(49)	1.79(24)	1.07 (35)	.71(14)	.97 (48)	1.26(14)	3.06(9)	-	.69(29)	.62(11)	1.53(70)	.85(5)
December	1.20(19)	1.11(49)	2.04(24)	1.51(35)	.96(15)	1.01(49)	1.20(14)	2.94(9)		.81(29)	.72(11)	1.30(70)	.74(5)
Annual total	13.15	12.84	20.83	14.74	9.91	12.91	13.51	30.67	19.9 <i>1</i>	9.05	7.83	16.29	10.44
1931-60 normal annual				14.08		-						15.48	

precipitation

¹ Based on seven measurements of annual accumulation.

15

The rate of precipitation in Rush Valley changes cyclically through long periods of time. Figure 4 shows periods of average to above-average precipitation and average to below-average (drought) precipitation for two long-term stations near Rush Valley. Total annual precipitation over a period of years, however, approaches the average of 550,000 acre-feet of water given in table 4. About 50 percent of the annual precipitation falls on the high mountains and adjacent steep alluvial slopes that make up 35 percent of the drainage basin. The distribution of precipitation is summarized in table 4.

Table 4.—Distribution of normal annual precipitation in the Rush Valley drainage basin

(Measured with planimeter from an isohyetal map prepared by the U. S. Weather Bureau (1963a) as modified by E. L. Peck, written commun., 1966)

Precipitation	Area	Precipitation
(inches)	(acres)	(acre-feet, rounded)
>40	1,920	6,700
30-40	8,300	24,300
25-30	15,520	35,700
20-25	24,500	45,800
16-20	44,160	66,200
12-16	194,100	221,500
10-12	81,300	73,900
<10	100,100	72,500
Total (rounded)	470,000	550,000

Surface water

Some of the precipitation that falls in the mountains of the Rush Valley drainage basin flows to lower altitudes in streams. On the alluvial slopes of the valley much of the water in streams is lost by infiltration and by evapotranspiration in areas of cultivated and native vegetation. A small amount of streamflow reaches the playas in the east-central part of Rush Valley and at Rush Lake where it is evaporated. Although tributary channels are mostly well defined, the playas and parts of central and upper Faust Creek are not active drainage ways because they receive runoff from above-normal precipitation and snowmelt only infrequently. Most tributaries to the valley are intermittent and flow only in response to snowmelt and summer thunderstorms.

Eight streams in the mountains that surround Rush Valley are perennial, and all of them are sustained at low flow by ground-water discharge at moderate to high altitudes from springs, seeps, or mines. Clover Creek heads in the Johnson Pass area between the southern Stansbury and the northern Onaqui Mountains (pl. 1). Soldier and Ophir Creeks head in the Oquirrh Mountains and Vernon, Bennion, Dutch, Harker, and Oak Brush Creeks head in the Sheeprock Mountains.

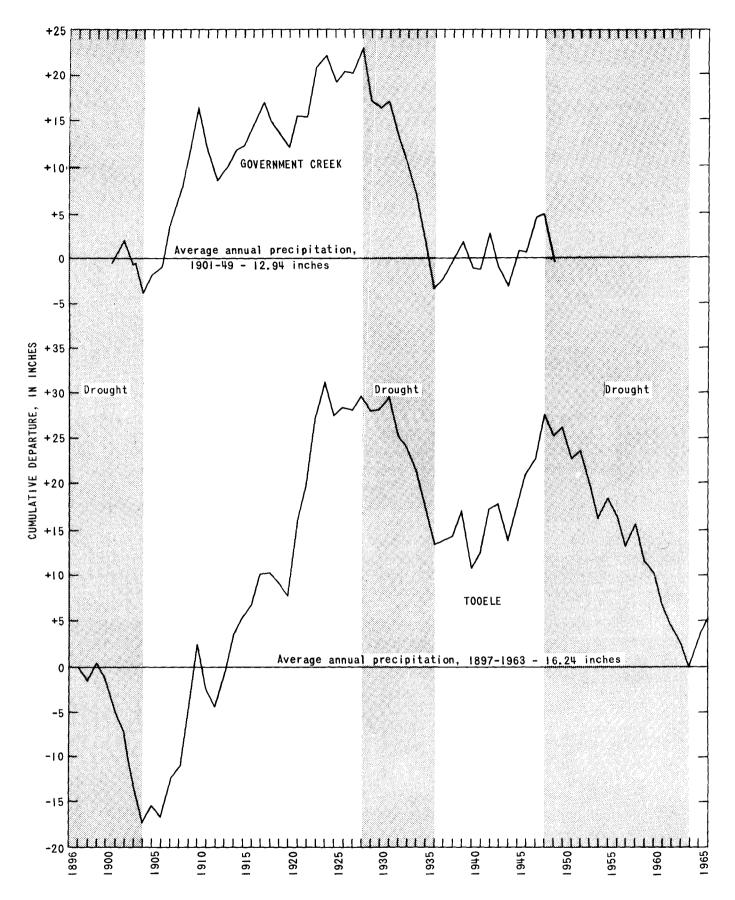


Figure 4.—Cumulative departure of annual precipitation from average annual precipitation at Government Creek and Tooele.

The flow of the perennial streams is variable during the year and generally reaches a maximum rate of discharge during the season of high altitude snowmelt. Water naturally available is supplemented by discharge from mines in Ophir Canyon (Gilluly, 1932, p. 148), Bennion Canyon, and North Oak Brush Canyon (Cohenour, 1959, p. 120). Low-flow conditions differ among the mountains ranges; but it seems probable that under natural conditions, all low flow would infiltrate the permeable alluvial apron at the mouths of canyons and be lost to the ground-water reservoir. In all the canyons named, however, water is conveyed across the alluvial apron to farmlands in Rush Valley.

The only available continuous record of streamflow in Rush Valley is for Vernon Creek in the NE¼NW¼SW¼ sec. 2, T. 10 S., R. 5 W. (pl. 1) and is designated as station 10-1727. Vernon Creek near Vernon (U. S. Geol. Survey, 1967, p. 265). A summary of the station record is given in table 5. Partial records have been obtained on Clover Creek (table 6) and at other sites as a part of the crest-stage gage program operated in cooperation with the Utah State Department of Highways. Miscellaneous measurements of streamflow, largely in connection with planning in the Vernon area, have been made by the U. S. Soil Conservation Service and are listed in table 11 together with estimates of discharge where streams were sampled for chemical analysis. Locations of sites are shown on plate 1.

The amount of streamflow that reaches the alluvial apron in Rush Valley cannot be computed directly because adequate records are not available. The potential long-term average runoff was estimated, however, using the isogram worksheets described by Bagley, Jeppson, and Milligan (1964, p. 56). In their study of water yields in Utah, they statistically analyzed the basins for which runoff is gaged. The derived parameters were then applied to other ungaged parts of Utah, such as Rush Valley, based mainly on the relation of precipitation to altitude.

The long-term average potential annual runoff from the uplands of the Rush Valley drainage basin was estimated by multiplying the area between adjacent lines of equal runoff, as shown on the worksheets at a scale of 1:250,000, by the average value for runoff in the area between the two lines. The total estimated potential runoff is 70,000 acre-feet (table 7).

The estimated 70,000 acre-feet of potential runoff into Rush Valley probably is a maximum figure, because the Oquirrh Mountains apparently do not yield flow in surface streams commensurate with the extent and altitude of the upland area as calculated by Bagley, Jeppson, and Milligan (1964).

Ground water

Source

Ground water in Rush Valley is derived entirely from snowmelt and rainfall within the drainage basin, mostly on lands above altitudes of 5,500-6,000 feet. The quantity of precipitation at these altitudes generally exceeds the immediate losses from evapotranspiration, so that some water infiltrates the consolidated rocks in the mountains and some collects in streams that discharge onto the adjoining alluvial fans and aprons. Of the stream water that reaches the fans, much is lost to evapotranspiration before and after infiltration; some adds to the soil moisture, and a part percolates to the water table.

The annual average rate of recharge from precipitation on lands below 5,500-6,000 feet is small because the amount of precipitation is generally small and most of it is held by the soil and subsequently discharged by evapotranspiration. The rate of recharge is highest in the coarse-grained deposits (Qag on pl. 1) and least or nonexistent in the fine-grained deposits.

Table 5.-Summary of record for station 10-1727, Vernon Creek near Vernon

Location: Lat 39°59', long 112°23', in W½ sec. 2, T. 10 S., R. 5 W., on right bank 7 miles upstream from confluence with Dutch Creek forming Faust Creek and 8 miles southeast of Vernon.

Drainage area: 25 sq mi, approximately.

Records available: June 1958 to September 1966.

Gage: Water-stage recorder. Altitude of gage is 6,200 ft (from AMS topographic map).

Extremes: Maximum discharge, 78 cfs Apr. 14, 1962; minimum, 0.4 cfs Nov. 20, 1961.

Water year	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Annual
1958	-	-	-	-	-	-		-	-	112	104	96	-
1959	101	99	98	9 5	89	111	103	96	89	84	75	66	1,110
1960	65	71	75	83	90	113	129	163	103	92	71	74	1,130
1961	89	89	82	66	73	87	84	74	71	65	62	70	912
1962	72	81	90	89	125	97	349	211	135	119	86	115	1,570
1963	109	106	116	111	101	117	108	112	93	89	79	70	1,210
1964	81	84	87	86	80	95	141	353	159	104	104	92	1,470
1965	110	114	121	137	102	114	193	237	126	95	107	99	1,560
1966	111	112	112	115	111	133	127	124	94	88	88	88	1,300
Total	738	756	781	782	771	867	1,234	1,370	870	848	776	770	10,262
Years of record	8	8	8	8	8	8	8	8	8	9	9	9	8
Average	92	95	98	98	96	108	154	171	109	94	86	86	1,290

Monthly and annual	discharge,	in acre-feet

Table 6.—Measured and estimated discharge, in cubic feet per second, at station 10-1727.6 Clover Creek near Clover

(Crest-stage gage in SE¼SE¼NE¼ sec. 32, T. 5 S., R. 6 W.)

Discharge: Estimated unless indicated by a, indirect measurement of peak discharge, or m, measured with current meter.

	Date	Discharge		Date	Discharge
Aug.	4, 1960	1.5	Oct.	22, 1962	2.25
Aug.	12	3.04m	June	7, 1963	3.7
Aug.	17	2	July	15	3.0
Aug.	26	2.7	Aug.	5	3.0
Sept.	8	3	Aug.	30	2.75m
Sept.	19	2	Sept.	18	3.0
Oct.	5	2.04m	Apr.	21, 1964	4.0
Oct.	17	2	May	15	22.8m
Nov.	8	3	June	7	35
July	28, 1961	1.5	June	22	10.0m
Aug.	8	1.5	July	24	7.41m
Sept.	3	2.0	Aug.	17	2.5
Sept.	28	1.3	May	3, 1965	14.8m
Feb.	1962	20	July	21	. 12
Feb.	15	3.0	Aug.	13	87.0a
July	16	8.4	Aug.	24	7.2
Aug.	1	6.4	Oct.	15	13.5a
					4.0
Aug.	28	3.5	May	18, 1966	8.42m
Sept.	14	3.0	June	20	5.25
			Nov.	11	2.04

Table 7.—Estimated potential average annual runoff from the uplands of the Rush Valley drainage basin

(Calculated from isorunoff maps described by Bagley, Jeppson, and Milligan, 1964, p. 56)

Interval between lines of equal runoff (inches)	Average runoff (inches)	Area (acres)	Estimated runoff (acre-feet, rounded)
1-2	1.5	27,500	3,400
2-4	3	25,000	6,300
4-8	6	59,500	29,800
8-12	10	13,100	10,900
12-16	14	8,000	9,300
16-20	18	5,100	7,600
More than 20	21	300	500
Total (rounded)		140,000	70,000

Estimated average annual recharge

The average annual recharge to Rush Valley was estimated by assuming that a fixed percentage of the average annual precipitation enters the ground-water reservoir in the valley. The method, described by Hood and Waddell (1968, p. 22), was derived from the method of Eakin and others (1951, p. 79-81). The recharge estimate for Rush Valley was made by considering the drainage basin as four areas—the Sheeprock Mountains, other upland areas, an excluded area in the Oquirrh Mountains, and areas of unconsolidated rocks in the valley.

In the Sheeprock Mountains, the maximum rate of precipitation is less than in the other high ranges, but the lithology and geologic structure of the rocks aid in delivery of water to the valley. The other uplands have in common an abundance of distorted carbonate rocks that dip steeply toward the valley and transmit water readily. An area in the Oquirrh Mountains, however, was excluded from the recharge estimate because the geologic structure is believed to inhibit recharge to Rush Valley. A part of the excluded area is in the Cedar Valley recharge area (Feltis, 1967, fig. 4) and a part is along the east side of Ophir Canyon and the east and north sides of Soldier Creek canyon where the rocks dip northeastward into the Pole Canyon syncline.

Recharge to unconsolidated rocks in Rush Valley is only a small percentage of the precipitation that falls on them. This small amount, which contrasts with the higher percentages assigned to the precipitation on lands at higher altitudes, is applied to more than one-half of the total drainage basin.

The estimate of the average annual ground-water recharge to Rush Valley is about 34,000 acre-feet (table 8) or slightly more than 6 percent of the estimated 550,000 acre-feet of precipitation that falls on the drainage basin.

Table 8.-Estimated average annual ground-water recharge in Rush Valley

	maps, geolog	ic maps, and	d figure 4 in Felt	(1967))	
		Estimated annual precipitation		Estimated annual recharge	
Precipitation zone (inches)	Area (acres)	Inches	Acre-feet	Percentage of precipitation	Acre-feet
	А	reas of cons	olidated rocks ¹		
Sheeprock Mountains					
More than 25	3,300	26	7,200	30	2,200
20-25	5,600	22.5	10,500	25	2,600
16-20	4,300	18	6,400	17	1,100
12-16	8,000	14	9,300	12	1,100
All other uplands					
More than 30	5,400	32	14,400	30	4,300
25-30	7,200	27.5	16,500	25	4,100
20-25	10,800	22.5	20,200	17	3,400
16-20	20,500	18	30,800	12	3,700
12-16	33,500	14	39,100	10	3,900
Excluded area ²	17,600	-	-	-	0
	Are	eas of uncor	nsolidated rocks		
16-20	15,700	18	23,600	8	1,900
12-16	151,900	14	177,000	3	5,300
Less than 12	181,400	10	151,000	.5	800
Total (rounded)	470,000		510,000		34,000

(Areas of precipitation zones and excluded areas measured from isohyetal maps, geologic maps, and figure 4 in Feltis (1967))

¹ Includes small areas of thin alluvium that receive more than 20 inches of precipitation.

² Part of the Oquirrh Mountains in which geologic structure inhibits recharge to Rush Valley. (See pl. 1.)

Occurrence

Owing to the control of the geology, the occurrence of ground water in Rush Valley is sufficiently different from one part of the valley to another to warrant separate discussions by area.

Southeastern Rush Valley

In the valley east of Faust Creek and southeast of the mouth of Ophir Canyon, hydrologic conditions appear to be fairly uniform. The ground water in the southern part of the alluvial fan below the mouth of Ophir Canyon is unconfined, and unconfined (water-table) conditions probably occur in much of the southeastern part of the valley. In the fine-grained aquifers beneath the lowlands, nonflowing confined (artesian) conditions apparently occur. Water levels in wells near Faust Creek are shallow, but the depth to water increases eastward. The east edge of the valley from Fivemile Pass to Twelvemile Pass apparently is a discharge area where ground water drains from the fine-grained aquifers into limestone of Paleozoic age. The reported water level of 595 feet below the land surface in well (C-8-3)6aad-1 (table 12), which taps limestone, appears reliable, considering the depth of pump setting and the recent (1967) measurement of a dry depth of 340 feet. The record of the well indicates that the water level in the limestone is lower than the water level in unconsolidated rocks both in Rush Valley and in Cedar Valley to the east, as reported by Feltis (1967, fig. 4).

Vernon area

The Vernon area contains ground water under both confined and unconfined conditions in both consolidated and unconsolidated rocks. Some of the wells in the Vernon area flow; and others indicate nonflowing artesian conditions, mainly along the trend of Vernon Creek in the western part of R. 5 W. and the eastern part of R. 6 W. as far south as T. 9 S. Wells that flow are as shallow as 124 feet (table 12). The conditions that produce the artesian pressure are the fine-grained sediments in the unconsolidated rocks and the artesian head in the underlying consolidated rocks. Unconfined conditions in the Vernon area apparently exist in the moderately permeable unconsolidated rocks to a depth of about 100 feet, in the upper reaches of Vernon Creek, and possibly in the western part of the Vernon area where a trough occurs in the water table (pl. 1).

A few deep wells in the Vernon area have penetrated consolidated rocks of Paleozoic age and have obtained ground water that is under artesian pressure. Under specific favorable local conditions, water can be obtained in very large quantities. (See discussion in section on geology and water-bearing characteristics of the rocks.)

Northern Rush Valley

Northward from the Vernon area to the vicinity of Rush Lake, ground water generally occurs under unconfined conditions in a veneer of younger alluvium that overlies the older

fine-grained unconsolidated rocks. The deep, fine-grained unconsolidated rocks yield little water to wells but contain some water under artesian pressure, as at well (C-5-5)32adb-1. Structural distortion of the older unconsolidated rocks, as in the fault scarp in the eastern part of T. 6 S., R. 6 W., is responsible for a few springs and seepage areas on the alluvial slopes. The water-table contours, as shown on plate 1, indicate that the ground-water surface slopes steeply eastward and thus indicate that the older unconsolidated rocks control the depth to water along the western slope of the valley by preventing downward percolation from the veneer of younger, surficial rocks. A slight downstream convexity of the contours across Clover Creek shows that the creek there loses some water to the alluvium along its bed.

The occurrence of water in consolidated rocks in the immediate Clover-St. John area is unknown; but upstream, limestone yields water at Clover Creek Spring, (C-5-6)32bba-S1, and artesian conditions in the Paleozoic sedimentary rocks are indicated by the warm spring (C-5-5)9cba-S1.

On the northeast side of Rush Valley the fan below the mouth of Ophir Canyon contains unconfined ground water, as in the Deseret Chemical Corps Depot well (C-6-4)5bdd-1. Confined conditions are probable in the lower slopes of the fan. Unconfined conditions probably extend northward beyond the edge of the fan where it abuts older material that underlies a high erosional surface. The deep water level in well (C-4-5)36daa-1 near Soldier Creek indicates unconfined conditions, but confined conditions are possible at greater depths, owing to the intercalated thin beds of clay.

Ground water in the vicinity of Rush Lake occurs mainly under confined conditions. Springs along the southeastern side of the lakebed are believed to result from an abrupt lateral change in grain size within the unconsolidated rocks as well as a fine-grained confining bed at the land surface. Thus ground water moving toward the valley is retarded and moves to the surface. Water that issues from the warm spring, (C-5-5)9cba-S1, southwest of the lakebed, rises to the surface apparently for the same reason. At the northwest side of the lakebed, several shallow large-yield irrigation wells obtain water from gravel in what otherwise is a fine-grained section of unconsolidated rock. The deepest well in the area, (C-5-5)4baa-1, was drilled to 300 feet and reportedly flowed at 650 gpm.

Movement

Ground water moves from recharge areas at higher altitudes to discharge areas at lower altitudes. In Rush Valley ground water moves toward two different discharge areas, as indicated by the arrows on plate 1.

A ground-water divide extends from the eastern edge of the Onaqui Mountains, in the northeastern part of T. 7 S., R. 6 W., northeastward to the mouth of Ophir Canyon in the southwestern part of T. 5 S., R. 4 W. North of the divide, ground water moves from the northern Onaqui and southern Stansbury Mountains eastward and from the Oquirrh Mountains westward to the center of Rush Valley and thence northward toward Rush Lake.

South of the ground-water divide, ground water moves generally eastward across the valley to the vicinity of Fivemile Pass and Thorpe Hills. Some ground water moves southward

from the southern Oquirrh Mountains and northward from Boulter Summit and the West Tintic Mountains toward Fivemile Pass. Ground water in the area of Vernon moves toward a water-table trough northwest of Vernon and thence northeastward across the valley.

Both north and south of the ground-water divide, the slope of the ground-water surface beneath the lowest parts of Rush Valley is gentle. Although water undoubtedly is moving, the quantity of water is small because the aquifers have low permeability.

Storage

A ground-water system is in dynamic equilibrium under natural conditions; long-term average recharge and discharge are equal, and the amount of ground water in transient storage remains nearly constant. Development of wells for irrigation in Rush Valley has not appreciably altered the natural balance as of 1967. Water-level changes (table 14 and fig. 5) generally result from changes in precipitation on the drainage basin.

Recoverable ground water in storage is that part of the stored water that will drain by gravity from the ground-water reservoir as water levels are lowered. It is the product of the specific yield of the reservoir rocks, the saturated thickness, and the area.

Saturated unconsolidated rocks underlie about 250,000 acres in Rush Valley. The specific yield of these deposits is unknown, but it is known to differ from place to place in the valley and with depth. The following table gives estimated specific yields for the various types of unconsolidated rocks and the estimated volumes of recoverable water stored in the upper 100 feet of these rocks in the valley.

Material	Area (acres)	Estimated specific yield	Volume of recoverable ground water in upper 100 feet (acre-feet)
Mainly gravel and sand	40,000	0.20	800,000
Much clay, but some sand and gravel beds	30,000	.10	300,000
Mainly clay and silt with thin beds of sand	180,000	.03	540,000
Total (rounded)	250,000		1,600,000

The storage figure of 1,600,000 acre-feet, which is 46 times that of the estimated annual recharge, probably is a minimum figure because the unconsolidated rocks are much thicker than the 100 feet used for the estimate.

Figure 5.-Water levels in selected observation wells in Rush Valley.

Data are not available on which to base an estimate of ground water stored in consolidated rocks, but the quantity of recoverable water in storage probably is small because of the low bulk porosity of those rocks.

Discharge

Ground water is discharged from Rush Valley by wells, by evapotranspiration, and by subsurface outflow. The water that discharges from springs is included in the figure for evapotranspiration because all the spring water is eventually consumed by evapotranspiration within the valley.

Wells

Rush Valley contains many wells, which are concentrated mainly around the small centers of population. Wells provide domestic supplies of water for an estimated 750 people. The main use of ground water, however, is for irrigation, as shown in the following tabulation. Quantities are in acre-feet.

Use	1964	1965	1966
Irrigation	4,010	4,240	4,700
Domestic	130	130	130
Stock	10	10	10
Total (rounded)	4,200	4,400	4,800

Approximately 17 wells supplied water for irrigation during 1966, and most of the water supplemented surface supplies that were diverted from streams and large springs.

Evapotranspiration

A large part of the ground water that leaves Rush Valley is transpired by plants and is evaporated from soils where the water table is shallow enough to moisten the surface. The data used for the estimate of evapotranspiration were obtained from a rapid field examination of plant distribution and comparison of that data with a map of the depth to water in wells in the valley. In contrast to less populated and drier valleys in western Utah, the vegetation on more land in Rush Valley has been changed from its natural state and the valley receives more precipitation.

Vegetation.—Areas of phreatophytes are shown on plate 1. The areas shown are based on field observation of the distribution of the plants. However, known phreatophytes extend into parts of the valley where the plants use only soil moisture and are not truly phreatophytic. In preparing plate 1, therefore, the depth to water was used as a guide in outlining the areas of phreatophytes.

The phreatophytes grow where the depth to water does not exceed 50 feet. The principal phreatophytes are greasewood (*Sarcobatus vermiculatus*), rabbitbrush (*Chrysothamnus nauseousus*), and meadow grasses including saltgrass (*Distichlis stricta*) in the lowest, damp areas. Cattails (*Typha* sp.) grow in a few ponds in the Rush Lake bottom land and in the same area, sedges (*Carex* sp.) and rushes or wiregrass (*Juncus* sp.) grow in spots that are perennially damp. On some alluvial slopes, greasewood is mixed with small or stunted sage plants (*Artemisia* sp.) (Vallentine, no date, p. 2-5). A small beginning infestation of saltcedar (*Tamarix gallica*) grows on otherwise nearly bare ground near a railroad culvert in sec. 15, T. 6 S., R. 5 W., and patches of willow (*Salix* sp) are along streams on the upper alluvial slopes, as along Clover Creek.

In addition to these native plants, alfalfa (*Medicago sativa*), a cultivated phreatophyte, is grown in the Vernon area. This plant can extend roots to the water table where the depth to water is as great as 66 feet (Robinson, 1958, p. 60), and a well established stand growing over a shallow water table can withdraw 2-3 acre-feet of water per acre of alfalfa during a 5-month growing season.

A part of the Rush Valley bottom land is bare of vegetation, particularly in areas underlain by Lake Bonneville lacustrine silts. The bareness is partly due to the small amount of soil moisture in the silts but probably mostly due to soil salinity. The lowest areas of the valley, as the Rush Lake bottom land and the playas south of Deseret Chemical Corps Depot, are infrequently inundated; but the water stands on the surface for periods long enough to kill all but quick-growing xerophytes, such as whitetop (*Lepidium draba*).

Estimated average annual evapotranspiration. —The major areas of evapotranspiration are shown on plate 1, and an estimate of the average annual rate of ground-water discharge by evapotranspiration is given in table 9. Areas of cultivated land and irrigated grazing land in the Clover-St. John and Vernon areas are not separated from areas of phreatophytes, but the estimates for rate of ground-water use are adjusted accordingly.

The estimated quantity of ground water discharged by evapotranspiration in Rush Valley amounts to 27,000 acre-feet per year, which is about 70 percent of the estimated total annual ground-water discharge from the valley.

Subsurface outflow

Discharge toward the east. –Ground water in the unconsolidated rocks in Rush Valley apparently discharges into the structually distorted rocks of Paleozoic age that form the eastern margin of the valley from Fivemile Pass near the south end of the Oquirrh Mountains to the vicinity of Twelvemile Pass. The slope of the water table is toward the east (pl. 1), and a reported water-level measurement in well (C-8-3)6aad-1 (table 12) indicates that the water level in consolidated rocks is deeper than in the unconsolidated rocks. Thus there would be a hydraulic gradient into the consolidated rocks.

The quantity of water discharged from the eastern edge of the valley is estimated to be 5,000 acre-feet per year. Much of the water-bearing material in the eastern half of the valley is

			Evapotranspiration	
Location and type	Area (acres)	Depth to water (feet)	Acre-feet per acre	Acre-feet
Middle to lower alluvial slopes in central and western part of valley (pl. 1). Mainly greasewood, but associated with rabbitbrush, other phreatophytes, and sage in the southern part of the valley.	36,700	20-50	0.2	7,300
Low areas of southern Rush Valley near Vernon. Mixed phreatophytes, including dense rabbitbrush along parts of stream channels. Sparser growths of rabbitbrush and greasewood along edges of area. Includes cultivated lands and areas of locally dense meadow in which part of crops use ground water.	11,300	0-20	.75	8,500
Central valley bottom land. Bare soil in playas and fine-grained lacustrine deposits.	3,800	15-25	0	0
Clover Creek channel area and middle to lower alluvial slope near St. John. Mixed phreatophytes including rabbitbrush, and subirrigated cultivated land and pasture. Rabbitbrush is very dense in some uncleared areas.	5,400	5-20	.75	4,000
Rush Lake bottom land.				
Grassland and bare soil that is moist to saturated. Wet during winter, moist in summer.	2,500	0-10	.8	2,000
Spring-fed or flooded marshy land. Dense grass, rushes, and hydrophytes; small ponds of open water. Area changes with season.	1,900	0-2	2.5	4,800
Totals (rounded)	61,600			27,000

Table 9.-Estimated average annual evapotranspiration in Rush Valley

reported to be clay, silt, and fine sand (table 13), and is estimated to have an average permeability of 30 gpd per ft² (gallons per day per square foot) (Johnson, 1963, p. 31). The saturated thickness of the material is on the order of 400 feet, and thus the coefficient of transmissibility (T) is about 12,000 gpd per ft. The slope of the water table (I) at the 5,000-foot water-level contour (pl. 1) varies from 50 feet per mile to less than 10 feet per mile and is estimated to average 25 feet per mile. The length (L) of the 5,000-foot contour is about 15 miles. The quantity (Q) of water discharged from the valley, thus is calculated from the equation

Q = TIL = 12,000 x 25 x 15 = 4,500,000 gpd, or 5,000 acre-feet per year

Discharge toward the north. – An estimate for subsurface discharge from the ground-water reservoir at the north end of Rush Valley is not included in this report, but it should be pointed out here that the amount is probably small but significant. Both Thomas (1946, p. 194-196) and Gates (1965, p. 22) have discussed the movement of a small quantity of water beneath the Stockton bar between Rush and Tooele Valleys. Gates points out the difference of about 300 feet in water levels between Rush Valley on the upper side and Tooele Valley on the lower.

Thomas (1946, p. 195) and Gilluly (1932, p. 117-118) summarized data from Gilbert (1890) and later sources to show that Rush Lake, the lowest part of Rush Valley, expands and recedes in response to changes in precipitation. In 1862, the lakebed contained a small pond and meadows; but in 1872 the lake was 4½ miles long and 10 feet deep, and the water was fresh enough for domestic use. By 1880, it had shrunk to half of its length in 1872, and the water was too brackish to be palatable. Since 1934 to the present (1968) the lakebed generally has been dry but has a small marshy area. Considering that Rush Lake is the lowest point in the valley, that it receives drainage from an extensive upland area, and that after the lowering of ancient Lake Bonneville the residue of the water trapped behind the Stockton bar would have receded to a low point, it would be expected that the lowest part of the Rush Lake bottom land would contain saline soil. The following analysis of soil from Rush Lake bottom land (analysis by the U. S. Bureau of Reclamation Regional Laboratory, Salt Lake City, Utah) indicates that the upper 6 inches of soil at the lowest point on the lakebed near the foot of the Stockton bar in the NE¼NW¼NW¼ sec. 26, T. 4 S., R. 5 W., contains no appreciable quantities of readily soluble evaporite minerals.

Sampling site: Sampling date:	(C-4-5)26bba May 17, 1967	
Sampling depth:	0-6 inches, composited	
Mechanical analysis		
Particle size		Percentage of sample
Larger than 0.05	mm	8.2
0.05-0.005		28.0
0.005-0.002		6.0
Smaller than 0.0	02	57.8
Saturation extract		
Specific conductance	e (EC x 10 ⁶ at 25°C)	817
pH		8.8
Chemical anal	ysis	Parts per million
Dissolved solids		648
Calcium (Ca)		55
Magnesium (Mg)		17
Potassium (K)		38
Sodium (Na)		97
Carbonate plus bica	bonate (CO ₃ + HCO ₃) ¹	294
Chloride (Cl)		40
Sulfate $(SO_4)^2$		164

¹ CO3 not reported separately because sample was dilute.
² Calculated.

The difference in water levels across the Stockton bar, the reported fluctuations in lake size and water quality, the silty clay in the lake bottom, and the chemical character of the clay suggest that (1) the lakebed receives and stores surface water during periods of above-normal precipitation, (2) part of the water is discharged by evaporation, (3) the remainder drains away very slowly from the north end of the lake to Tooele Valley, and (4) during periods of below-normal precipitation, both precipitation and fresh surface inflow flush saline residues in the lake-bottom deposits downward.

Ground-water budget

The average quantity of ground water recharged to and discharged from Rush Valley is estimated to be in the range of 34,000-37,000 acre-feet per year. The quantities of water involved are summarized in table 10.

Table 10.—Ground-water budget for Rush Valley

Item	Acre-feet per year
Recharge (table 8)	34,000
Discharge:	
Evapotranspiration (table 9)	27,000
Subsurface outflow (p. 28)	5,000
Total natural ground-water discharge	32,000
Wells, 1966 (p. 27).	4,800
Total discharge (rounded)	37,000

It should be emphasized that the figures in the budget are not precise and show only the order of magnitude of the quantities of water involved in the recharge-discharge relationship.

Perennial yield

The perennial yield of a ground-water reservoir is the maximum amount of water of suitable chemical quality that can be withdrawn economically each year for an indefinite period of years. The perennial yield cannot exceed the natural discharge; moreover, the yield will be limited to the amount of natural discharge that can be economically salvaged for beneficial use.

In Rush Valley, the maximum amount of natural discharge that is available for salvage is the estimated evapotranspiration loss of about 27,000 acre-feet per year (table 9). In some phreatophyte areas in Rush Valley a part of the water now lost to evapotranspiration could be salvaged if additional wells were drilled. Little, if any, of the subsurface outflow can be economically salvaged, however, both because of the depth to water and because wells finished in the fine-grained aquifers would have small yields. At present, the salvage of water appears most feasible in the area extending from the vicinity of Vernon to upper Faust Creek near Faust, where an estimated total of about 8,000 acre-feet of ground water is discharged annually by phreatophytes. Near Rush Lake, a part of the estimated 4,000-5,000 acre-feet of water discharged annually in and near the lakebed might be salvaged both by pumping and by distribution of spring discharge. In both areas, salvage of water would require a uniform lowering of the water table. It is estimated that an additional 10,000 acre-feet of ground water in Rush Valley might be diverted to beneficial use, but wells should be carefully spaced to achieve uniform lowering of the water table. If it is desired to withdraw appreciably larger quantities of water than can be salvaged from losses by evapotranspiration, the additional quantities would have to be mined from water in storage.

A part of the problem of assessing the potential salvage of water from loss by evapotranspiration lies in the beneficial use of water where cropland and grazing land are subirrigated. In such areas, pumping operations would simply redistribute water that is now partly used by man. A more detailed study is needed to determine the relative merits of existing conditions and redistribution by pumping.

CHEMICAL QUALITY OF WATER

The concentration of dissolved solids in water in the Rush Valley drainage basin ranged from 200 to 2,180 ppm (parts per million) (tables 16 and 17). The concentration of dissolved solids and chemical composition of water from the springs and streams in the mountains are uniform throughout the drainage basin (pl. 1). By contrast, both the concentration of dissolved solids and chemical composition of the ground water varies from one part of the valley to another and also varies locally.

Mountains

The concentration of dissolved solids in the water from the springs and streams sampled in the Stansbury, Oquirrh, and West Tintic Mountains ranged from 200 to 338 ppm. Calcium and bicarbonate are the principal constituents. The major perennial mountain streams which recharge the ground-water reservoir through the alluvial aprons and influence the chemical character of water in the valley are Soldier, Ophir, Clover, and Vernon Creeks. (See table 17 and analysis in table 16 for spring (C-5-6)32bba-S1, which is the major source of Clover Creek.)

Valley

The concentrations of dissolved solids in water sampled from wells and springs in the valley ranged from 238 to 2,180 ppm. Most of the water, however, contained less than 1,000 ppm of dissolved solids; water from only three sources exceeded 1,000 ppm. The principal constituents of most water in the valley were calcium and bicarbonate but magnesium, sodium, and chloride were the principal constituents in some of the water. The chemical composition of ground water from many of the wells along the alluvial slopes is similar to that of the perennial mountain streams (pl. 1).

The chemical analyses of water from springs and wells having different depths indicate local variations in the chemical quality of water along Faust Creek north of Vernon and north of St. Johns Station near Morgan Ranch. Along Faust Creek, 3½-8 miles north of Vernon, the concentrations of dissolved solids of ground water ranged from 344 to 2,180 ppm. Magnesium and bicarbonate were the principal constituents in the water containing dissolved solids in the range from 344 to 503 ppm; whereas sodium, magnesium, and chloride were the principal constituents in the range from 767 to 2,180 ppm. The Salt Lake Formation underlies parts of this area and may be contributing to the local variation in the chemical quality of water.

Near Morgan Ranch, the concentrations of dissolved solids ranged from 368 to 1,040 ppm. The principal constituents in the water from sources near Morgan Ranch were calcium and bicarbonate; sodium, bicarbonate, and chloride; and sodium bicarbonate (pl. 1).

Two thermal springs were sampled in Rush Valley. According to White (1957, p. 1638), a thermal spring is one which has a temperature significantly above the mean annual air

temperature of the surrounding region. The range in annual average air temperature in Rush Valley is 47-50° F, and the springs, (C-5-5)9cba-S1 and (C-7-5)32aba-S1, yield water having temperatures of 75° and 68° F, respectively (table 16).

Changes in chemical quality

Significant changes in the chemical quality of ground water have been recorded during the period 1948-63 at two wells in Rush Valley. The water from public-supply wells (C-6-4)5bdb-1 and (C-6-4)5bdd-1 at the Deseret Chemical Corps Depot has fluctuated in concentration of dissolved solids and the relative concentrations of individual constituents. (See table 16 and fig. 6.) The relative concentrations of chloride increased with increased concentrations of dissolved solids, whereas the relative concentrations of bicarbonate decreased and sulfate plus nitrate and magnesium remained approximately the same. The relative concentrations of sodium plus potassium increased with increased concentrations of dissolved solids up to 460 ppm, then decreased as the dissolved solids increased from 460 to 497 ppm; whereas the relative concentrations of calcium decreased with increased from 460 to 497 ppm; ppm.

These two wells are finished in the Ophir Creek alluvial fan and are within a quarter of a mile of Ophir Creek. The average concentration of dissolved solids in water from the wells is about 240 ppm greater than that in water from Ophir Creek, but the relative proportion of dissolved constituents in water from the wells is very similar to that in water from the creek (pl. 1). The records of chemical quality of water for Ophir Creek (1964-65) do not extend over as long a period as those for the wells, however, there is a possibility that the chemical composition of water from Ophir Creek varies enough to account directly or indirectly for the fluctuation of the chemical composition of water from the wells. During the period February-June—in contrast to the period August-November—the lower concentration of dissolved solids in water from the two wells (fig. 6) apparently results from greater recharge from Ophir Creek and reduced withdrawal of water from the wells. During the period August-November, recharge from Ophir Creek decreases and water levels in the wells generally decline due to increased pumping. This results in larger contributions of water stored deeper in the unconsolidated rocks. The deeper water apparently contains more dissolved solids than the water that is contributed directly from Ophir Creek.

Chemical quality in relation to use

Irrigation

Most of the water used for irrigation in Rush Valley is generally of suitable chemical quality for agricultural use. Water used for irrigation is mostly a combination of surface and ground waters; but in some areas, water is obtained only from wells. The principal irrigated crops are forage—alfalfa and small grains—and most of the cultivated land is in the northern and southwestern parts of the valley.

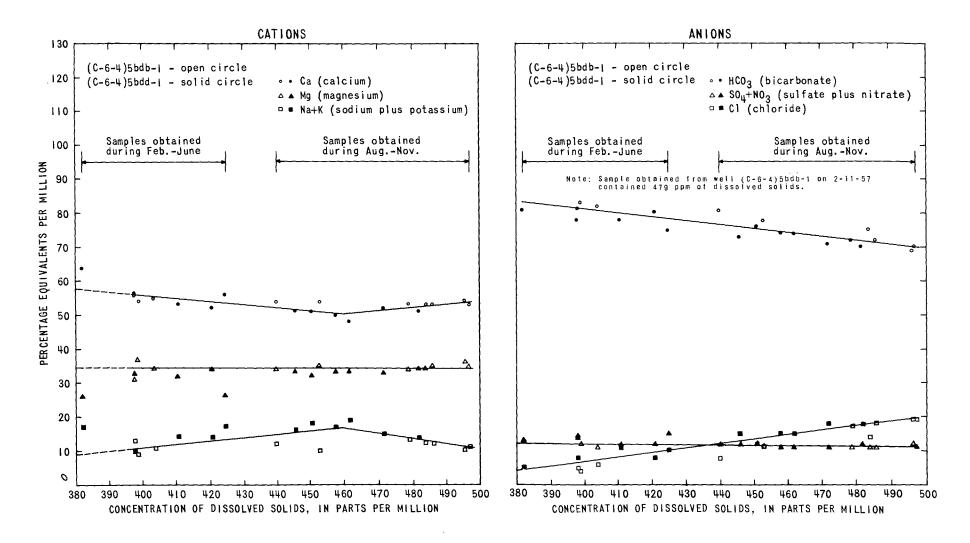


Figure 6.—Fluctuation of the chemical composition of water from wells (C-6-4)5bdb-1 and (C-6-4)5bdd-1 during the period 1948-63.

မ္မာ

The suitability of water for irrigation depends upon the concentration of dissolved solids, the concentrations and relative proportions of some of the ions, and the characteristics of the soil where the water is to be used. The suitability of water for irrigation in this report is judged according to the classification developed by the U. S. Salinity Laboratory Staff (1954, p. 79-81) (fig. 7).

Most of the water in Rush Valley is classed as C_2S_1 or C_3S_1 . Water in class C_3S_1 can be used for plants with moderate salt tolerance without special practices for salinity control, whereas water in class C_3S_1 should be used only on soils that have good drainage characteristics and for plants that have high salt tolerance.

Residual sodium carbonate was present in water from only two wells in Rush Valley. Well (C-7-4)14aac-1 yields water containing 2.51 epm (equivalents per million) of residual sodium carbonate and well (C-8-4)22aad-1 yields water containing 0.60 epm of residual sodium carbonate. According to the U. S. Salinity Laboratory Staff (1954, p. 81), water containing less than 1.25 epm probably is safe for irrigation. The concentration of boron exceeded the limits for sensitive crops (0.33 ppm) in water from spring (C-5-5)9cba-S2 and well (C-7-4)14aac-1.

Domestic supply

Much of the water in Rush Valley contained one or more constituents in concentrations that exceed the maximum limits for drinking-water standards recommended by the U. S. Public Health Service (1962). The recommended limits are:

Constituent	Parts per million
Sulfate (SO ₄)	250
Chloride (CI)	250
Fluoride (F)	1.3 <i>1</i>
Nitrate (NO ₃)	45
Iron plus manganese (Fe+Mn)	.30
Dissolved solids	500

¹ Maximum recommended for water used in public supplies at average annual maximum daily air temperature prevailing in Rush Valley.

The concentration of iron plus manganese exceeded the limits in many of the supplies. All nitrate concentrations were within the recommended limits, however, and fluoride concentration exceeded the limits in only two supplies.

Most of the water in Rush Valley contained more than 181 ppm of hardness as calcium carbonate (CaCO₃) and is classed as very hard by the U. S. Geological Survey.

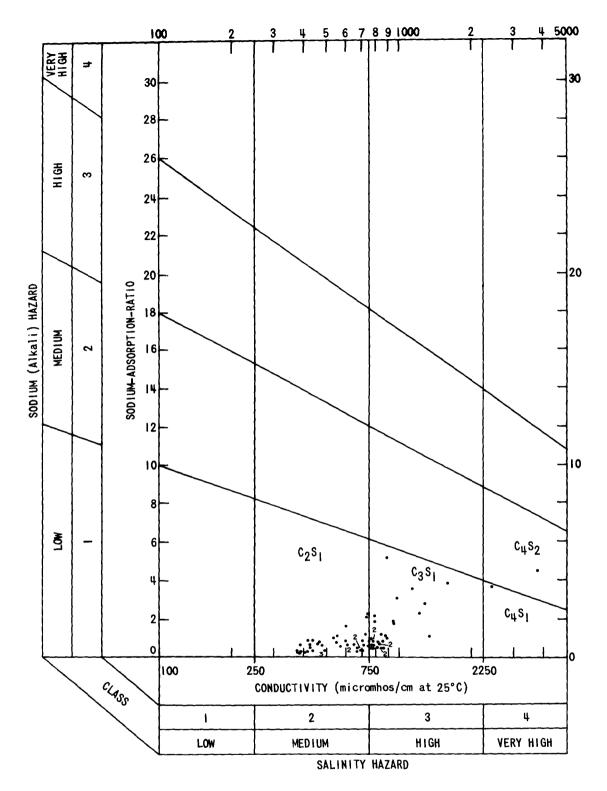


Figure 7.—Classification of water for irrigation in Rush Valley (method from U. S. Salinity Lab. Staff, 1954, p. 80). (Number by point is the number of analyses represented.)

LAND USE AND DEVELOPMENT OF WATER SUPPLIES

The Rush Valley drainage basin includes about 470,000 acres of land, but the valley and alluvial slopes that border the mountain ranges cover only about 250,000 acres. Less than half of the alluvial slopes are sufficiently gentle to permit agriculture if adequate water and suitable soil were present. The area in Rush Valley that can be developed for agriculture is further restricted because of poor soil, insufficient water, or water at excessive depths.

Past and present

About 90 percent of the Stansbury, Onaqui, Sheeprock, and West Tintic Mountains is owned by the Federal and State Governments, but about 70 percent of the Oquirrh Mountain area is privately owned. In the valley, about 80 percent of the area east of State Highway 36 is Federal and State land. About 80 percent of the land in the western part of the valley is private. Much of the public land and part of the private land in the drainage basin is used for stock grazing.

Use of water by settlers in the valley began some time after 1855. The town of Bauer was established in 1855 at the north side of the Stockton bar (in adjacent Tooele Valley), and in that year the native hay meadows in the Rush Lake bottom land were included in a military reservation (Gilluly, 1932, p. 117-118) that subsequently (1858) had its headquarters at Camp Floyd in adjacent Cedar Valley. Early use of water continued with the need for water for mining in the Oquirrh Mountains and with the arrival of farmers and stockmen. The larger perennial streams—Soldier, Ophir, Clover, and Vernon Creeks—and other smaller streams were the sources of water for early irrigated farming and are still (1968) the main supply. According to Richards, Davis, and Griffin (no date, p. 85-86), surface water in Rush Valley was used in 1963 by the following organizations:

Company	Acres irrigated
Clover Creek:	
Upper Clover Creek Irrigation Co.	200
Lower Clover Creek Irrigation Co.	200
St. John Irrigation Co.	300
Ophir Creek:	
Ophir Creek Water Co.	600
Harker and Oak Brush Creeks (Vernon area):	
Harker Creek Irrigation Co.	550
Vernon Creek:	
Vernon Irrigation Co.	700
Total	2,550

Dug wells presumably were installed early in the history of the valley. By the first decade of the 1900's, a 1,004-foot well had been jetted near Clover, and by the second decade, a number of wells had been drilled in both the St. John and Vernon areas. Large-diameter wells for irrigation supplies were not drilled until after World War II.

Carpenter (1913, p. 77) noted that in 1911, 600 acres were under cultivation at Clover and St. John and 800 acres near Vernon. J. H. Maughan (written commun., May 1944) estimated that the valley contained about 2,000 acres of irrigated hay and small grains in 1944. The Soil Conservation Service reported that in 1966 (M. W. Lewis, oral commun., 1966) northern Rush Valley from Soldier Creek to Clover Creek contained 3,600 acres of irrigated land, 1,400 acres of which were subirrigated. Irrigated lands near Vernon in 1966 (Soil Conserv. Service, written commun., February 1967) were reported to amount to 2,200 acres, of which 920 acres were sprinkler irrigated. Alfalfa was grown on 85 percent of the land and small grains were grown on 15 percent of the land. An additional 1,500 acres reportedly were dry cropped.

Future

Although all dependable supplies of surface water appear to be utilized, Rush Valley can support some additional development of ground water. The best potential for future ground-water development from the unconsolidated rocks is in the western half of the valley where the water levels are relatively shallow and the water-bearing deposits are relatively coarse grained and yield large quantities of water to wells. The consolidated rock aquifer in the Vernon area also should be able to support additional development, but considerable well interference could occur in closely spaced wells. Other possible areas for ground-water development are the edges of the Ophir Canyon fan, the area north of the fan along the edge of the valley floor, the western side of the Rush Lake bottom land, and the middle slopes of the alluvial apron along the bases of the Stansbury and Onaqui Mountains.

An accurate estimate of the quantity of ground water available for potential development in Rush Valley cannot be made, owing both to the need for additional hydrologic data and the complicated subsurface geologic conditions. Exploratory drilling would be necessary before such an estimate could be made. It can be stated with certainty, however, that ground-water levels ultimately will decline in areas where pumping is increased substantially. Such a decline would be desirable in major areas of evapotranspiration because the declines would result in a savings of water now lost by nonbeneficial consumptive use.

PROPOSALS FOR ADDITIONAL STUDIES

Rush Valley has a potential for additional development of its ground-water resources. Because interest in the valley is increasing, a detailed water-resources investigation is needed immediately to refine the estimates given in this report. Such a study should include the following considerations:

1. A comprehensive inventory of the water resources—wells, springs, and streams—in the drainage basin should be made to complete the coverage given by this reconnaissance. Detailed

data are needed on the hydraulic characteristics of existing wells and the aquifers they tap, the discharge characteristics of springs, the use of water in the valley, and the availability of surface-water supply at various times of the year and at various points along the streams.

2. A systematic study should be made of the unconsolidated rocks and of the consolidated rocks near the valley edge and beneath the valley to aid in evaluating the aquifer framework.

3. The drilling of test holes is needed to aid geologic and hydrologic analysis. At least one test hole should be drilled to a depth of 500-700 feet in the Rush Lake bottom land at the foot of the Stockton bar in the SE¼SW¼ sec. 23, T. 4 S., R. 5 W. One test hole is needed west of Topliff Hill to confirm old data for well (C-8-3)6aad-1. Test holes are also needed in the central part of the valley, as in sec. 35, T. 6 S., R. 5 W., in the vicinity of the ground-water divide, and in areas where water has been reported to be scarce or of poor chemical quality.

4. Streamflow records should be accumulated by expanding the crest-stage gage program in the valley and concurrently installing temporary gaging stations. Such gaging stations would have to be operated several years in order to provide adequate records. The flow of the perennial surface streams should be measured, particularly those streams heading in the Oquirrh Mountains; the flow from large springs should also be measured.

5. Additional chemical analyses should be made in order to determine the effects of increased withdrawals of water and reuse of irrigation water on the quality of existing water supplies.

SELECTED REFERENCES

- Ashcroft, G. L., and Derksen, W. J., 1963, Freezing temperature probabilities in Utah: Utah State Univ. Agr. Expt. Sta. Bull. 439.
- Bagley, J. M., Jeppson, R. W., and Milligan, C. H., 1964, Water yields in Utah: Utah Agr. Expt. Sta. Spec. Rept. 18.
- Bissell, H. J., ed., 1959, Geology of the southern Oquirrh Mountains and the Fivemile Pass-northern Boulter Mountain area, Tooele and Utah Counties, Utah: Utah Geol. Society Guidebook to the Geology of Utah No. 14.
- Carpenter, Everett, 1913, Ground water in Boxelder and Tooele Counties, Utah: U. S. Geol. Survey Water-Supply Paper 333.
- Cohenour, R. E., 1959, Sheeprock Mountains, Tooele and Juab Counties: Utah Geol. and Mineralog. Survey Bull. 63.
- Connor, J. G., Mitchell, C. G., and others, 1958, A compilation of chemical quality data for ground and surface waters in Utah: Utah State Engineer Tech. Pub. 10.

- Cook, K. L., and Berg, J. W., Jr., 1961, Regional gravity survey along the central and southern Wasatch Front: U. S. Geol. Survey Prof. Paper 316-E.
- Crittenden, M. D., Jr., 1963, New data on the isostatic deformation of Lake Bonneville: U. S. Geol. Survey Prof. Paper 454-E.
- Disbrow, A. E., 1957, Preliminary geologic map of the Fivemile Pass quadrangle, Tooele and Utah Counties, Utah: U. S. Geol. Survey Map MF-131.

- Eakin, T. E., and other, 1951, Contributions to the hydrology of eastern Nevada: Nevada State Engineer Water Resources Bull. 12.
- Feltis, R. D., 1967, Ground-water conditions in Cedar Valley, Utah County, Utah: Utah State Engineer Tech. Pub. 16.
- Gates, J. S., 1963a, Selected hydrologic data, Tooele Valley, Tooele County, Utah: U. S. Geol. Survey open-file rept. (duplicated as Utah Basic-Data Report No. 7).

- Gilbert, G. K., 1890, Lake Bonneville: U. S. Geol. Survey Mon. 1.
- Gilluly, James, 1932, Geology and ore deposits of the Stockton and Fairfield quadrangles, Utah: U. S. Geol. Survey Prof. Paper 173.
- Harris, DeVerle, 1958, The geology of the Dutch Peak area, Sheeprock Range, Tooele County, Utah: Brigham Young Univ. Research Studies, Geology Ser., v. 5, no. 1.
- Heylmun, E. B., 1965, Reconnaissance of the Tertiary sedimentary rocks in western Utah. Utah Geol. and Mineralog. Survey Bull. 75.
- Hood, J. W., and Waddell, K. M., 1968, Hydrologic reconnaissance of Skull Valley, Tooele County, Utah: Utah State Engineer Tech. Pub. 18.
- Johnson, A. I., 1963, Application of laboratory permeability data: U. S. Geol. Survey open-file rept.
- Kohler, M. A., Nordenson, T. J., and Baker, D. R., 1959, Evaporation maps of the United States: U. S. Weather Bur. Tech. Paper 37.
- Mahoney, J. R., 1953, Water resources of the Bonneville Basin, Part 1, The water crop and its disposition: Utah Econ. and Business Rev., v. 13, no. 1-A.

- Morris, H. T., 1964, Geology of the Tintic Junction quadrangle, Tooele, Juab, and Utah Counties, Utah: U. S. Geol. Survey Bull. 1142-L.
- Peck, E. L., and Brown, M. J., 1962, An approach to the development of isohyetal maps for mountainous areas: Jour. Geophys. Research, v. 67, no. 2, p. 681-694.
- Richards, S. H., Davis, L. H., and Griffin, R. E., (no date), Irrigation and canal companies of Utah: Utah State Univ. Agr. Expt. Sta. Ext. Circ. 331.
- Rigby, J. K., ed., 1958, Geology of the Stansbury Mountains, Tooele County, Utah: Utah Geol. Soc. Guidebook to the Geology of Utah No. 13.
- Robinson, T. W., 1958, Phreatophytes: U. S. Geol. Survey Water-Supply Paper 1423.
- Snyder, C. T., 1963, Hydrology of stock-water development on the public domain of western Utah: U. S. Geol. Survey Water-Supply Paper 1475-N.
- Stokes, W. L., ed., 1964, Geologic map of Utah: Utah Univ., Salt Lake City.
- Teichert, J. A., 1959, Geology of the southern Stansbury Range, Tooele County, Utah: Utah Geol. and Mineralog. Survey Bull. 65.
- Thomas, H. E., 1946, Ground water in Tooele Valley, Tooele County, Utah, *in* Utah State Engineer 25th Bienn. Rept.: Utah State Engineer Tech. Pub. 4, p. 91-238.
- U. S. Geological Survey, 1967, Water resources data for Utah, 1966, Part 1, Surface-water records: Water Resources Div.
- U. S. Public Health Service, 1962, Drinking water standards: Public Health Service Pub. 956.
- U. S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U. S. Dept. Agriculture Handb. 60.
- U. S. Weather Bureau, 1937, Climatic summary of the United States, climatic data from the establishment of stations to 1930, inclusive: Sec. 20-western Utah.

- U. S. Weather Bureau, 1965, Climatic summary of the United States Supplement for 1951 through 1960, Climatography of the United States No. 86-37, Utah.
- Vallentine, J. F., (no date), Important Utah range grasses: Utah State Univ. Agr. Expt. Sta. Ext. Circ. 281.
- Waddell, K. M., 1967, Reconnaissance of the chemical quality of water in western Utah, Part I, Sink Valley area, drainage basins of Skull, Rush, and Government Creek Valleys, and the Dugway Valley-Old River Bed area: Utah Geol. and Mineralog. Survey Water-Resources Bull. 9.
- White, D. E., 1957, Thermal waters of volcanic origin: Geol. Soc. America Bull., v. 68, p. 1637-1657.

Table 11.—Discharge of streams at miscellaneous sites in the Rush Valley drainage basin

Site location: See text for description of location-numbering system. Stream and site description: Number is U.S. Geological Survey station number. Drainage area: a, approximate. Discharge: Dash indicates unmeasured flow in ephemeral stream on date visited; e, estimated.

Site location	Stream and site description	area (square miles)	Date	Discharge (cfs)	Remarks
(C-4-6) 25bab	10-i727.8 Hickman Creck, near St. John. Crest-stage gage 0.1 mile upstream from road crossing and 6.5 miles north of St. John	12.8	10-17-609-17-612-11-623-27-626-17-639-13-6319643-13-655-10-668-29-66	- 9.9e 18e - 7e 3e	Discharge not determined. Do. Do. Do. No evidence of flow during year. Discharge not determined.
(C-4-7)36daa	Bear Fork of East Hickman Canyon	-	9-21-64	.02e	Chemical analysis in table 17.
C-5-4) 22bbc	l0-1727.7 Dry Canyon near Stockton. Crest-stage gage at end of trail from Ophir Canyon road	1.42	1961-65	-	No evidence of flow except once in 1962 when discharge was not determined.
28cdb	Ophir Creek at mouth of Ophir	-	9-25-64 5-29-65 9-15-65	4e 6e 15e	Chemical analysis in table 17. Do.
C-5-6)6bbd	Stream in Morgan Canyon	~	9-21-64	.02e	Chemical analysis in table 17.
6bbd	East flowing tributary of Morgan Canyon stream		9-21-64	.02e	Бо.
32add	10-1727.6 Clover Creek near Clover. Crest-stage gage, 4.3 miles west of Clover and below Clover Springs	4.45	-		Listing of measurements and estimates in table 6.
C-6-3)32bda	10-1727.4 Rush Valley tributary near Fairfield. Crest-stage gage, 0.9 mile northeast of State Highway 73	.26	9-17-61 262 9-19-63 1964 9- 6-65 1966	- - 17e	Discharge not determined. Do. Do. No evidence of flow during year. No evidence of flow during year.
C-8-5) 20cdb	Vernon Creek. 3-inch Parshall flume,north of Vernon	-	7-24 to 7-25-65	.97	Measurements reported by Soil Conservation Service. Highest flow during 1-day period Lowest flow. Flow of creek shows diurna fluctuations and probable effects of
32bab	Vernon Creek. 6-inch Parshall flume,100 feet south of Vernon	-	7-20 to 7-25-65 5-18-66 5-20-66 5-24-66 6-16-66 6-30-66 7-14-66 8-15-66 9-12-66 9-30-66	1.10 .76 1.28 1.12 1.23 1.62 .78 .47 .65 .58 .43	diversion or regulation. Highest flow during 5-day period. Lowest flow during 5-day period. Measurements reported by Soil Conservation Service. Flow is subject to diversion; diurnal offect.
C-8-6)17dcc	10-1727.2 East Government Creek tributary near Vernon	.98a	2- 9-62	6	No evidence of any other flow in 1961-65.
C-9-5) 5bda	Vernon Creek ditch. 9-inch Parshall flume at end of concrete ditch	-	7-20 to 7-23-65 7-26 to 7-27-65 8- 3 to 8- 4-65	.97 1.37 1.05 1.63 1.25	Measurements reported by Soll Conservation Service. Highest flow during 3-day period Lowest flow during 3-day period. Highest flow during 1-day period. Lowest flow during 1-day period. Highest flow during 1-day period. Lowest flow during 1-day period.
276	Vernon Creek	-	9~ 5-14	2.2	1
27cdd	Vernon Creek ditch. 6-inch Parshall flume	-	7-26 to 7-27-65 8-3 to 8-4-65	1.79 1.53 1.88 1.64	Measurements reported by Soil Conservation Service. Highest flow during 1-day period Lowest flow during 1-day period. Highest flow during 1-day period. Lowest flow during 1-day period.
28ada	Bennion Creek ditch, 6-inch Parshall flume at head of storage pond	-	7-16 to 7-17-65 7-19 to 7-20-65	.51 .29 .34 .26	Measurements reported by Soil Conservation Service. Highest flow during 1-day period Lowest flow during 1-day period. Highest flow during 1-day period. Lowest flow during 1-day period.
29 d dc	Bennion Creek. 9-inch Parshall flume 100 feet above Forest Service diversion	-	7-15 to	.84	Measurements reported by Soil Conservation
32a	Bennion Creek	-	7-20-65	.47	Service. Highest flow during 5-day perio Lowest flow during 5-day perio

Site location	Stream and site description	Drainage area (square miles)	Date	Discharge (cfs)	Remarks		
(C-9-6) 35d	Harker Creek	-	9- 5-14	0.5			
36bdc	Harker Creek. 3-inch Parshall flume, at diversion in mouth	-	7-13 to	. 39	Measurements reported by Soil Conservation Service. Highest flow during 3-day period.		
	of canyon Harker Creek, 90° V-notch weir, just below diversion	-	7-16-65 l1-10-65	.16 .30	Lowest flow during 3-day period. Only 5-10 gpm reaches first farm on Harker Creek at head of distribution system.		
(C-10-5)2cca	10-1727. Vernon Greek near Vernon	0,25a	-	See remarks	Gaging station. Summary record of monthly and annual discharges in table 5. Chemical analysis in table 17.		
6ddc	Dutch Greek. 90° V-notch weir below confluence of forks	-	5 - 12 - 66 5 - 16 - 66 5 - 20 - 66 5 - 24 - 66 5 - 26 - 66 6 - 2 - 66 6 - 10 - 66 6 - 12 - 66 6 - 22 - 66 6 - 32 - 66 6 - 30 - 66 7 - 7 - 66	.40 .28 .30 .24 .23 .21 .11 .05 .03 .02 0	All measurements reported by Soil Conservation Service.		
8dbb	Bennion Creek. 9-inch Parshall flume at bridge on road to Little Valley		5-12-66 5-18-66 5-20-66 5-24-66 5-24-66 6-2-66 6-10-66 6-10-66 6-30-66 7-14-66 7-14-66 8-15-66 9-12-66 9-30-66	2.61 2.02 1.94 1.78 1.55 1.40 1.06 1.00 .81 .67 .56 .56 .37 .35 .28 .37 .51	All measurements reported by Soil Conservation Service.		
lldcc	Little Valley Creek	-	3-29-65	1.5e	Chemical analysis in table 17.		
(C-10-6) 12dad	Tributary to Durch Greek. 3-inch Parshall flume; at end of road	-	5-16-66 5-18-66 5-20-66 5-24-66 6-2-66 6-16-66 6-16-66 6-23-66 6-30-66 7-7-66 7-21-66 8-15-66	.26 .23 .20 .18 .18 .13 .12 .09 .08 .05 .04 .03 .02	All measurements reported by Soil Conservation Service.		

Table 11.—Continued

Table 12.-Records of selected wells in Rush Valley

Well No.: See text for description of well-numbering system. Type of well: 8, bored or augered; C, cable tool; D, dug; H, hydraulic rotary; J, jetted; Z, drilled, but method not known. Water-bearing zone: Character of material - B, boulders; C, conglomerate; G, gravel; HP, "hardpan" (a dense lime-commented zone); JF, fractured shale; L, limestone; N, quartzite; P, clay; S, sand; Z, cobbles. Altitude above mean sea level: Surveyed altitudes given in feet and tenths; altitudes interpolated from topographic maps given in feet. Water level: Levels measured by the U.S. Geological Survey given in feet and tenths; levels reported by owner, driller, or other data source given in feet; F, water Level inknown at time of roport, but well was flowing. Method of lift: B, bucket; N, none; P, piston pump (plunger or cylinder); S, submarsible pump; T, furbine pump. Number in parenthoses indicates horsepower. Weil performance: Yield - Reported by owner, operator, or driller; B, balled; K, estimated by U.S. Geological Survey; Use of water: H, domestic; I, irrigation; N, industrial; S, stock; U, unused. Remarks and other data available: C, chemical analysis in table 16; H, hydrograph of water levels in figure 5; L, driller's log, of well in table 13; Perf., casing perforated with Mills knife or with cutting torch; Temp., temperature of well water in degrees Fahrenheit; W, water-level Well performance

	T						Water-1	eari	ng zone	_	Water	tevel		Well per	formance		
Well No.	Owner or name	Utah State Engineer application or claim No.	Year drilled	Type of well	Depth of well (feet)	Diameter of well (inches)	Depth to top (feet)	Thickness (feet)	Character of material	Altitude above sea level (feet)	Above(+) or below(-) land-surface datum (feer)	Date of measurement	Merhod of lift	Yfeld (gpm)	Drawdown (feet)	Use of water	Remarks and other data available
(C-4-5) 13bbd-1	Combined Metals Reduction Co.	C-10978	1953	с	535	14	320 440	65. 5	S,C,P B	4,970	-260	3-14-53	s	4	212	υ	In Tooele Valley north of Stockton bar. Perf. 340-365, 400-450, 460- 480 ft. Temp. 58. L.
32ddc-1	Hogan Bros.	A-28985 A-28986	1959	С	96	12	42	54	С, Р	4,980	-	-	7 (60)	718M	-	I,S	Perf. 42-96 ft. Temp. 54. C, L.
33 aaa- l 33bdc-l	Martell Russell Hogan Bros.	A-33811 A-28985 A-28986	1961 1959	с с	173 55	6 12	130 25	4 30	G,HP P,S,G	5,030 4,988	- 60 -	1261	N	100	35	s U	Perf. 120-173 ft. L. Casing removed and well abandoned. L.
33cca-1	do	A-28985 A-28986	1959	С	43	12	35	8	G	4,970	-6.9	8- 4-61	T (75)	970M	- 1	H,S,I	Reportedly flows in winter. Perf. 36-43 ft. Temp. 53. C.
34 bbd - 1 36d aa- 1	S. B. Bengerter	A-35206	- 1963	- Н	254	8 6,4	150 216	13 14	C,B JF	4,960 5,290	-1 -200	5-17-67 10-15-63	N -	- 158	-	U H,S,I	At edge of Rush Lake flat. Casing: 6 inch to 164 ft, perf. 150- 163 ft; 4 inch 164-234 ft, perf. 186-234 ft. L.
(C-4-6) 35bdd-1	Joe Sandino	A-18315	1947	с	147	6	-	-	-	5,560	-	-	-	-	-	U	Well reportedly uncompleted because boulder bed could not be penetrated. Open-end casing, L.
(C-5-4) 28cdb-1 28cdb-2	Snyder Mines Inc. do	A-12696 A-12696	1937 1937	Z Z	90 86	12 12	67 71	19 9	G,JF G,JF	5,660 5,650	-62 -62	5-17-37 5-18-37	N N	178 146	15 15	ប ប	Perf. 67-88 Et. L. Perf. 68-85 ft.
(C-5-5) leeb-1 2bee-1 2bee-2 4baa-1	A. N. Young A. L. Young Joe Sandino	A-21890 C-19882 A-35682 A-32974	1951 1902 1963 1963	Z D C C	296 34 75 300	16 60 6 8	- - 45 164	- 30 23	- s,c,p G	5,260 5,010 5,010 4,975	-92 -28,2 -31 F	1951 8-22-63 12- 2-63 963	- P -	<10 <50 25 650F	25 - -	U H,S H,I,S H,I,S	C, H. Perf. 33-75 ft. C, L. Quality of water reportedly good.
() ad d -]	J, P. Quinn	A-24536	-	С	530	-	282	-	G -	4,990	-	-	N	0	-	-	Perf. 164-249, 282-290 ft. L. Well deepened in 1954 from 170 to 530 ft. Casing removed and well abandoned in 1966. L.
1 Saad - 1 1 Sadd - 1 1 Sadd - 2	Warren Penny Martell Russell do	A-19899 A-23557	1954 1951 1953	Z C C	180 100 53	6 8 10	- 3 29 37	- 47 5 9	- C C	5,025 5,030 5,030	-20 -3 -4	1264 1151 353	- T	- 373M	- - 10	II H I	Cased to 120 fr. C. Perf. 10-100 ft. Perf. 5-53 ft. L.
15bbd-1	Warren Penny	A-24096	1953	с	150	6	68 90	2	HP HP	4,990	~15	1~ -53	-	-	-	-	Perf. 54-? ft. L.
17aad-1	Martell Russell	-	1935	в	20	6	-	-	-	4,995	- 10	9-22-64	-	50	-	н	С.
19ccd-1 19cdb-1 21dch-1	J. W. Neilsen D. G. Bracken Union Pacific Railroad Co.	A-32860 A-25469 -	1961 1954 1916	C C C	86 40 342	6 6 3	25 36 335	13 4 4	P,S S,C Z	5,065 5,065 5,020	-20 -14 -25	10-26-61 354 1916	- - N	- <1	- - 77	H H U	Cased to 81 ft. Perf. 20-81 ft. L. Well penetrated bedrock and report- edly yielded salty water. L.
30acc-1 30bab-1	Reid Caldwell R. G. Sager	A~28313 A-34328	1956 1962	C C	60 74	6 6	32 18	3	G HP	5,048 5,068	-30 -13	8-13-56 7-21-62	-		-	- H	Perf. 30-? ft. Cased to 70 ft. Perf. 15-70 ft.
30hae-5 30bea-1	R. D. Sager William Ahlstrom	A-27167	1955	C D	62	_6	30	58	₽,G	5,060	-28 -12.7	10-10-55 4- 6-54	- P		-	-	Perf. 30-7 ft. W.
30bcb-1 30cab-1	Willard Sager Frank Caldwell and Mervin Russell	C-8286 A-31819	1934 1960	D,C C	62 572	8 10	20 125 276 323 375	30 2 4 2 59	S S,G S,G S,C S,P	5,100 5,075	-J1.4 -24	4- 6-54 7-25-60	-	10 40	8	U I	Cased to 53 ft. Perf. 9-43 ft. H. Perf. 115-513 ft. L.
- 30cbb-1	Willard Sager	C-8287	1934	b,c	107	8	492 60 84	13 14 20	s s,c s,c	5,110	-24.0	10-23-35	л (5)	10	-	р	Cased to 90 ft, open end. L, W.
31ccn-1 31dad-1 31dbd-1		A-30164 A-31018 C-18781	1958 1961 1910	C C D,C	65 55 60	6 6 60,6	50 25 -	5 30 -	0 P,Z -	5,150 5,070 5,100	-50 -25 -20.7	10-25-58 10-28-61 12-21-51	- - N	8 58 -	2	- Н U	Porf. 48-65 ft. L. Perf. 21-55 ft. Dug well deepened in 1941 from 25 to 60 ft. H.
	Stookey Bros.	-	1904	J	1,004	2	-	-	-	-	-1.9		N	-	-	G	Water reported hard and a little salty. Well reportedly had weak flow, Destroyed in 1950. W.
32add-1 32ear-1		-	1944	J	36 750	30x60 2	-	-	-	5,026 5,050	-23.6	4-10-52	N	-	-	Ū.	W. All material penetrated fine grained mostly clay, Well flows in some seasons. Water reportedly salty.
32cac-2 32dbb-1 (C-5-o)	D. H. Russell do	C-18776 A-32382	1962 1961	С	145 112	8 8	38 35 97	- 32 15	Р S,C G	5,048 5,035	-29 -18	12-10-62 4-20-61	-	250	- 44	H	Cased to 115 ft. Perf, 77-115 ft. L. Perf. 0-112 ft.
t2aba- t	-	-	-	8	-	6	-	-	-	5,250	-73.0	5-16-67	р (5)	-	-	S	
Plang-1	Willard Sager	C-8288	1934	С	108	8	104	2	G	5,120	-19.8	10-23-35	(E)	15	-	Р	Cased to 164 ft, open end. L, W.
35dba-1 36cab-1 36dc	M, M, Johnson J. F. McDaniel Clover Irrigation Co.	A-23045 A-35212 -	1951 1963 1934	с С	110 57 370	6 12, 15	100 30 315 339	4 20 10 4	C S,G S S	5,390 5,260 5,250	-37 -23 -14.6	7-21-51 5-18-63 5-17-37	- N	308 20	10 90	H U	<pre>Peri, 95-110 ft. L. Peri, 30-7 ft. Cased to 324 ft, open end; 15-inch casing to 80 ft. Water levels measured in both casings. Water level inside 15-inch casing was -12.6 on 5-17-37. L. W.</pre>

.

Table 12.—Continued

$ \begin{array}{c c c c c c } \hline (1-1c) \\ \hline \hline (1-1c) \\ \hline (1-1c) \\ \hline \hline \hline \hline (1-1$	 ft. On 7-3-42, reported 268 ppm and dissolved 65 ppm. C, I, W. ft. On 9-1-42, reported 343 ppm and dissolved 58 ppm. C, L. r. E. ." Perf. 210-365 ft. L. tock water. Reportedly y water and was abandoned. for stock. deepened in 1951, Perf. acked from 20 to 50 ft. ft. L. t. Perf. 17-40 ft.
babe-1 J. W. Russell A-2005 195 C 220 6 - 5 5,225 -18 9-2b-51 -	<pre>wuntains. 5 ft. On 7-3-42, reported 5 268 ppm and dissolved 165 ppm, C, L, W. 1 ft. On 9-1-42, reported 343 ppm and dissolved 588 ppm, C, L, t. L. ." Perf. 210-365 ft, L. ttock water. Reportedly y water and was abandoned. 1 for stock. deepened in 1951, Perf. acked from 20 to 50 ft. ft. L. t. Perf. 17-40 ft.</pre>
Shac-1 Lewiston Part Mine C-11815 $ 0$ 65 48872 $ -$ <	 ft. On 7-3-42, reported 268 ppm and dissolved 65 ppm. C, I, W. ft. On 9-1-42, reported 343 ppm and dissolved 58 ppm. C, L. r. E. ." Perf. 210-365 ft. L. tock water. Reportedly y water and was abandoned. for stock. deepened in 1951, Perf. acked from 20 to 50 ft. ft. L. t. Perf. 17-40 ft.
$ \begin{array}{c} 16-6-3 \\ 1 \text{ Mib}-1 \\ 1 \text{ Mib}-1 \\ 1 \text{ Mib}-1 \\ 1 \text{ Mib}-1 \\ 0, \text{ S. Army Well 1 } \\ 1 \text{ A. 15128} \\ 1 \text{ V.S. Army Well 2 } \\ A-15128 \\ 1 \text{ V.S. Army Well 2 } \\ A-15128 \\ 1 \text{ V.S. Army Well 2 } \\ A-15128 \\ 1 \text{ V.S. Army Well 2 } \\ A-15128 \\ 1 \text{ V.S. Army Well 2 } \\ A-15128 \\ 1 \text{ V.S. Army Well 2 } \\ A-15128 \\ 1 \text{ V.S. Army Well 2 } \\ A-15128 \\ 1 \text{ V.S. Marma Management } \\ 2 $	<pre>: 268 ppm and dissolved</pre>
Shdd-1 u. S. Army Well 2 A-15128 1942 c. 428 12 116 S, C. 5, 399, 6 -287 9-28-42 T 304 7 11 solids vas	<pre>165 ppm, C, L, W. 167, 09 -1-42, reported 133 ppm and dissolved 138 ppm, C, L. 1, L. ," Perf. 210-365 ft, L. tock water. Reportedly y water and was abandoned. 1 for stock. deepened in 1951, Perf. acked from 20 to 50 ft. ft, L. t. Perf. 17-40 ft.</pre>
$ \begin{array}{c} 31 \text{g} \text{c} 1 \\ \text{i} \text{c} \text{s}, \text{ formation} \\ 1 \text{g} \text{s}, f$	 t. L. ." Perf. 210-365 ft, L. stock water. Reportedly y water and was abandoned. for stock. deepened in 1951, Perf. acked from 20 to 50 ft. ft. L. st. Perf. 17-40 ft.
$ \begin{array}{c} (c-6-1) \\ 20ac-1 \\ \Gamma,S, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	y water and was abandoned. for stock. deepened in 1951, Perf. acked from 20 to 50 ft. ft. L. t. Perf. 17-40 ft.
22ddd-1 26cb doU.S. Army doC-10601 b15 - b- 17 60- - -5,040 5,040- - - - - - - - - - - - - - - - - - - - - - - - - - - - 	for stock. deepened in 1951, Perf. wacked from 20 to 50 ft. ft. L. t. Perf. 17-40 ft.
34 aa-1 L. A. Stookey A-22393 - b, c 35 6 20 15 6 5,045 -15,1 11-25-41 P 258 10 U Old dug weil 19-30 ft. L. 34 cab-1 do A-35202 1963 C 50 5 20 2 S,C 5,045 -20 1-23-51 P 258 10 U Old dug weil 34 cab-1 do A-35202 1963 C 50 5 20 2 S,C 5,070 -17.6 5-17-67 P 5B 4 S Weil gravel 1 1aba1 L. E. Orr A-36485 1965 C 50 6 18 1 HP 5,225 -12 3-26-63 - 7B 0 - Cased to 41 Perf. 19-300 14bb1-1 O. A. Johnson A-18903 1947 C 300 6 140 30 S,P 5,090 -129.1 12-11-58 P 15 0 S Perf. 100-300 stightly said (C-7-4) LadeAanagement <td>acked from 20 to 50 ft. ft. L. it. Perf. 17-40 ft.</td>	acked from 20 to 50 ft. ft. L. it. Perf. 17-40 ft.
$34 cab-1$ doA-152021963C50505050202S,G5,070 -17.6 $5-17.67$ P5B4SWell gravel perf. 19-30(C-6-6)Laba-1L. E. OrrA-364851965C506181HP $5,225$ -12 $3-26-33$ $-$ 7B0 $-$ Cased to 4.114bb-1O. A. JohnsonA-312801959C12868625 c^{2} $5,465$ -86 $ -$ 7B0 14.5 $-$ Cased to 4.114bb-1O. A. JohnsonA-312801959C128618625 c^{2} $5,465$ -86 $ -$ <t< td=""><td>acked from 20 to 50 ft. ft. L. it. Perf. 17-40 ft.</td></t<>	acked from 20 to 50 ft. ft. L. it. Perf. 17-40 ft.
$ \begin{array}{c} 1aba-1 \\ 14bb-1 \\ 14bb-1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
(C-7-4) Land Management U.S. Bureau of Land Management A-1950 1935 C 875 8,6 735 15 S 5,060 -92.1 12-11-58 P 40 - S Weil deepeneet to 236 ft, et 236 ft, et (C-7-5) -	ft. Reported to yield ty water. H, L.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	in 1958. Casing: 8 inch inch to 865 ft. C, L, W.
10ccc-1 do A-13289 1946 C 50 6 4 6 G 5,175 - - N - - N L. 27dbb-1 San Pedro, Los A-4989 1967 C 611 10 585 9 S, G, C 5,250 -80 2-10-67 N 100 60 H Mater report 1ake Railroad Co, Lake Railroad Co, 1967 C 150 4 31 2 C 5,220 -20 5-30-62 - - H Cased to 145 C, L, 28bbc-1 D. J. Atherity A-34227 1962 C 150 4 31 2 C 5,250 -20 5-30-62 - - - H Cased to 145 C, L, 29dcd-1 Roy Davis - 1917 J 260 2 - - 5,250 +23.6 11-28-37 N <1FM	ft. L.
Lake Railroad Co. Lake Railroad Co. 386-390, 47 28bbc-1 D. J. Atherly A-34227 1962 C 150 4 31 2 G 5,220 -20 5-30-62 - - H Cased to 145 C, L. 29dcd-1 Roy Davis - 1917 J 260 2 - - 5,250 +23.6 11-28-37 N <ifm< td=""> - H Open-end case</ifm<>	d warm and to contain some ed to 605 ft. Perf. 235-245,
29dcd-1 Roy Davis - 1917 J 260 2 5,250 +23.6 11-28-37 N <1FM - H Open-end cas:	-487, 585-594 ft. L. ft. Perf. 20-40, 125-145 ft.
32bdd-1 McFarland and Hullinger A-23019 1952 C 360 12, 24 11 C 5,255 -12 6-12-52 T 226M 10 I Casing: 12 in 8 inch to 30 Hullinger 8 275 15 S,G,C -12.1 12-15-65 (15) 10 I Casing: 12 in 8 inch to 30	ch to 48 ft, perf. 20-40 ft; 0 ft, perf. 275-290 ft.
(C-8-3) 6aad-1 San: Pedro, Los Angeles, and Salt Lake Railroad Co. C-4274 1907 C 654 15, 10 466 32 L,N 5,110 -595 - N 20 - U Measured dep Casing: 15 ft. Open hoi ft. Former	h of well was 340 ft on 3-2-67. inch to 126 ft; 10 inch 126-225 e in consolidated rock to 654 y supplied average of 10,400
minutes. For a to be at a start of the start	ly can be pumped dry in 20 rmation not tested by perfor-
Well reported	appears to have been deepened. dly can be pumped dry in about
22aad-1 V. A. Mahoney A-15855 1945 C 298 6 265 5 C 5,300 -252.9 3 - 2-67 P - 5 hours. 30dcd-1 Clay Cummings A-1644 1945 C 322 6 270 52 P,6 5,510 -260 445 - 3M - 5 Cased to 302 10am to 7 fr Temp. 54.	ft. Perf. 260-302 ft. Sandy , clay and gravel 7-322 ft.
Hullinger S,C S,C S,C Site nearly Perf, 132-14 290-300, 352	ft. Casing perforated oppo- all water-bearing zones. 2, 152-162, 197-207, 257-267, -365, 530-540, 605-700 ft. 11 may be finished in shattered
	rock. L. ft. Perf. 387-530 ft. Flowed completion. Temp. 61. C, L.
- 6ddb-2 do - 1967 C 583 20 C,N 5,300 8,600 61 I Incomplete re Part of yiel	port on recently drilled well, d is from brecciated quartzite.
285 10 C 340 ft. Per	rell (C-8-5)6ddb-1. Cased to 2. 20-340 ft. Temp. 55. C, L. ft. Perf. 110-235 ft. L.
9c [ico Fitzgerald C 150 5,400 -85 S	test. Casing was 5 inch to
3,470 12 8	ft. Perf. 30-45, 80-95, 130-
19aca-1 do A-34856 1963 C 220 12 40 - P,C 5,420 -13 11-1-65 T 60 115 U Cased to 200	ft. Perf. 30-198 ft. L.
Local i obj recondrea i i objectiva i i i i i i i i i i i i i i i i i i	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8, 215-217, 220-223, 240-242

Table 12.—Continued

		<u> </u>			[<u> </u>	Water-	beari	ny, zone		Wate	r level		Well perf	ormance]	
well No.	Owner or name	Utah State "ngineer application of claim No.	Year drilled	Type of well	Depth of well (feet)	Diameter of well (inches)	Depth to top (feet)	Thickness (feet)	Character of material	Altitude above sea level (feet)	Above(+) or helow(-) land-surface datum (feet)	Date of measurement	Method of lift	Yield (gpm)	Drawdown (feet)	l'se of water	Remarks and other data available
C+S-5) 20d c 20d c 20baa-1 20caa-1 20caa-1 20caa-2 80cac-1	William Snyder Pierre Castagno Ambrose Short: 1. C. Fitzwater H. T. and M. O.	A-22823 A-33562 A-22902	1934 1951 1951 1964 1951	D Z C Z	13 300 150 114 53	6 6 4 12	- 125 110 -	- - 1 2 -	- - - - -	5,510 5,520 5,525 5,520 5,497	-7.6 - -40 -20 -8.7	4- 5-57 10-27-51 6-18-64 12- 7-56	В - - -	20E	-	н н н п	H. C. Perf. 105-125 ft. L. Cased to J12 ft. Perf. 90-112 ft. L. W.
30cce-1 31aad-1 31abe-3 31ccd-1 31ccd-5	Vates II. T. Vates D. T. Fredrickson Peter Hansen W. O. Pehrson Sidney Pehrson	C-15/3 C-19347 C-12660 C-19889 A-22832	1934 1934 1934 1913 1918 1951	D N J Z	16 80 273 310 60	60 14 -2 -2 10	- 270 -		- s,c -	5,525 5,550 5,550 5,575 5,560	-4.3 -18.8 +29.2 +7.6 -18.0	4- 1-55 11-25-52 4-30-40 12-15-65 12- 7-56	P - - T (5)	20FM 250		U U I I	W. W. Open-end casing, Temp. 52. L, W. Temp. 54. C, W. W.
31dad-4 31dbc-1	Laurence Sharp Vernon Water Works	A-19386 A-29868	1951 1958	C J	214 126	2 8	194 211 107	3 3 4	8,6 5 6	5,545 5,545	+14 -30	11-10-51 5-18-58	r	6F -	-	- P	Open-end casing, L. Perf. 104-117 ft. C, L.
(C-8-6) 10aga-1	U.S. Bureau of Land Management	A-31245	1959	c	420	6	320	100	s,P	5,500	-170	8-30-59	(5) -	30В	-	s	Perf. 340-415 ft. Temp. 54. C, L.
14baa-1 22ddd+1 23ed 25aeb-1	Land Management Layton Harris J. E. Olson -	A-31833 C-18130 - C-14203	1960 1917 - 1912	11 - -	700 300 - 400	5 3 2 2	-	-		5,400 5,460 5,420	-37.6 +2.3	9- 7-66 4- 5-57		- >10 - <10F		บ ร แ	Uncased test hole. L. W. W.
26aaa-1	J. E. Olson	C=1415	1916	J	22/4	2	222	2	G	5,420	+17.0 +31.6	10-23-35 8-21-63	-	- 11FM	-	H,S,I	Open-end casing, Temp. 52. C, H.
26aac-2 26dad-1 35baa-1	do Sidney Pehrson	A-13292 A-25737 C-19888	1941 1954 1935	Z - -	445 124 324	7 2 2	52 140 123	- - -	с, Р S -	5,420 5,480 5,300	-6 -	10- 9-41 - -	N - -	40 <1F <1F	37 - -	U - S	Well plugged and abandoned because of insufficient water. L. L.
35bea-2 35dab-1 36dda-1 36dde-1 (C~9-4)	R. E. Pehrson Robert Durrant W. O. Pendleton	C-8500 C-7903 A-22844	- 1918 - 1951	C Ž C	150 200 68 186	12 4 10 12	- - 90 177	- - 1 5	- - - - - -	5,560 - 5,550 5,570	-17 - -7 -17.7	1- 2-60 - 11- 2-65 12-15-65	- - T (10)	808 <10F 200 500 225M	8	H I I	Perf. 80-100, 162-182 ft. L, W.
2aa 32bbd-1	Bill Jordan Union Pacific	-	1913	Z Z	404 571	- 8	-	-	-	5,450 6,116	-270	-	P N	<10	-	H,S U	Old Scanton Mine well. Temp. 54. C. Uncased well; reportedly dry. L.
326bd-2	Railroad Co. do	-	1914	z	90	8	21 26 50 77	4 8 24 5	+ G G S,G S,G,P	6,116.5	-	-	N	80F	-	н	Drilled in spring area. Perf. 21-34, 65-72, 79-82 ft. Temp. 51. Quality reported as good. L.
(C=9-5) 5bbc=1	Latter-day Saints Church, Tooele Stake Welfare	A-29836	-	С	600	16, 12	176 195 241	5 11 15	G S,G G	5,580	-5	11- 4-65	Т	575E	64	I	Well deepened in 1959 from 110 to 600 ft. Cased to 493 ft, open end. Water-bearing strata reportedly was cased off. L.
6aab-2	Farm do	C-10609	1959 .	с	170	12	75 118	11 2	G G	5,570	-46	6- 4-59	T (25)	430	31	I	cased 511, L. Perf. 75-170 ft. L.
6bc <i>a</i> ~2	Harker Creek Irrigation Co.	C-8285	1935	с	90	16	134 70	5 20	G S,G	5,590	-18.2	9-18-36	т (20)	200	-	-	Cased to 80 ft. H, L.
20ddd-1 29caa-1	U.S. Department of Agriculture A. S. Green	A-12462 A-21636	1937 1950	с с	365 114	6,4 3	342 107	23 7	- c,s	5,975	-295	7-21-37	-	15B 10	-	н,s -	Casing: 6 inch to 340 ft, 4 inch to 358 ft. Perf. 347-358 ft. L. Open-end casing. L.
(C-9-6) Ibdc-1 Idab-1 10abd-1	R. E. Pehrson Peter Hansen U.S. Department of	A-13293 C-12655 A-23802	1940 1922 1952	C J C	75 338 135	16 3 6	- - 115	- - 20	- - G, B	5,605 5,600 5,732	-13 -2.6 -95	7-25-40 10-20-61 5-29-52	-	115 - -	32 - -	I S -	Perf. 15-75 ft. Perf. 100-135 ft. L.
(C-10-4) 14ace-2	Agriculture W. L. Hoyt	A-21887	1964	с	155	6	50	23	s,P	6,280	- 58	6- 8-64	-	<1	-	S	Cased to 102 ft, Perf. 55-85 ft. L.

Table 13 .-- Drillers' logs of selected wells in Rush Valley

Altitudes are in feet above sea level for land surface at well. Thickness in feet. Depth in feet below land surface.

Material	Thickness	Depth	Material	Thickness	Depth	Material	Thickness	Depth
(C-4-5)13bbd-1. Log by I. C.			(<u>C-4-5)36daa-1</u> - Continued			(<u>C-5-5)15add-2</u> - Continued		2.0
Droubay. Alt. 4,970 ft.	25	25	Clay		117 119	Clay, red		29 34
Clay and topsoil		25 75	Conglomerate		121	Gravel; water bearing Mud, plain		37
Sand, fine		80	Conglomerate with clay		132	Gravel; water bearing		42
Clay		85	Clay		1.3.3	Gravel, line; water bearing .		46
Gravel and sand, washed and			Conglomerate	. 2	135	Hardpan		48
loose (water level 100 ft) .		105	Clay	. <u>I</u>	136	Md	. 5	53
Sand, Líne		115	Conglomerate		142 144	G T TNICHALL THE ME T P		
Clay and gravel mixed		125 150	Clay		144	(<u>C-5-5)15bbd-1</u> . Log by J. F. O'Brien, Alt. 4,990 ft.		
Clay, fine, light		160	Clay		148	Overburden	. 20	20
Gravel, fine		175	Boulders	. 1	149	Clay, light brown	. 48	68
Gravel and large rocks	, 30	205	Clay		150	Hardpan; water bearing,		70
Clay and gravel		235 240	Conglomerate; water bearing	. 10	160 161	Clay, brown		90 91
Sand, coarse grained		240	Boulders	. 2	163	Lay, brown	50	141
Gravel, cemented, red		270	Conglomerate		175	No record		150
Gravel and clay, gray		280	Clay	. 1	176			
Gravel, cemented, red		285	Conglomerate; water hearing		190	(<u>C-5-5)19ccd-1</u> , Log by H. C.		
Gravel, cemented, gray		295 300	Clay		194 204	Russell. Alt. 5,065 ft. Silt.	. 4	4
Gravel, cemented, red		310	Clay		205	Clay,	. n	15
Sand, fine, white (quicksand).		320	Conglomerate; water bearing		206	Bardpan		18
Sand, gravel, clay (mixed);			Shale		208	Clay; water at 25 ft		25
water bearing	. 65	385	Conglomerate; water bearing		212 213	Clay and sand; water bearing.		38 86
Clay and large boulders		400 425	Gravel		215	Clay, blue	. 46	00
Gravel and rock with clay mixed Clay and lava (boulders)		440	Boulders		216	(C-5-5)21dcb-1, Log reported by	,	
Boulders, cemented; water bearing		445	Shale, porous, fractured		230	Union Pacific RR Co.		
Clay and large boulders (quartz			Hardpan		231	Alt. 5,020 ft.		
and lava)		460	Gravel		238 245	Clay, blue		19 46
Lava, hard		465	Boulders		254	Clay, white, and gravel Clay and gravel		40 61
hearing		480	Graver	. ,		Clay, blue, and hardpan		310
Lava, soft and fine.		490	(C-4-6)35bdd-1. Log by L. E.			Clay, gravel, sand	. 9	319
Lava and clay		500	Hale. Alt. 5,560 ft.			Cobblerock and clay		334
Lava, hard		525 535	01d well		85 100	Clay, blue		335 339
Lava and clay seams	. 10	,,,,	Gravel		135	Bedrock		342
(C-4-5)32ddc-1. Log by Robinson			Boulders (driller could not					
Drilling Co. Alt. 4,980 ft.			penetrate)	. 12	147	(C-5-5) 30cab-1. Log by 1. Hale	2	
Clay		34 38	(C.F. ()) (C.M. Fr	la.		Alt. 5,075 ft. Tun gail	. 2	2
Gravel		42	(C-5-4)28cdb-1. Log by C. M. Er Drilling Co. Alt, 5,660 ft.		(Topsoil		20
Clay and gravel	•	96	Topsoil.	. 2	2	Hardpan		20.5
			Clay, yellow and gravel	. 65	67	Glay, white	. 11.5	32
(<u>C-4-5)33aaa-1</u> . Log by H. C.			Gravel; water bearing.		74	Conglomerate		34 39
Russell. Alt. 5,030 ft.	. 2	2	Shale, fractured, black		86 90	Clay, gray		43
Silt		23	Shale, black	. 4	50	Clay, yellow.		45
Hardpan,		35	(C-5-5) 2bcc-2. Log by H. C.			Clay, white		84
Hardpan, very, very hard		36	Russell, Alt, 5,010 ft.		(Clay, blue		92
Clay, light		112	Silt		5	Sand		94 113
Clay, brown.		130 134	Clay		18 28	Clay, blue,		114
Gravel and hardpan; water bearing Clay, light.		166	Clay		42	Clay, gray.		125
Clay, very soft		168	No record, water at 45 ft		73	Sand and gravel; water bearing	. 2	127
Clay		173	Clay	. 2	75	Clay, black		173
(n. (. C.) Oblanda I						Clay and sand; water bearing. Clay, white		178 254
(C-4-5)33bdc-1. Log by Robinson Drilling Co. Alt. 4,988 ft.			(C-5-5)4baa-1. Log by H. C.			Clay, blue		269
Clay, brown.	. 15	15	Russell, Alt. 4,975 It.			Clay, white, and sand	. 7	276
Clay, blue	. 10	25	Silt	. 5	5	Sand and gravel; water bearing		280
Clay and gravel.		50 55	Clay, white	. 11	16	Clay, white		292 323
Clay, sand, and gravel	. 5		Clay, dark, mushy	, 72	88 96	Clay, gray		325
(C-4-5)36daa-1. Log by J. A. Nal	c		Sand; water bearing	. 14	110	Clay, gray		332
Drilling Co. Alt. 5,290 it.			Sand	5	115	Hardpan	. 1	333
Topsoil		20	Clay, dark	. 6	121	Clay, gray	, 7	340
Gravel		21 30	Clay and sand		148	Clay and sea shells Clayand sand; water bearing .	. 35 . 59	375 434
Clay		31	Sand		164	Clay, blue		440
Clay	· · · · · · · · · · · · · · · · · · ·	33	Gravel; water bearing		210	Clay, white	. 52	492
Gravel and cobbles	. 4	37	Gravel		214	Sand; water bearing		503
Clay	. 1	38 42	Clay		216	Clay, blue	. 55	558 560
Gravel and cobbles	•	42	Clay and cobbles		249 270	sand		572
Cobbles and boulders		56	Clay, brown		282	oraș, oraș :		
Boulders		60	Gravel; water bearing		290	(C-5-5)30cbb-1. Log by St.John		
Shale.		67 68	Clay		300	frrigation Co. Alt. 5,110 ft		64
Hardpan		68 70	(C-5-5)10add-1. Log by Selby			Gravel; water at 60 ft Sand		74
Boulders		71	Drilling Co. Alt. 4,990 It.			Sand, clay, and gravel	. 10	84
Shale	, 8	79	Old well		170	Sand and gravel		104
Clay		81 80	Clay, light-gray, with small gravel	. 360	530	Hardpan; water bearing		105 107
Limestone	. 8 . 15	89 104	Staver	. 500	220	Sand and clay	. 2	107
Conglomerate	. 2	104	(C-5-5)15add-2. Log by H. C.			(C-5-5)3lcca-1. Log by I. Hale		
Conglomerate	. 3	109	Russell. Alt. 5,030 ft.			Alt. 5,150 ft.		
Clay	. 2	111	Topsoil and large rocks Gravel; water bearing		3 15	Topsoil	. L . 9	10
Conglomerate	. 3	114	Graver, water bearing	. 12	- '	Graver, coarne gratheu	. 7	-0

Table 13.—Continued

Material	Thickness	Depth	Material	Thickness	Depth	Material	Thickness	Depth
(C-5-5)3leca-1 - Continued			(<u>C-6-4)5bdb-1</u> - Continued			(C-7-5)10ccc-1. Log by L. E.		
Hardpan	2	12	Clay, brown	. 5	36	Hale. Alt. 5,175 ft.		
Sand and gravel	28 1	40 41	Gravel	. 3	39 42	Topsoil		4
Sand and gravel	9	50	Gravel, muddy	. 44	86	Clay		50
Gravel; water bearing	5	55	Clay, gray	. 2	88			
Clay	10	65	Gravel and yellow clay Clay, yellow		97 102	(C-7-5) 27dbb-1. Log by Eldon		
(C-5-5)32cac-2. Log by H. C.			Gravel and yellow clay		155	Comer. Alt. 5,250 ft. Soil	2	2
Russell, Alt. 5,048 ft.			Clay, yellow, with little grave	1 7	162	Clay, white		27
Silt	15	15	Gravel and clay,		182	Clay, tan		40
Gravel	10 28	25 53	Gravel, fine		186 290	Clay, gray		73 80
Hardpan.	7	60	Gravel, loose, and fine sand;			Clay, white	15	95
Clay	8.5	145	water bearing	. 45	335 339	Clay, green		114 130
(G-5-6)25aaa-1. Log by St. John			Gravel, coarse; water bearing. Gravel, fine, and sand; water	. 4	, , ,	Clay, tan		139
Irrigation Co. Alt. 5,120 ft.			bearing	. 65	404	Clay and hardpan, tan,		
Soll	2	2	(C-6-4)5bdd-1. Log by H. M.			stratified	49 46	188 234
Gravel	2	4	Robinson and Son; finished by			Clay, tan		247
Gravel; water bearing,	16	22	Rosco Moss. Alt. 5,399.6 ft.	20	20	Clay, green	53	280
Glay	15	23 38	Sand, soft		20 65	Clay, gray		379 385
Sand	3	41	Clay, red	. 3	68	Clay, tan	10	395
Gravel; water bearing	4	45	Gravel and boulders		211 217	Clay, gray		473 487
Sand	6 4	51 55	Conglomerate,		224	Hardpan, very hard		530
Clay, black	4	59	Conglomerate	. 4	228	Clay, tan		585
Hardpan, brown	ú ć	65	Gravel, loose, fine	. 3	231	Sand and fine gravel, soft, and	^	504
Hardpan, white	6 2	71 73	Conglomerate, tight, and sandy gravel.	. 197	428	hardpan		594 602
Sand, gravel, and clay	31	104				Hardpan	2	604
Gravel	2	106	(C-6-4)31acb-1. Log by E. W.			Clay, tan		611
Sand and clay	2	108	Hale. Alt. 5,050 ft. Clav	. 25	25	(C-7-5)28bbc-1. Log by H. C.		
(C-5-6)35dba-1. Log by H. C.			Sand and gravel; water bearing	. 20	45	Russell. Alt. 5,220 ft.		
Russell, Alt. 5,390 ft.		, I	Clay		50	Silt		30
Topsoil	1 43	1 44	(C-6-4)35bac-1. Log by L. E.			Hardpan; water bearing Gravel; water bearing		31 33
Hardpan	.5	44.5	Hale. Alt. 5,150 ft.			Sand	77	110
Clay, red		85 85	Sand		4 32	Clay	40	150
Hardpan, thin layer	7	92	Clay and traces of sand		365	(C-7-5)32bdd-1. Log by J. F.		
Hardpan		93				0'Brien. Alt. 5,255 ft.		
Mud, sandy		100 104	(<u>C-6-5)20acc-1</u> . Log by H. M. Robinson, Alt. 5,110 ft.			Clay, brown		24 35
Mud, sandy		110	Gravel and clay	. 10	10	Clay, white		45
			Clay, white; yields salt water		40	Clay, brown, soft	15	60
(C-5-6)36cd. Log by V. L.			Clay, blue		195 200	Clay, hard, brown, sandy Clay, gray		102 121
Crocheron, Alt. 5,250 ft ₀ . Soil	3	3	Clay, blue		330	Clay, blue		135
Gravel	7	10	Clay, gray, dry		377	Clay, brown, sandy	70	205
Sand		28 31	Remark; 3 mile N. at 750 ft depth similar dry clay.			Clay, light green		250 275
Gravel		34	depen similar dry cray.			Conglomerate; water bearing		285
Clay and gravel	6	40	(C-6-5)34cab-1, Log by E. W.			Sand and gravel; water bearing .	5	290
Sand and gravel,		61 63	Hale. Alt. 5,070 ft. Clay	. 3	3	Clay, brown	70	360
Gravel		183	Clay and gravel		8	(C-8-3)6aad-1. Log by San Pedro,		
Hardpan	19	202	Clay		20	Los Angeles and Salt Lake RR Co	•	
Sand		209 217	Sand and gravel; water bearing		22 25	Alt. 5,110 ft. Clay, yellow	10	10
Gravel and clay		237	Clay		50	Clay, yellow, and gravel		20
Hardpan		242	(C-6-6)14bbb-1. Log by I. Hale			Clay, yellow, and boulders		126
Gravel and sand		254 257	Alt. 5,465 ft.			Clay, gravel, and sand Limestone fragments and clay		204 215
Sand		260	Topsoil	. 12	12	Limestone		225
Sand and clay		280	Clay		35 36	Limestone, broken		235
Sand, coarse		281 300	Gravel ,		54	Limestone quartzite, solid Limestone quartzite and yellow	40	275
Sand; water bearing		303	Hardpan; water bearing	. 4	58	clay		313
Gravel	· 1	304 309	Clay		85 86	Lime quartzite, honey combed Lime quartzite, solid.	49	362 390
Sand and clay	4	313	Gravel; water bearing	. 25	111	Lime quartzite, crevices		393
Clay	2	315	Clay	. 10	121	Lime quartzite, solid	43	436
Sand; water bearing	10 3	325 328	Gravel; water bearing	. 7	128	Lime quartzite	149	585
Sand; water bearing.		339	(C-7-3)30acc-1. Log by T.			porphyry; water bearing	13	598
Clay	4	343	Woodhouse, Alt. 5,090 ft.	. 26	26	Lime quartzite, stratified		f e I
Sand		344 347	Clay, brown	. 26 . 8	26 34	crevices filled with water,	56	654
Sand	1	348	Clay, brown	. 106	140	(<u>C-8-3)6cdc-1</u> . Log by T.		
Hardpan	4	352 370	Clay, granulated; water bearing Clay, brown		190 275	Woodhouse. Alt. 5,128 ft. Clay	22	22
Sand	18	976	Clay, granulated; water bearing		300	Clay and gravel,	43	65
(C-5-6)36dbc-1. Log by H. C.						Clay	205	270
Russell, Alt. 5,225 ft.	9	9	(<u>C-7-4)14aac-1</u> , Log by Coxe and Clarkson, Alt. 5,060 ft.			Clay, granulated; water bearing. Clay		280 290
Rocks and grave1		13	Clay, soft, brown		200			
Clay, mushy; water at 25 ft	17	30	Clay, soft, blue	. 240	440 i 735	(C-8-4)22aad-1. Log by U.S.		
Mud, sandy		85 102	Clay, brown		735	Bureau of Land Management. Alt. 5,300 ft.		
Clay and small rocks		102	Clay, brown	. 75	825	Loam, sandy		10
Clay, mushy	40	143	Clay and sand; water bearing .	. 25	850	Gravel and clay		285
Clay and rock		144	Clay, brown		860 875	Rock, hard, white; water formation	5	290
Clay, white, soft		155 195			- • •	Gravel and clay		298
Clay, white, sticky	14	209	(C-7-5)5cbb-1. Log by H. C.					
Clay, gray, soft	11	220	Russell, Alt. 5,275 ft. Silt	. 4	4	(<u>C-8-5)6ccd-1</u> , Log by B. B. Gardner, Alt. 5,350 ft.		
(C-6-4)5bdb-1. Log by H. M.		}	Clay, sand, gravel, and cobbles	27	31	Topsoil	6	6
Robinson and Son. Alt. 5,398.4			Clay, gray	. 29 . 45	60 105	Gravel and boulders	10	16 18
Clay, brown		26 31	Clay, white	. 34	139	Clay, white		85
cong une graver,	~		Clay, blue	. 20	159			

Table 13.—Continued

Material	Thickness	Depth	Material	Thickness	Depth	Material	Thickness	Depth
(C-8-5)6ccd-1 - Continued			(C-8-5)7ddd-1 - Continued			(C-8-5)31dad-4. Log by Yates		
Clay, brown.	47	132	Gravel, cemented; water bearing.	. 22	190	and Pehrson. Alt. 5,545 ft.		
Conglomerate; water searing		136	Clay, gray	. 10	200	Soil		11
Clay, Light red		146	Gravel, cemented; water bearing		215	Gravel.		21
Clay, blue		152	Clay, gray		250 312	Gravel, coarse grained Clay and gravel		31 49
Sand; water bearing		155 175	Shale, blue	. 02	112	Gravel, clay, and hardpan		77
Clay, gray		195	(C-8-5)19aaa-1. Log by E. Comer			Gravel and sand	. 10	87
Sand and cobbles; water bearing.	5	200	Alt. 5,450 ft.		2.0	Clay and hardpan		119 120
Clay, gray, and sand		257 260	Clay, tan		30 40	Hardpan		194
Sand; water bearing		290	Gravel		45	Sand and gravel; water bearing	3. 3	197
Sand and boulders; water			Clay	. 35	80	Clay		211 214
bearing	4	294	Clay and gravel; water bearing . Clay		95 130	Sand, fine; water bearing	. 3	21.4
Clay, blue	61 3	355 358	Sand and gravel; water bearing .		136	(C-8-5)31dbc-1.		
Clay, blue, sticky	52	410	Clay, tan		156	Alt, 5,545 ft.	. 12	12
Clay, gray, sandy	45	455 475	(C-8-5) 19aca-1. Log by E. Comer			Topsoil		25
Clay, blue, sandy	20 55	530	Alt. 5,420 ft.			Gravel, coarse; water bearing	. 6	31
Conglomerate; water bearing	5	535	Soil		3	Clay, yellow.		60 62
Clay, brown, sticky	13 22	548 570	Clay, tan		10 18	Hardpan; water bearing Clay, sandy		103
Clay, white		588	Hardpan,	. 6	24	Clay, sandy, and gravel	. 4	107
Clay, grav	17	60.5	Clay and gravel.		32 40	Gravel, coarse; water bearing		111 126
Sand; water bearing,		615 630	Clay, yellow		40 56	Clay and gravel	. 15	120
Sand; water bearing		633	Clay, yellow		79	(<u>C-8-6)10aaa-1</u> . Log by I. Hale		
Clay, blue		640	Hardpan	. 4	83	Alt. 5,500 ft.	. 45	45
Hardpan and brown clay; water	8	648	Clay, yellow		98 104	Clay and rock		170
bearing		660 J	Clay, yellow		160	Clay and sand; water bearing.	. 170	340
Clay, red	18	678	Clay and gravel	60	220	Sand, fine and coarse		358
Gravel, large; water bearing		700 730	(C-8-5)20cdc-1. Log by E. Hale			Clay and sand; water bearing. Sand, coarse and fine; water	. 42	400
Bedrock	30	130	Alt. 5,510 ft.			bearing	. 20	420
(C-8-5)6ddb-1. Log by B. B.			Topsoil	2	2			
Gardner, Alt. 5,301.1 ft.	2	2	Gravel and cobbles; water bearing	. 12	14	(C-8-6)14baa-1. Log by United Drilling Co. Alt. 5,400 ft.		
Silt		8 1	Clay, white		18	Silt	. 12	12
Conglomerate	Ł	9	Hardpan		19	Gravel	. 4	16 290
Sand and gravel; water bearing . Clay, red		12 80	Clay, white		68 69	Clay, soft, yellow	. 274 . 10	300
Clay, white		110	Clay, blue	. 47	116	Clay, soft, yellow	. 150	450
Clay, blue	52	162	Hardpan; water bearing	. 2	118	Shale, hard, gray		485 600
Clay, red	30 53	192 245	Clay, gray, and gravel		165 215	Clay and shale		700
Clay, gray		315	Sand; water bearing		217			
Clay, blue, and gravel	15	330	Clay, gray	. 3	220	(C-8-6) 26aac-2. Log by A. H.		
Sand and gravel; water bearing .		333	Sand; water bearing		223 240	Milligan, Soil Conservation Service. Alt. 5,420 ft.		
Clay, gray, and sand		370	Sand; water bearing		240	Clay, sandy; water at 52 ft.	. 90	0
Clay, blue	10	380	Clay, gray		250	Clay, red		95
Clay, gray, and sand		387 422	(C-8-5)29caa-1, Log by J. F.		j	Clay, sandy		135 140
Gravel; water bearing		422	0'Brien. Alt. 5,525 ft.			Clay and gravel; water bearing		145
Gravel and boulders; water			Overburden		37	Clay, sandy		150
bearing	95	525	Clay, red		67 69	Clay, sandy, and gravel Clay, sandy		165 205
Gravel, boulders, and white clay water bearing		534	Clay, red		80	Clay	. 35	240
			Hardpan		82	Clay and gravel		285 445
(<u>C-8-5)6ddc-1</u> . Log by J. F. O'Brien, Alt. 5,300 ft.			Clay, red		87 90	Clay	. 100	44)
Gravel; water bearing	20	20	Clay, red	. 35	125	(C-8-6)26dad-1. Log by R. Pehr		
Clay, brown		110	Sand and gravel; water bearing .		126 150	and H. I. Yates. Alt. 5,480 Topsoil		4,5
Glay, white	25 13	135 148	Clay, red	. 2.4	1.70	Gravel		9
Clay, light blue	28	176	(C-8-5) 29caa-2. Log by H. C.			Clay and hardpan		43
Clay, dark brown	6	182 203	Russell. Alt. 5,520 ft. Silt	. 5	5	Hardpan		45.5 51.5
Clay, light green		203	Gravel		12	Clay, extra hard.		52.5
Gravel; water bearing	1	216	Clay	. 37	49	Clay	. 4.5	57
Clay, brown	69	285	Hardpan	. I . 5	50 55	Clay, blue, soft	, 3 , 2	60 62
Conglomerate; water bearing Gravel, sand, and clay		295 300	Clay and sand		56	Hardpan	. 1	63
Clay, green	38	.338	Clay and sand	. 4	60	Clay	. 6	69
Gravel and clay		341 354	Hardpan	. I . 12	61 73	Hardpan , , , , , , , , , , , , , , , , , , ,		69.5 90
Clay, brown		356	Sand		78	Clay, soft		96
Conglomerate	4	360	Clay	. 32	110	Hardpan		97 101
Clay, brown	5	365	Gravel; water bearing		112	Clav		101
(C-8-5)/ddd-1. Log by Robinson						Clay	. 12	114
Drilling Co. Alt. 5,380 ft.		_	(<u>C-8-5)31abc-3</u> . Log by Peter Hansen, Alt. 5,550 ft.			Hardpan	, 1 , 8	115 123
Clay, gray		2 25	Hansen, Alt, 5,050 ft. Topsoil,	. 12	12	Clay and Hardpan	5	123.5
Gravel, cemented	10	35	Gravel with streaks of clay and			Sand; water bearing		124
Clay, brown	20	55 65	hardpan		100 195	(C-8-6)36ddc-1. Log by J. F.		
Gravel; water bearing		80	Sand		196	O'Brien. Alt. 5,570 ft.		
Clay, brown	14	94	Clay and hardpan	. 14	210	Overburden		20
Gravel; water bearing		115 125	Sand and gravel		212 270	Gravel		21 38
Gravel, cemented; water bearing.		125	Sand and gravel.		273	Hardpan . ,	. 2	40
Clay, gray		168			i	Gravel and clay		84

Table 13.—Continued

Material	Thickness	Depth	Material	Thickness	Depth	Material 1	Chickness	Depth
(<u>C-8-6)36ddc-1</u> - Continued			(C-9-5)5bbc-1. Log by E. Comer			(C-9-5)20ddd-1 - Continued		
Hardpan	. 6	90	Alt, 5,580 ft,			Gravel and clay	30	90
Gravel; water bearing,	. 1	91	01d well,		110	Clay, sandy	30	120
Clay, red		120	Clay, tan		176	Gravel and clay	85	205
Hardpan		122	Gravel; water bearing		181	Clay, yellow, and gravel	10	215
Clay, red		177	Clay		195	Gravel and clay	7.5	290
Gravel; water bearing,		182	Sand and gravel; water bearing.		206	No record	7.5	365
Clay, brown	, 4	186	Clay and gravel	. 35	241			
			Gravel; water bearing	. 15	256	(C-9-5)29caa-1, Log by R. E.		
(C-9-4)32bbd-1. Log reported by			Clay	. 29	285	Pehrson, Alt. 5,950 ft.		
Union Pacific RR Co.			Clay and gravel		300	Tupsoil	3	3
Alt. 6,116 ft.			Clay		320	Sand and gravel	12	15
Clay, brown,	34	34	Clay and gravel		330	Clay,	44	59
Sand and gravel		38	Clay.		390	Sand,	4	63
Clay, white, and boulders		48	Clay and small grave!		461	Clay.	4	67
Clay, sandy, blue, and boulders		87	Hardpan		463	Sand and clay	13	80
Sandstone		94	Clay		514	Sand, fine.	4	84
Clay, blue, and boulders		109	Hardpan		517	Sand, coarse	2	86
Clay, yellow, and boolders		134	Clay	-	600	Clay	21	107
Sand		136	Citay	•		Gravel and fine sand.	7	114
Clay, blue		141	(C-9-5)6aab-2. Log by E. Comer					
Sand		142	Alt. 5,570 ft.		l	(C-9-6)10abd-1, Log by J. F.		
Clav, yellow		156	Soil	. 2	2	O'Brien. Alt. 5,732 ft.		
Clay, blue, and boulders		224	Gravel, cemented.		55	Overburden (boulders)	30	30
Clay, brown, sandy		248	Clay, tan		75	Clay, light brown	10	40
Clay, blue, and boulders		372	Gravel: water bearing		86	Gravel and clay	30	70
Clay, veltow		429	Clay, tan		118	Clay, brown	13	83
Clay, brown, and boolders,		489	Gravel; water bearing		120	Hardpan, gray	4	87
Clay, brown, and sand and			Clay, tan		134	Gravel and clay	13	100
boulders	. 22	511	Gravel; water bearing	. 5	139	Clay, brown	10	110
Gravel, cemented		513	Clay, tan	. 31	170	Gravel and clay	5	115
Clay, blue		529	····,,			Gravel; water bearing	2	117
Clay, vellow		538	(C-9-5)6bca-2. Log by Harker			Gravel and boulders; water		
Glay, blue, and boulders		545	Creek Irrigation Co.			bearing.	15	132
Clay, brown,		571	Alt. 5,590 ft.			Gravel; water bearing	3	135
			Clay and gravel	. 16	16			
(C-9-4)32bbd-2. Log (from clai	im).		Gravel, coarse; water bearing .		22	(C-10-4)14acc-2. Log by C. and C	•	
Alt. 6,116.5 ft.			Hardpan and clay.		25	Stephenson Drilling Co.		
Clay, yellow	. 21	21	Gravel, fine, and sand		31	Alt. 6,280 ft.		
Gravel, coarse		25	Gravel, coarse		36	Topsoil	15	15
Clay, yellow		26	Sand and gravel		60	Clay and gravel	15	30
Gravel, coarse		34	Clay, hardpan, and rock		70	Clay, brown	20	50
Gravel and clay, yellow		50	Sand, coarse, and gravel		90	Clay and sand; water bearing	23	73
Gravel and coarse sand		74	, , , , , , , , , , , , , , , , , , ,			Clay, light brown, sandy	13	86
Gravel, cemented		77	(C-9-5)20ddd-1. Log by H. M.			Clay, gray	14	100
Gravel and coarse sand		79	Robinson, Alt. 5,975 ft.			Porphyry, green	1	101
Gravel and clay, yellow		82	Soll	. 2	2	Porphyry, brown	26	127
Gravel, cemented		90	Gravel		60	Porphyry, light brown	21	155
,						·································		

Table 14.-Water levels in selected observation wells in Rush Valley

Water levels in feet below land-surface datum are designated by a minus (-) sign immediately before the first entry in each column in the table, those above land-surface datum are designated similarly by a plus (+) sign.

61 5 51 10 mar 1								10.5		lecc-1.	Description de			107.1					
<u>(C-5-5)30bca-1</u> Mar. 21, 1950	-12,94	Dec.	21, 1951	-13,45	Mar,	26, 19	53 -13.15	[[May		, 1941	<u>Records</u> - 5.47			1945	- 1 <u>,19</u> - 1,19	her.	16	1940	- 8,85
Dec. 6	13.72		10, 1952		Apr.			Nov.	. 25		8.30	Dec.			8,08			1950	5.27
Mar. 30, 1951	13.72	Dec.	31	14.24				Mar.	23,	, 1942	5.82	Mar.		1946	6,68	Mar,	- 30,		6.19
20 0 0 00 00 11 1	n. 1	. ,	1.1. 1025	20					20		9.78	Dec.			7.65	Dec.	21		7.:BU
<u>(C-5-5)30ebb-1</u> oct. 23, 1935	-23.99		<u>able 1935-</u> 25, 1937		June	21, 193	8 -21,96	Mar.	, 19 31	1943	8.60 6.53	Mar. Dec.	- 20,	1947	5.25 7.63	Apr. Nov.	- 10, .25	1995	1.61
Feb. 6, 1936	22.92	Mar.	23	22.24	Dec.	3	22.47		28		9.52	Mar.		1948	5,90			1953	5.08
Apr. 14	22,24	May		21.97		18, 19	9 21,84	Apr.		1944	6,66	Dec.	-20		8.41	Apr.		1955	5.31
Jone 13	22.07	Sept	. 15	22.90	Mar.		22./4	Dec.	31	·	8.91	Mar,	14,	1949	5.63				
July 28 Sept. 18	22,56 23.23	Nov.	28 22, 1938	22.12	Apr. June	9	22.47 22.85	1 10-8	-5131	aad-1.	Records	a	abla	1941-5	.,				
Nov. 12	23.35	Apr.		22.12	Dillic		22.05			1941	-18.18	Dec.		1944	-19,92	Dec.	20,	1948	-20.08
								Nov.	2.5		19.88	Mar.	12,	1945	19.79	Dec.	14,		19.76
(C-5-5)32adb-1.	Records		able 1944-							1942	19.61		18		15.73		21,	1950	18.81
Арт. 8, 1944	- 2.32 2.20	Sept.	9, 1946 20, 1947	- 2.16	Dec.	20, 194 14, 194			20 20		19.94 19.82	Mar. Dec.		1946	19,64 20.05	Dec. Mire	і 20,	1951	18.86 19.22
Dec, 31 Mar, 12, 1945	1,61	Der.		1.63	Dec.		2.72			1943	19,31	Mar.		1947	19.72		- 24	1.7.71	19.26
Dec. 18	1.37	_Mar	24, 1948	. 82	Mar.	21, 195		Dec.	28		19.97	Dec.	4		19.26	Nav.	25.	1952	18.82
								Apr.		1944	19.73	Mar.	24,	1948	19.45				
(C-5-5) 32add-1.			able 1941-1 12, 1945		Dec.	12 10/	9 -25.85	10-0	- 53 13	abc-3.	Records	availa	مايك	1025 6	0				
May 13, 1941 Nov. 25	-31.87 33.18	Mar. Dec.		29.39	Mar,	13, 194 21, 195				1935	+22.3	May	17.	1937	+25.5	ber.	3,	1938	+25.1
Mar. 23, 1942	31.76	Mar.		28.35	Dec.	6	26.27	Feb.	6,	1936	24.2	Sept			23.6	Feb.		1939	27.4
Oct, 20	33.52	Dec.		28.23	Mar.				14		24,4	Nov.			24.3	Mar.			27.0
Dec. 19	32.06	Mar.		27,10		10, 193		June			23.2	Feb.		1938	25.4	Apr.	27		27.6
Mar. 31, 1943 Dec. 28	30.73 31.42	Dec. Mur	4 24, 1948	27.11 25.55	Dec, Mar	26, 19'	22.70 3 21.19	July	. 18		23.1 23.0	Apr. June	20		24.4 24.5	Jame Aug.			25.1
Apr. 8, 1944	29,92	Dec.		26.28	Nov.		21.15		12		23.0				24,8	Dec.			25.8
Dec. 31	30.52	Mar.	14, 1949	24.88	Apr.	6, 195	4 18.91	Feb.		1937	26.2	Oct.	25		25.1	Apr.	- 30,	1940	29.2
(0. 5. () 05			able 1935-4					Mar.	23		26.8								
<u>(C-5-6)25aaa-1.</u> Oct. 23, 1935			. 15, 1935-4	-19.30	Apr.	27, 193	9 -14.02	C-8	-5)31	ced-1	_Records	availa	able	1960-6	7				
Feb. 6, 1936	14.95	Nov.	28	19.46	June	9	15,22	May	13,	1960	+16.5	Oct.			+15.0	Aug.	2,	1965	+10.5
Apr. 14	9.49	Feb.	22, 1938	18.84	Aug.		8.82	Jan.	26,	1961	15.6	Aug.	21,		12.0	Oct.	12		9.8
June 13	17.28	Apr.		13.38	Dec.	20	18.70	Apr,	28		15.2	Dec.	5	1077	13.7	Dec.			1.6
July 28 Sept. 18	19.09 20.58	June Aug.		17.35 19.67	Apr. Nov.	30, 194	0 14.63 15.49	July Oct.	20		13.8	Mar. Nov.	- 23,	1964	14.2	Mar. Sept	17,	1966	7.4
Nov. 12	19.65	Oct.		19.19	May	12, 194		Apr.		1962	10.1	Mar.		1965	12.9	Mar.	17,	1967	8.0
Feb. 25, 1937	16.45	Dec.	3	18,95	Nov.	25	18.44												
Mar, 23	14.17	Feb.	18, 1939	18.55	Mar.	22, 194		<u>(C-8</u>	- <u>5)31</u>	ccd-5.	Records								<u> </u>
May 17	9.65	Mar.	21	14.28	Oct.	20	17.62	Dec.	20,	1956 1957	-18.53 18.40	Oct. Apr.		1961	-21.93	Nov. Mar	10.	1964	-21.90
								Dec.	11.	1958	18.23	Oct.		1902	21.69	Aug.	2	1705	21.02
(C-5-6)36cd. Wa	ter level	inside	12-inch_o	asing, <u>R</u> e				Apr.	- 29,	1958 1959	19.69	Apr.	18,	1963	19.32	Dec.			20.39
Oct. 23, 1935	-17.34	July				25, 193	7 -14.60			1960	21.28	Dec.	5		22.54		17,		19.83
Feb. 6, 1936 Apr. 14	16.53 16.07	Sept. Nov.		15.93 15.11	Mar. Mav	23	14.39 14.62	Jan. Apr.	26, 28	1961	19,26 18,80	Mar.	24,	1964	19.78	Mar.	17,	1967	22.96
June 13	15.72	110.00.	**	19.11	may		14.02				.0.00								
		1	15 /	n de la Re			1025.27	(C-8	-6)22	<u>ada-1.</u>	Records	availa	ble j	949-5	1. 1953-55	. 1957 -			
(C-5-6)36cd. Wa Oct. 23, 1935	-14.68	<u>Instae</u>	<u>15-inch</u> 13, 1936	-12.30	Feb.	25, 193	7 .14.04	Dec,	14,	1949	-38.89	Jan.	21,	1960	-34,31	Aug.	21,	1963	-38.03
Feb. 6, 1936	13.42	July		12.60	Mar.	23	12.92			1950 1951	38.37 38.45	May Oct.	13 20		34.33 35.42	Dec. Nov.	5	1964	38.36 40.31
Apr. 14	10.91	Nov.	12	13.17	May	17	12.60			1953	36.87	Jan.	26,	1961	35.81	Mar.	10,		38.26
(C-6-4)5bdb-1.	Records	availah	ole 1946-5	1, 1954				Dec.		1954	36.42	Apr.			35.98	Aug.			38.24
Mar. 20, 1946	-282.12	Dec.	14, 1949		Mar.	30, 195	1 -287.45	Apr.		1955	35.42	July			36.26 36.20	Oct.			37.85
Mar. 20, 1947	283.53	Mar.	21, 1950	286.35	Dec.	21	284.64	Dec. Apr		1957	36.42 36.90	Oct. Apr.		1962	35.85	Dec. Mar	17,	1966	38.05
June 24, 1948	282.68	Dec.	5	281.28	Dec.	10, 195	4 298.00		20		37.21	Oct.		. /	37.10	Sept.			37.60
(C-7-4)14aac-1.	Records	<u>ava</u> íla	able_1958-6	57					11,	1958	36.00	Apr.		1963	36.20		17,	1967	33.48
Dec. 11, 1958	-92.10	Oct.	20, 1961	-92.16	Nov.	5, 196	4 -92.18	May	<u> </u>	1959	36.53								
Apr. 30, 1959	91.09	Apr.	13, 1962	92.08	Aug.	2, 196	5 92.13	100	42.22			1	1.07	1.7	1950 1953	-55. 15	15.7		
Jan. 21, 1960	92.29	Oct.		92.01 92.14	Oct. Dec.		92.08 92.11	May	- <u>6)23</u> 13	<u>ca, Re</u> 1941	cords_ava + 1,98	Dec,	31	1944	<u>1950, 1953</u> + 1,77	Dec.		1950	+ 1.30
May 13 Oct. 20	92.30 92.09	Apr. Aug.		92.14		15		Nov.		1.141	1.70	Mar.			1.98		26,		2.02
Jan. 26, 1961	92.07	Dec,	5	92.21	Sept.		92.25	Oct.	20,	1942	1.75	Dec.	18		1.93	Dec.	10,	1954	1.94
Apr. 28	92.20		23, 1964	92.13	Mar.	17, 196		Dec.			1.75	Dec.	19,	1946	1.69		1,	1955	1.26
July 27	92,17							Mar. Dec.	31, 28	1943	1.93	Mar. Dec.	20,	1947	2.07	Dec. Apr.	- {	1957	2.15
(C-7-5)29dcd-1.		availa	able_1936-3					Apr.		1944	1.75	Mar.		1950	1.95	npr.	·,		2.27
Sept. 8, 1936	+23.0	Mar.	23, 1937	+23.4	Sept.	15, 193	7 +23.4												
Nov. 12 Feb. 25, 1937	23.0 23.4	May	17	23.1	Nov.	28	23.6	(C-8	-6)36	ddc-1.	Records	1959-6							
			11. 1011 1					Apr.	29, 21	1959 1960	-16.21 17.24	Oct. Apr.		1961	-19.45	Aug. Oct,	2, 12	1965	-19.77
<u>(C-8-5)30cac-1.</u> Dec. 7, 1956	<u>Records</u> - 8.70	<u>availa</u> May	<u>1956-6</u> 1, 1959	- 8.68	Jan.	26, 196	1 -11.38	May	13		15.78	Oct.	17		18.84	Dec.	15		17.72
Apr. 5, 1957	8,22		21, 1960	11.17	Apr.	28	16.07	Oct,			19.54	Apr.	18,	1963	16.80	Mar.	17,		18.47
Dec. 20	8.65	Oct.		14.48	Apr.	3, 196	2 11.45	Jan.	- 26,	1961	17.15	N⊡v.		1964	18.88	Mar.	-17,	1967	18.73
		000	20	14.40	Apr.	-,		Anr	28		16 52	Mor	10	1965	17 97				
Dec. 11, 1958	9.55							Apr.	28		16.52	Mar.	10,	1965	17.22				

Table 15.--Records of selected springs in the Rush Valley drainage basin

Location number: See text for explanation of numbering system. Altitude of land surface: Interpolated from U.S. Geological Survey and Army Map Service topographic maps. Discharge: Smeans more than; Smeans less than; R, reported by owner or in source document. Use: H, domestic; I, irrigation; S, stock. Remarks: C, chemical analysis in table 16.

ocation number Own		Altitude		Estim	ated discharg	e)				
Location number	Owner or name	of land surface (feet)	Geologic source	Gallons per minute	Temperature (°F)	Date	Use	Remarks				
(C-4-4)33bb-S	-	-	Paleozoic limestone	>100R	-		s	State Engineer file No. A-03764.				
(C-4-5)35cha-S1	A. L. and N. M. Young	4,990	Alluvíal fan	60	56	9-22-64	1,S	Flows into pond. C.				
(C-4-7)25dcb-S1	U.S. Bureau of Land Management	-	-	50	40	9-21-64	s	In streambed. C.				
C-4-7)36daa-S1	do	7,400	Paleozoic limestone(?)	<1.0	40	9-21-64	-	Spring outlet not seen; discharge probably largely overland runoff.				
C-5-3)30dbb-S1	do	7,850	Paleozoic limestone	<5	47	9-25-64	s	с.				
30dcd-S1	do	7,290	Manning Canyon Shale	1,25	45	9-25-64	s	Flows into trough. C.				
C-5-5)3ada-Sl	Young Ranch	4,970	Alluvial fan	<1	56	9-22-64	s	с.				
9cba-S1	Flying G Ranch	4,990	Valley fill	1,000	75	9-22-64	1	Water has turquoise color from distance; known as Warm Spring. C.				
9cha-S2	do	4,990	do	2	56	9-22-64	н	с.				
17aaa-S1	Martell Russell	5,000	đo	-	57	9-22-64	I	Flows into large pond. C.				
C-5-6)20hba-S1	Chokecherry Spring	6,590	Manning Canyon Shale	1	55	9-21-64	S	Flows from a pipe into a small concrete trough. C.				
32bba-S1	Clover Creek Spring	5,900	Fault trace across contact of Manning Canyon Shale and Great Blue Limestone	4,500	45	9-21-64	I	Flows from two large and several small orifices; forms base flow of Clover Creek (measurements in table 6). C.				
C-6-6) 1bbc-Sl	Orson Johnson	5,305	Valley fill	1	57	9-21-64	s	Flows from pipe into trough. C.				
lcba-Sl	do	5,290	do	<10	55	9-21-64	s	Flows into 50-foot square reservoir. C				
14daa-S1	U.S. Bureau of Land Management Clover Bench Spring	5,310	do	. 5R 1	-	5-10-59 5-16-67	s	Improved by installation of horizonal perforated pipe in alluvial deposits in low fault scarp.				
24bac-S1	-	5,305	do	2	52	5-16-67	s	do				
C-7-5)286-S	Dan Atherly	5,300	do	-	-	12-22-64	1,5	Flows from several orifices into 500-foot diameter reservoir. C.				
32aba-Sl	Roy Davis	5,300	do	600	68	12-22-64	1,S	с.				
C-7-6)4cb-S	U.S. Bureau of Land Management Hell Hole Spring	7,100	Paleozoic limestone	20R	-	762	s					
4d-S	U.S. Bureau of Land Management Two Spring	6,700	do	4	-	7-15-64	s					
8ad-S	U.S. Bureau of Land Management East Faust Spring	7,200	do	15R	-	11-30-66	S	Developed spring, Replaces nearby spring that dried up.				
C-8-5) 5ccd-S1	Vandybarker Spring	5,300	Quaternary alluvium	450R	-	-	H,I	Artesian spring. Formerly supplied Faust railroad station and irrigated lands. Reportedly dried up at end of the first summer that nearby large- yield well was pumped. Reportedly yielded 2 cfs when temporarily enlarge and pumped.				
C-9-4)15c-S	-	5,700	Tertiary-Quaternary terrace deposits	-	45	12-21-64	н	Water used at nearby store. C.				
20dd-S	Union Pacific Railroad Co.(?)	6,220	Quaternary alluvium	-	42	12-21-64	н	Water piped from spring site to Lofgreen station. C.				
35bbb-S1	U.S. Bureau of Land Management Boulter Spring	5,790	Quaternary alluvium and colluvium	1	55	3-29-65	-	Opening is buried under highway and discharges through a pipe. C.				

Table 16.--Chemical analyses of water from selected wells and springs in the Rush Valley drainage basin

			T																				
Date of collection	Temperature (°F)	Discharge (gpm)	Silica (SiO2)	Lron (Fe)	Manganese (Mn)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Carbonate Carbonate (C03)	Sulfar (SO4)	Chloride (C1)	Fluoride (F)	Nitrate (NO ₃)	Beron (B)	Dissolved solids	Hardness as CaCO3	Noncarbonate hardness as CaCO3	Percent sodium	Sodium-adsorption ratio	Specific conductance (micromhos/cm at 25°C)	Hd
9-25-64 9-25-64 9-22-64	54 53 56	900 1,100 60	16 14 18	0,00 .43 .52	0,00 .01 .01	83 76 62	21 24 23	35 41 23	1.7 2.2 1.2	254 242 232	0 0 0	29 33 38	99 106 52	0.2	1.2 2.8 .9	0.05 .05 .04	416 452 368	293 290 250	85 92 60	20 23 17	0.9 1.0 .6	713 7(0 570	7.9 7.9 7.6
9-21-64	40	50	10	. 34	.03	69	16	13	2.6	276	0	14	23	.2	1.2	.04	283 201	238	12	11	.4	490 491	7.9
9-25-64	45	1.2m	9.3	. 02	.01	52	20	21	.4	223	0	33	26	. 2	9.0	.05	274	212	29	18	. 6	479	7.9
9-22-64 9-22-64 9-22-64 9-22-64 9-22-64	51 - 56 75 56	40-50 25m 0-1 1,000 2m	16 17 17 20 42	. 32 .00 .15 .88 .00	.10 .02 .01 .02 .18	69 59 34 58 69	46 32 48 24 32	47 22 28 110 176	2.0 1.5 2.1 11 17	226 212 215 174 164	0 0 0 0 6	92 62 90 172	130 58 74 179 330	.4 .4 1.0 1.1	1.9 2.5 .4 .3	.06 .03 .05 .17 .42	531 380 388 594 1,040	280 280 242 384	175 106 103 99 240	22 15 18 48 49	1.1 .6 .7 3.1 3.9	605 647 981 1,600	7.7 7.9 8.0 8.4
12-22-64 9-22-64 9-22-64	57 -	- - 50m	17 18 50	.21 .53 .06	.04 .01 .06	66 52 73	42 20 44	78 74 106	1.8 14 28	299 176 314	0 0 0	66 59 107	142 135 176	.4 1.3 2.8	1.0 .4 3.6	.05 .14 .25	561 463 762	335 211 364	90 67 107	33 41 37	1.9 2.2 2.4	947 789 1,210	7.9 7.8 7.9
9-21-64 9-21-64 5-29-65 3-18-66	55 45 - 46	1 4,500 5,000 2,000	12 7.6 4.6	.00 .00 .44	.00 .02 .01	75 63 63	12 10 5.8	27 8.7 10	.8 .3 -	272 238 213	0 0 -	38 8.2 7.4 -	30 11 14 -	.3 .2 -	.0 .2 .2	.04 .03 -	338 223 203 -	235 200 180 -	12 5 5	20 9 11 ~	.8 .3 .3 -	551 393 373 391	7.6 7.8 7.9
5- 5-48 11- 7-49 10- 4-50 8- 2-51 9-24-52 9- 8-53	49 49 51 54 50	360r 360r 360r 360r - - 335r	14 12 12 13 11 13	-	-	85 94 96 97 98 102	35 36 38 38 39 41	17 21 23 23 23 22	2.9 1.3 3.5 1.3 .9	398 420 417 412 406 396	0 0 0 0 0	38 40 40 38 43	12 23 34 46 58 62	.1 .3 .2 .1	11 9.0 9.1 9.7 9.4 12	.00 .04 .03	399 440 453 484 486 496	356 382 396 398 405 423	30 38 54 60 73 98	9 11 10 11 12 10	.4 .5 .5 .5	686 761 781 815 844 863	7.9 7.7 7.2 7.6 7.3 7.3
10-11-54 2-11-57 4-15-60 5- 2-62	50 50 50 50	335r 335r 335r 335r	12 11 13 11	-	-	103 96 87 89	41 37 33 29	25 26 19 23	1.0 1.1 1.3	398 395 387 391	0 0 0 0	41 40 35 44	64 53 17 14	.1 .1 .1	12 9.2 12 8.9	-	497 479 404 398	426 392 352 343	100 68 35 22	11 13 11 13	.5 .6 .4 .5	850 823 700 670	7.3 7.3 7.3 7.3 7.3
5- 6-48 11- 6-49 10- 5-50 8- 2-51 9-24-52	49 49 51 54 50	360r 360r 360r 360r 350r	13 12 13 12 11	-		87 89 90 86 94	34 34 36 35 36	27 34 34 37 32	2.9 1.3 2.6 1.3	408 406 399 399 394	0 0 0 0	39 44 40 40 41	24 37 46 46 57	.1 .3 .2 .1	8.7 8.3 9.3 9.2 9.6	.00 .02 .03	421 451 458 462 472	357 362 372 358 382	22 30 46 32 60	14 17 17 18 15	. 6 . 8 . 8 . 8 . 7	739 787 794 806 834	7.8 7.6 7.2 7.5 7.4
9- 8-53 9-29-54 2-11-57 4-15-60 5- 2-62 6-10-63	50 50 - 50 50	335r 335r 335r 350r 350r 350r 335r	11 11 10 12 11 11	-		92 90 83 86 97 96	37 35 31 31 28 27	30 32 26 18 34 12	1.4 1.0 1.1 .9	338 382 369 357 392 374	0 0 0 0 0	43 41 36 42 52 40	57 45 29 21 31 14	.4 .1 .1 .1 .1 .1	9.7 9.2 9.7 10 14 11		482 446 411 398 425 382	382 368 336 340 356 350	64 56 33 47 35 43	14 16 14 10 17 7	.7 .7 .6 .4 .8 .3	830 774 716 682 744 666	7.3 7.2 7.2 7.3 7.4 7.2
9-21-64 9-21-64	57 55	1m 5-10	17 15	. 90 . 33	.01 .03	75 83	25 17	139 23	.7 .8	260 282	0 0	149 20	158 52	.3 .2	4.6 .0	.05 .03	717 378	292 278	79 46	51 15	3.6 .6	1,150 602	7.7 7.9
3-30-65	-	-	50	. 15	. 04	20	24	145	9.2	334	0	113	61	1.4	2.1	. 35	600	148	0	66 40	5.2	894	8.2
12-22-64 12-22-64 12-22-64 12-22-64 4-22-59	- 68 49	1-5 600	23 22 15 14 50	.19 .40 .12 -	.01 .01 .07	63 64 46 184	54 54 38 178	129 52 47 354	7.8 3.5 7.4 2.8	298 309 237 415	0 0 0 0	81 34 35 216	238 120 106 988	.6 .3 .3	1.3 .5 1.4 1.0	.09 .07 .06	767 503 412 2,180c	378 330 270 1,190	134 77 76 850	42 25 27 39	2.9 1.2 1.2 4.5	1,290 845 725 3,770	8.1 7.7 7.8 7.4
4-28-59 3-29-65	55 54	- 3m	66 40	- .00	- .00	44 117	26 54	55 58	5.4	300 - 94	0	49 25	25 325	.5	4.2 8.0	_ .12	417c 868	216 515	0 356	36 19	1.6 1.1	603 1,330	7.7 7.6
12-22-64 5-11-59 12-22-64 12-11-58 1-26-61	- 55 - 54 53	4,500r 250r 20m - 5	13 28 16 16 13	. 33 . 31 -	.01 .01 - -	40 49 91 47 49	27 32 30 16 15	36 71 35 24 23	2.8 1.8 1.3	192 232 188 178 172	0 0 0 0	28 47 38 14 18	70 120 171 52 50	.6 -2 - .2	.0 .3 2.3 2.3 1.5	.09 - .05 .05	344 461c 559 259c 258	210 254 350 183 183	53 64 196 37 42	27 38 18 22 21	1.1 1.9 .8 .8 .7	558 795 848 466 459	7.6 7.9 7.7 7.8 7.3
12-22-64	-	50	16	. 40	. 01	67	18	29)	198	0	29	80	.2	2.4	.04	386	242	80 203	20	.8	602 782	7.6
3-30-65 12-11-58 1-26-61	54 52 -	20m - 11m	5.0 16 16	.18 - -	.07 - -	37	17	29 25 25	3.4	124 156 149	0 0 0	19 14 18	177 50 51	3	2.3	07	238c 238	160 160	32 38	25 25	.9	433 420	7.7 7.5
4-28-59 12-21-64 12-21-64 12-21-64 3-29-65	55 54 45 42 55	5-10 - 1	60 56 65 12 31	- .71 .33 .29	- .01 .00 .00 .09	40 38 51 55 81	26 29 44 19 39	77 72 71 34 42	8.0 9.2 1.2 3,5	232 226 222 226 274	0 0 0 0	40 39 29 36 32	100 115 184 47 140	- 1.0 .8 .2 .6	1.2 .5 1.4 .7 1.0	- .14 .14 .04 .11	458c 460 610 342 614	206 216 308 218 362	16 31 126 32 138	45 41 33 25 20	$2.3 \\ 2.1 \\ 1.8 \\ 1.0 \\ 1.0 \\ 1.0 \\$	740 737 956 538 891	7.6 8.0 7.6 7.8 8.2
	$\begin{array}{c} 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ $	$\begin{array}{c} 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 4\\ 3\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\$	3 3 3 $9-25-64$ 54 900 $9-25-64$ 53 $1,100$ $9-22-64$ 56 60 $9-25-64$ 47 $1-5$ $9-25-64$ 47 $1-5$ $9-25-64$ 47 $1-5$ $9-22-64$ 51 400.50 $9-22-64$ 51 1000 $9-22-64$ 57 1.000 $9-22-64$ 57 1.000 $9-22-64$ 57 1.000 $9-22-64$ 57 1.000 $9-22-64$ 57 1.000 $9-22-64$ 57 1.000 $9-22-264$ 57 1.000 $9-22-264$ 57 $1.5.000$ $3-36-55$ -5.000 $335r$ $9-24-52$ 50 $335r$ $9-24-52$ 50 $335r$ $9-24-52$ 50 $335r$ $9-24-52$ 50 $335r$	3 3 3 3 3 1 100 16 $9-25-64$ 56 56 600 18 $9-22-64$ 56 600 18 $9-22-64$ 56 1.100 14 $9-22-64$ 47 $1-5$ 8.0 $9-22-64$ 47 $1-5$ 8.0 $9-22-64$ 56 $22m$ 42 $9-22-64$ 56 $2m$ 42 $9-22-64$ 56 $2m$ 42 $2-22-64$ 56 $2m$ 42 $2-22-64$ 56 $2m$ 42 $2-2-64$ 56 $2m$ 42 $2-2-264$ 56 112 7.6 $5-2-9e5$ 50 7.6 7.6 $5-2-9e5$ 50 $335r$ 13 $11-7-49$ 99 $360r$ 12 $9-24-52$ 50 $335r$ 13 <td< td=""><td>$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$$9-25-64$$56$$900$$16$$0,00$$14$$43$$9-22-64$$56$$600$$18$$52$$9-21-64$$40$$500$$10$$34$$9-25-64$$47$$1-5$$8.0$$100$$9-22-64$$51$$40-50$$16$$32$$9-22-64$$51$$40-50$$16$$32$$9-22-64$$56$$0-1$$17$$100$$9-22-64$$56$$2m$$42$$000$$12-22-64$$57$$1,000$$20$$88$$9-22-64$$57$$1$$12$$000$$9-21-64$$55$$1$$12$$000$$9-21-64$$55$$1$$12$$-16$$59-548$$49$$360r$$12$$-16$$9-24-52$$50$$335r$$13$$-12$$9-24-52$$50$$335r$$13$$-12$$9-24-52$$50$$335r$$13$$-13$$10-14-54$$50$$335r$$11$$-14$$9-24-52$$50$$335r$$11$$-14$$9-24-52$$50$$335r$$11$$-14$$9-24-52$$50$$335r$$11$$-14$$9-24-52$$50$$335r$$11$$-14$$9-24-52$$50$$335r$$11$$-14$$9-24-52$$50$$335r$$11$$-$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>5 5 5 7 7 8 7 8 7 8 7 7 8 7</td><td>$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$</td><td>$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$</td><td>n n</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Bit Scharper Big Solution Scharper Big Solution Big Solution Big</td><td>$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$</td><td>1000000000000000000000000000000000000</td><td>1 1</td><td>100 100<td>No. No. No.<td></td></td></td></td<>	$\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $9-25-64$ 56 900 16 $0,00$ 14 43 $9-22-64$ 56 600 18 52 $9-21-64$ 40 500 10 34 $9-25-64$ 47 $1-5$ 8.0 100 $9-22-64$ 51 $40-50$ 16 32 $9-22-64$ 51 $40-50$ 16 32 $9-22-64$ 56 $0-1$ 17 100 $9-22-64$ 56 $2m$ 42 000 $12-22-64$ 57 $1,000$ 20 88 $9-22-64$ 57 1 12 000 $9-21-64$ 55 1 12 000 $9-21-64$ 55 1 12 -16 $59-548$ 49 $360r$ 12 -16 $9-24-52$ 50 $335r$ 13 -12 $9-24-52$ 50 $335r$ 13 -12 $9-24-52$ 50 $335r$ 13 -13 $10-14-54$ 50 $335r$ 11 -14 $9-24-52$ 50 $335r$ 11 $-$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 5 7 7 8 7 8 7 8 7 7 8 7	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	n n	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bit Scharper Big Solution Scharper Big Solution Big Solution Big	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	1000000000000000000000000000000000000	1 1	100 100 <td>No. No. No.<td></td></td>	No. No. <td></td>	

Discharge: Estimated unless indicated by m, measured, or r, reported. Sodium and potassium: Where no potassium value is shown, sodium plus potassium is calculated and reported as sodium. Dissolved solids: Residue on evaporation at 180°C unless indicated by c (sum of determined constituents).

1/ Forms hase flow of Clover Creek.
2/ Sample collected from storage tank.
3/ Several springs flow into reservoir; sample collected from edge of reservoir.
4/ Reported as (C-7-5)32a-1 in Utah Geological and Mineralogical Survey Water-Resources Bulletin 9, Part I.
5/ Sample collected from tap at U.S. Post Office in Vernon.

- No. 12. Reevaluation of the ground-water resources of Tooele Valley, Utah, by Joseph S. Gates, U.S. Geological Survey, 1965.
- *No. 13. Ground-water resources of selected basins in southwestern Utah, by G. W. Sandberg, U.S. Geological Survey, 1966.
- No. 14. Water-resources appraisal of the Snake Valley area, Utah and Nevada, by J. W. Hood and F. E. Rush, U.S. Geological Survey, 1966.
- No. 15. Water from bedrock in the Colorado Plateau of Utah, by R. D. Feltis, U.S. Geological Survey, 1966.
- No. 16. Ground-water conditions in Cedar Valley, Utah County, Utah, by R. D. Feltis, U.S. Geological Survey, 1967.
- No. 17. Ground-water resources of northern Juab Valley, Utah, by L. J. Bjorklund, U.S. Geological Survey, 1968.
- No. 18. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah, by J. W. Hood and K. M. Waddell, U.S. Geological Survey, 1968.
- No. 19. Appraisal of the quality of surface water in the Sevier Lake basin, Utah, by D. C. Hahl and J. C. Mundorff, U. S. Geological Survey, 1968.
- No. 20. Extensions of streamflow records in Utah, by J. K. Reid, L. E. Carroon, and G. E. Pyper, U. S. Geological Survey, 1969.
- No. 21. Summary of maximum discharges in Utah streams, by G. L. Whitaker, U. S. Geological Survey, 1969.
- No. 22. Reconnaissance of the ground-water resources of the upper Fremont River Valley, Wayne County, Utah, by L. J. Bjorklund, U. S. Geological Survey, 1969

WATER CIRCULAR

No. 1. Ground water in the Jordan Valley, Salt Lake County, Utah, by Ted Arnow, U.S. Geological Survey, 1965.

BASIC-DATA REPORTS


No. 1. Records and water-level measurements of selected wells and chemical analyses of ground water, East Shore area, Davis, Weber, and Box Elder Counties, Utah, by R. E. Smith, U.S. Geological Survey, 1961.

- No. 2. Records of selected wells and springs, selected drillers' logs of wells, and chemical analyses of ground and surface waters, northern Utah Valley, Utah County, Utah, by Seymour Subitzky, U.S. Geological Survey, 1962.
- No. 3. Ground-water data, central Sevier Valley, parts of Sanpete, Sevier, and Piute Counties, Utah, by C. H. Carpenter and R. A. Young, U.S. Geological Survey, 1963.
- No. 4. Selected hydrologic data, Jordan Valley, Salt Lake County, Utah, by I. W. Marine and Don Price, U.S. Geological Survey, 1963.
- No. 5. Selected hydrologic data, Pavant Valley, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
- *No. 6. Ground-water data, parts of Washington, Iron, Beaver, and Millard Counties, Utah, by G. W. Sandberg, U.S. Geological Survey, 1963.
- No. 7. Selected hydrologic data, Tooele Valley, Tooele County, Utah, by J. S. Gates, U.S. Geological Survey, 1963.
- No. 8. Selected hydrologic data, upper Sevier River basin, Utah, by C. H. Carpenter, G. B. Robinson, Jr., and L. J. Bjorklund, U.S. Geological Survey, 1964.
- No. 9. Ground-water data, Sevier Desert, Utah, by R. W. Mower and R. D. Feltis, U.S. Geological Survey, 1964.
- No. 10. Quality of surface water in the Sevier Lake basin, Utah, by D. C. Hahl and R. E. Cabell, U.S. Geological Survey, 1965.
- No. 11. Hydrologic and climatologic data, collected through 1964, Salt Lake County, Utah by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.
- No. 12. Hydrologic and climatologic data, 1965, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.
- No. 13. Hydrologic and climatologic data, 1966, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1967.
- No. 14. Selected hydrologic data, San Pitch River drainage basin, Utah, by G. B. Robinson, Jr., U.S. Geological Survey, 1968.
- No. 15. Hydrologic and climatologic data. 1967, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1968.

INFORMATION BULLETINS

*No. 1. Plan of work for the Sevier River Basin (Sec. 6, P.L. 566), U.S. Department of Agriculture, 1960.

.

Base from Army Map Service 1:250,000 series: Tooele (1962) and Delta (1962)

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

STATE OF UTAH Department of Natural Resources

Generalized distribution of dissolved solids in ground and surface waters and the chemical character of representative water samples