STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES

Technical Publication No. 76

RECONNAISSANCE OF THE QUALITY OF SURFACE WATER

IN THE WEBER RIVER BASIN, UTAH

by

Kendall R. Thompson

Prepared by the United States Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights

CONTENTS

Page

Abstract	1
Introduction	2
Previous investigations and acknowledgments	2
Methods of investigation	2
Numbering system for water-quality sampling sites	3
Classification of water for public supply and irrigation	5
Physical and hydrologic setting	8
Water development and irrigation	9
General geology	12
Population and land use	13
General chemical quality of the surface water	13
Headwaters of the Weber River to Echo Reservoir	14
Park City area	16
Silver Creek	16
McLeod-Kimball-East Canyon Creek drainage	17
Echo Reservoir to Gateway	19
Gateway to the mouth of the Weber River (Wasatch	-
Front area)	20
Other characteristics of the water	22
Fluvial sediment	22
Sanitary quality of the water	23
Dissolved oxygen	24
Trace elements and pesticides	25
Summary	26
References cited	27
Publications of the Utah Department of Natural Resources,	
Division of Water Rights	64
	51

ILLUSTRATIONS

[Plates are in pocket]

Plate 1.	Map :	showing	location	of	water-quality	sampling	sites,	Weber
	Rive	er basin	, Utah.					

- 2. Generalized geologic map of the Weber River basin, Utah.
- 3. Graphs showing dissolved-solids concentrations at selected sites, Weber River basin, Utah:
 - A. July 31-August 3, 1979
 - B. October 24-26, 1979
 - C. February 25-27,1980
 - D. April 1-3, 1980
 - E. May 12-14, 1980
 - F. August 11-13, 1980
- 4. Map showing chemical characteristics of surface water at selected sites in the Weber River basin, Utah, during low-flow conditions, July 31-August 2, 1979.
- 5. Map showing chemical characteristics of surface water at selected sites in the Weber River basin, Utah, during spring runoff, May 12-14, 1980.

Figure 1. Diagram showing numbering system for data sites 4

- 3. Diagrams showing changes in the chemical characteristics of water in the McLeod-Kimball-East Canyon Creek drainage:

Α.	August 1-3,	1979	• • • • • • • • • • • • • • • • • • • •	18
Β.	May 13-14,	1980 .		18

TABLES

			Page
Table	1.	Summary of selected hydrologic data collected in the Weber River basin	30
	2.	Suspended sediment at selected sites	38
	3.	Descriptive statistics of water-quality data collected at selected U.S. Geological Survey stream-gaging stations	40
	4.	Bacteriological data from selected sites	45
	5.	Trace-element concentrations in water samples from selected sites	46
	6.	Pesticide concentrations in stream-bottom materials at selected sites	49
	7.	Chemical analyses of water samples collected in the Weber River basin, July 1979 through August 1980	50

CONVERSION FACTORS

Most values in this report are given in inch-pound units followed by metric units in parentheses. The conversion factors are shown to four significant figures. In the text, however, the metric equivalents are shown only to the number of significant figures consistent with the accuracy of the value in inch-pound units.

Multiply inch-pound unit	By	To obtain metric unit
acre-foot (acre-ft)	0.001233	cubic hectometer (hm^3)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m^3)
foot (ft)	0.3048	meter (m)
inch (in.)	25.40	milliliter (mm)
micromhos per centimeter (µmho/cm)	1.000	microsiemens per centimeter (S/cm)
mile (mi)	1.609	kilometer (km)
square mile (mi ²)	2.590	square kilometer (km ²)
ton per day	0.9072	megagram per day (Mg/d)

Chemical concentration and water temperature are given only in metric units. Chemical concentration is given in milligrams per liter (mg/L) or micrograms per liter (µg/L). Milligrams per liter is a unit expressing the concentration of chemical constituents in solution as weight (milligrams) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. For concentrations less than 7,000 mg/L, the numerical value is about the same as for concentrations in parts per million.

Chemical concentration in terms of ionic interacting values is given in milliequivalents per liter (meq/L). Milliequivalents per liter is numerically equal to equivalents per million.

Water temperature is given in degrees Celsius (^OC), which can be converted to degrees Fahrenheit (^OF) by the following equation: $^{O}F=1.8(^{O}C)+32$.

vi

RECONNAISSANCE OF THE QUALITY OF SURFACE

WATER IN THE WEBER RIVER BASIN, UTAH

By Kendall R. Thompson

ABSTRACT

This reconnaissance of the quality of surface water in the Weber River basin encompassed an area of 2,080 square miles (5,390 square kilometers). Elevations in the basin range from 4,210 to 11,708 feet (1,280 to 3,568 meters). Data were obtained by the U.S. Geological Survey one or more times at 107 sites in the basin from July 1979 to August 1980.

The water-distribution system on the Weber River is well developed. Numerous irrigation diversions greatly decrease the flow of the river at several locations in the basin. Major reservoirs having a total usable capacity of 518,020 acre-feet (639 cubic hectometers) are used principally for irrigation and some recreation. The largest consumptive use of water in the basin is irrigation.

The principal factors that affect water quality in the Weber River are tributary inflow from both surface- and ground-water sources, irrigationreturn flow, and reservoir storage. Dissolved-solids concentrations in the Weber River during winter base-flow periods generally are slightly increased and they fluctuate little except near the mouth of the river. During the spring-runoff periods, water typically has the least dissolved-solids Local exceptions are at sites affected by releases from concentrations. Rockport and Echo Reservoirs. During the summer irrigation period, the river is affected by large diversions for irrigation. Dissolved-solids concentrations tend to increase in a downstream direction, primarily due to both surface and subsurface irrigation-return flow. Transpiration and evaporation cause minor increases in the dissolved-solids concentrations of the river.

From the headwaters of the Weber River to Echo Reservoirs dissolvedsolids concentrations are small--generally less than 300 milligrams per liter. The principal water type in this reach is calcium bicarbonate. The two principal water tributaries in this reach, Beaver Creek and Chalk Creek, have dissolved-solids concentrations that generally are greater than the concentrations in the Weber River. Releases from Rockport and Echo Reservoirs may increase or decrease the dissolved-solids concentrations in the river depending on the time of the year.

Lost Creek and East Canyon Creek are the principal tributaries to the Weber River in the reach between Echo Reservoir and Gateway. Dissolved-solids concentrations in Lost Creek generally are less than the dissolved-solids concentrations in the Weber River except during the irrigation season. At times flow in the Weber River downstream from the Stoddard Diversion is decreased greatly because of diversions into Gateway Canal. A seepage study showed a gaining stream reach from Stoddard Diversion to Gateway, however, water-quality changes in this reach of the Weber River were minor.

The reach between Gateway and the mouth of the Weber River is where the greatest change in water quality was expected to occur. The most intensive irrigation and the largest population centers are located along this reach. During the irrigation season, streamflow is decreased greatly in the vicinity of Plain City, Utah. Dissolved-solids concentrations in the downstream reaches of the Weber River begin to increase rapidly due to irrigation-return flow into the already depleted flow of the river. The increases would be more marked were it not for inflows of fresher water from the Ogden River and discharges of irrigation water directly to Great Salt Lake instead of back to the river.

INTRODUCTION

This report on the reconnaissance of surface-water quality in the Weber River basin was prepared by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights. The purposes of the reconnaissance were: (1) To obtain information on the general inorganic chemical characteristics of the surface water throughout the Weber River basin and, (2) to determine some of the effects of the natural environment and of present water use on these chemical characteristics.

The reconnaissance was limited in scope and did not include intensive study of the effects of municipal sewage, irrigation, industry, or mining on water quality. The principal objective was to define the general waterquality characteristics of streams in the basin. A secondary objective was to define specific problem areas or stream reaches.

Previous Investigations and Acknowledgments

Although considerable surface-water quality data have been collected by the U.S. Geological Survey, the U.S. Bureau of Reclamation, and other agencies, there has been little interpretation of those data. A study was conducted under the U.S Environmental Protection Agency-sponsored 303(e) Basin Planning Program (Utah State Division of Health, 1975) to identify waterquality problems in the Weber River basin. That study included those parts of the basin in Davis, Morgan, and Weber Counties. Another study was conducted under the Environmental Protection Agency 208 waste water management plan (Mountainland Association of Governments, 1977). That study included the upstream part of the Weber River basin in Summit County. In addition to the above-cited studies, a study was made of the effect of pollution on the Weber River (Smith, 1959). The Water Commissioner for the Weber River, E. Blaine Johnson, gave the author valuable assistance in identifying various canal diversions in the basin. His assistance is appreciated.

Methods of Investigation

This reconnaissance of the Weber River basin was designed primarily to define, seasonally, the general chemical quality of the water in streams. Data were collected during short periods of relatively stable-flow conditions. Water-quality data were collected one or more times by the U.S. Geological Survey at 107 sites in the Weber River basin (pl. 1). Concentrations of major ions and dissolved solids were determined for all samples. Concentrations of trace elements were determined semiquantitatively once at 17 sites and quantitatively at least once at 14 sites. Concentrations of pesticides in stream-bottom sediments were determined once at three sites downstream from the major irrigated areas. Chemical analyses of samples obtained for this investigation were made by the U.S. Geological Survey's central laboratory, Lakewood, Colorado.

Most of the water-discharge data used in this report were obtained by nonstandard methods using a limited number of stream cross sections for velocity and depth determinations. A fairly reliable approximation of discharge (<u>+</u>10 percent) was regarded as adequate for this reconnaissance.

Water-quality data obtained specifically for this report and waterquality data obtained as part of the U.S. Geological Survey streamflow-gaging program during September 1979 through August 1980 are presented in table 7. A summary of these data is presented in table 1.

Numbering System for Water-Quality Sampling Sites

Most of the data sites visited during this reconnaissance are numbered sequentially in an upstream order. This numbering system simplifies referencing in the text and tables. The sites also are assigned a location number along with a name, such as "Weber River at Gateway above powerplant at bridge at (A-5-1)27cda," to specifically locate sites in the Weber River basin. This system of numbering sites is based on the cadastral land-survey system of the U.S. Government. The number describes the position of the site in the land net. The land-survey system divides the State into four quadrants by the Salt Lake baseline and meridian. These quadrants are designated by the uppercase letters A, B, C, and D, indicating the northeast, northwest, southwest, and southeast quadrants, respectively. The township and range are designated by the numbers following the quadrant letter, and all are enclosed in parentheses. The number following the parentheses indicates the section and is followed by three letters indicating the guarter section, the guarterquarter section, and the quarter-quarter-quarter section, respectively. The letter a represents the northeast quarter; b, the northwest quarter; c, the southwest quarter; and d, the southeast quarter of each subdivision. For example, (A-5-1)27cda designates a site in the NELSELSWL sec. 27, T. 5 N., R. 1 E. This numbering system is illustrated in figure 1.

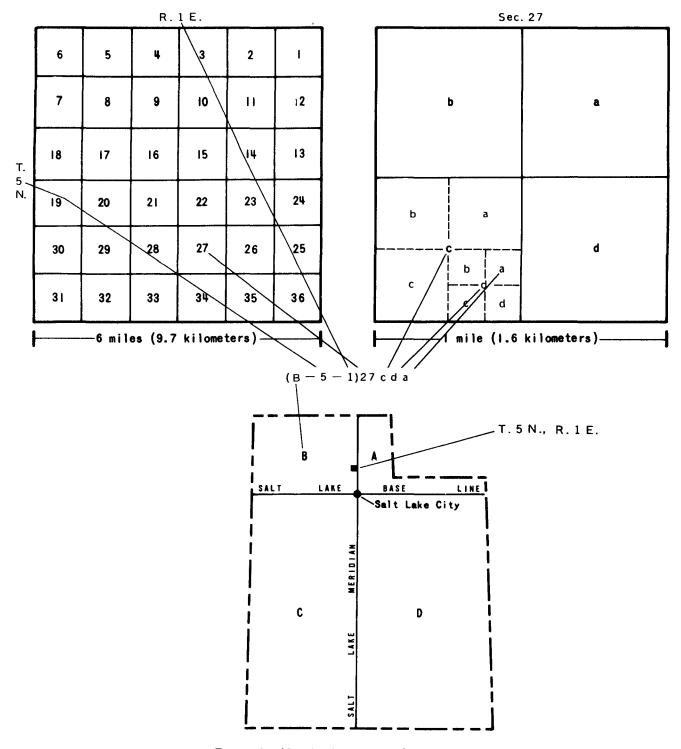


Figure 1.-Numbering system for data sites.

Classification of Water for Public Supply and Irrigation

"The National Interim Primary Drinking Water Regulations * * * were promulgated on December 24, 1975, in accordance with the provisions of the Safe Drinking Water Act (Public Law 93-523) * * * These regulations become effective on June 24, 1977, and become in essence the standards by which all public drinking water supplies are judged" (U.S. Environmental Protection Agency, 1976, preface). The following table lists maximum contaminant levels for inorganic chemicals other than fluoride. The term "maximum contaminant level" is defined as the "maximum permissible level of a contaminant in water which is delivered to the free flowing outlet of the ultimate user of a public water system" (U.S. Environmental Protection Agency, 1976, p. 5).

Contaminant	Level, in milligrams per liter
Arsenic	•••••
Barium	•••••• 1.0
Cadmium	
Chromium	•••••
Lead	•••••
Mercury	
Nitrate (as N)	
Selenium	
Silver	

When the annual average of the maximum daily air temperatures for the location in which the community water system is situated is the following, the maximum contaminant levels (approval limits) and other recommended control limits for fluoride are (U.S. Environmental Protection Agency, 1976, p. 5):

Tempera		
Degrees Fahrenheit	Degrees Celsius	Approval limit (milligrams per liter)
53.7 and less	12.0 and less	2.4
53.8 to 58.3	12.1 to 14.6	2.2
58.4 to 63.8	14.7 to 17.6	2.0
63.9 to 70.6	17.7 to 21.4	1.8
70.7 to 79.2	21.5 to 26.2	1.6
79.3 to 90.5	26.3 to 32.5	1.4

The hardness of water is conventionally expressed in all water analyses made in the United States in terms of an equivalent quantity of calcium carbonate (CaCO₃). Some such convention is needed for hardness because this is a property imparted by several different cations, which may be present in varying proportions. However, the actual presence of the indicated number of milligrams per liter in the form of CaCO₃ certainly should not be assumed (Hem, 1970, p. 84).

In practical water analysis, the hardness is computed by multiplying the sum of milliequivalents per liter of calcium and magnesium by 50. The hardness value resulting generally is entitled "hardness as $CaCO_3$ "....or "total hardness." If the hardness exceeds the alkalinity (in milligrams per liter of $CaCO_3$ or other equivalent units), the excess is termed "noncarbonate hardness"..... (Hem, 1970, p. 224-225).

Durfor and Becker (1964, p. 27) use the following classification for hardness:

Hardness range (milligrams per liter of CaCO ₃)	Description
0-60	Soft
61–120	· · · · · · · · · · · · · · · · · · ·
121-180	Hard
More than 180	Very hard

A classification for the dissolved-solids hazard in irrigation waters has been prepared by the U.S. Environmental Protection Agency (1977, table 16). This classification is shown below:

Dissolved-solids concentration, in milligrams per liter	Effects or limitation
Less than 500	Usually none
500 - 1,000	Can be detrimental to some sensitive crops
1,000 - 2,000	May have adverse effects on many crops and requires careful management
2,000 - 5,000	Can be used for tolerant plants on permeable soils; requires careful manage- ment practices

The salinity and sodium hazards of water used for irrigation were classified using a diagram developed by the U.S. Salinity Laboratory Staff (1954, p. 80). The assumption is made that the water will be used under average conditions. If a large deviation from average conditions occurred, water could become unsafe for use even though under average conditions the use of the same water would be considered safe. (See table 1.)

The terms "salinity" and "dissolved solids" commonly are used synonymously. Classifications for both dissolved solids and salinity are used for comparative purposes.

Because the occurrence of boron may be a limiting factor in certain irrigation waters, it is necessary to consider this element in assessing water quality. The National Academy of Science and National Academy of Engineering, 1973 (p. 341) recommends a maximum concentration of 750 micrograms per liter of boron for the most boron-sensitive plants.

To provide a basis of judgment, other than regulatory use, for several programs that are associated with water quality the U.S. Environmental Protection Agency developed a group of quality criteria for water. The following is a list of selected recommended limits (U.S. Environmental Protection Agency, 1977):

Constituent	Concentration		
	Milligrams per liter	Micrograms per liter	
Beryllium		100	
Chlorides (dissolved solids)	250		
Copper		1,000	
Dissolved oxygen	5		
Iron		300	
Manganese	~~	50	
Sulfates (dissolved solids)	250		

Water types have been characterized in this report using a system developed by Davis and DeWiest (1966, p. 119). Major ions present in amounts less than 20 percent of the total milliequivalents per liter of cations or anions are not used to name the water type. If any ion represents more than 60 percent of the total milliequivalents per liter of either cations or anions this ion is used alone to represent the dominant ion type. In mixed watertypes, ions present in greater than 20 percent but less than 60 percent of the cations or anions are listed in the order of their abundance. For example, water at site 61 on August 1, 1979 contained cations equal to 63 percent calcium, 22 percent magnesium, 1 percent potassium, and 14 percent sodium, and anions equal to 58 percent bicarbonate, 28 percent sulfate, and 14 percent chloride. This water was of the calcium bicarbonate sulfate type.

PHYSICAL AND HYDROLOGIC SETTING

The Weber River basin, in Morgan, Weber, Davis, and Summit Counties in northern Utah, has a total drainage area of about 2,080 square miles $(5,390 \text{ km}^2)$. The river heads in the Uinta Mountains and generally flows northwestward through the Wasatch Range to where it enters the Wasatch Front near Ogden, Utah (pl. 1). About 9 miles (14 km) west of Ogden, the river flows into the Great Salt Lake, which is very saline and has no outlets.

Elevations in the Weber River basin range from about 4,210 feet (1,280 m) at the mouth of the Weber River at the Ogden Bay Waterfowl Management Area dikes west of Ogden to 11,708 feet (3,568 m) at Reids Peak near the headwaters of the Weber River. There are five major tributaries to the Weber River-Ogden River and East Canyon, Lost, Chalk, and Beaver Creeks. The Ogden River is the largest tributary, with a drainage area of about 360 square miles (930 km²). In addition there are numerous small tributaries to the Weber River, some of which flow only during the spring and early summer.

Normal annual precipitation for 1931-60 (fig. 2) ranged from 16 inches (406 mm) near the mouth of the Weber River and in some mountain valleys to 40 inches (1,016 mm) in the higher elevations of the Wasatch Range (U.S. Weather Bureau, 1963). In the higher elevations most of the October-April precipitation (fig. 2) falls as snow. Total annual precipitation during the study was less than normal during 1979 and greater than normal during 1980. During 1979, precipitation ranged from 5 percent less than normal at Riverdale near Ogden to 35 percent less than normal at Heber, about 12 miles (19 km) south of Kamas. During 1980, precipitation ranged from 49 percent greater than normal at Heber to 65 percent greater than normal at Riverdale.

During the 1979 water year, mean discharges at two long-term streamflow gaging stations in the basin ranged from -25 to -41 percent of the long-term average. The mean discharges at these stations during the 1980 water year ranged from -3 to +152 percent of the long-term average.

Water Development and Irrigation

The water distribution system on the Weber River is well developed. During the irrigation season, flow in the river is greatly reduced at several locations due to irrigation diversions. The principal diversions are:

Canal	Cap	acity	
or diversion	Cubic feet per second	Cubic meter per second	Remarks
Weber-Provo Canal	950	27	Diverts water from the Weber River near Oakley to the Provo River. (See site 85.)
Stoddard Diversion into Gateway Canal	700	20	Diverts water from the Weber River down- stream from Morgan for irrigation and muni- cipal use, and for one small electrical power- plant; some of the water reaches the Wasatch Front near Ogden through the Gateway tunnel where it is eventually used for pressure irrigation and municipal use. (See sites 54, 53, and 38.)
Weber-Davis Canal	300	8.5	Diverts water from the Weber River down- stream from Utah Power & Light Co.'s Gateway powerplant for irrigation in Weber and Davis Counties. (See site 35.)
South Weber Canal	30-50	0.8-1.4	Diverts water from the Weber River at the mouth of Weber Canyon for irrigation in Davis County. (See site 34.)
Wilson Canal	80	2.3	Diverts water from the Weber River near the Union Stockyards for irrigation in Weber County. (See site 26.)
Slaterville Diversion			Diverts water from the Weber River near Slaterville into Willard and Layton Intake Canals (described below).
Willard Canal	900	25	Diverts water into Willard Bay (located 6 miles north of Plain City), an off-stream reservoir. During droughts, water can be pumped 300 cubic feet per second (9.9 cubic meters per second) back up Willard Canal for redistribution at the Slaterville Diversion. (See sites 17 and 20.)
Layton Intake Canal	350	9.9	Water can be pumped 200 cubic feet per second (5.7 cubic meters per second) from the Layton Intake Canal to the Wasatch Front area of Davis County for irrigation. Water also can be diverted from the Layton Intake Canal into Hooper Canal, capacity 175 cubic feet per second (5 cubic meters per second), for irrigation in Weber County. (See site 19.)
Warren Canal	90	2.5	Diverts water from the Weber River near Highway 84 for irrigation in Weber County. (See site 15.)

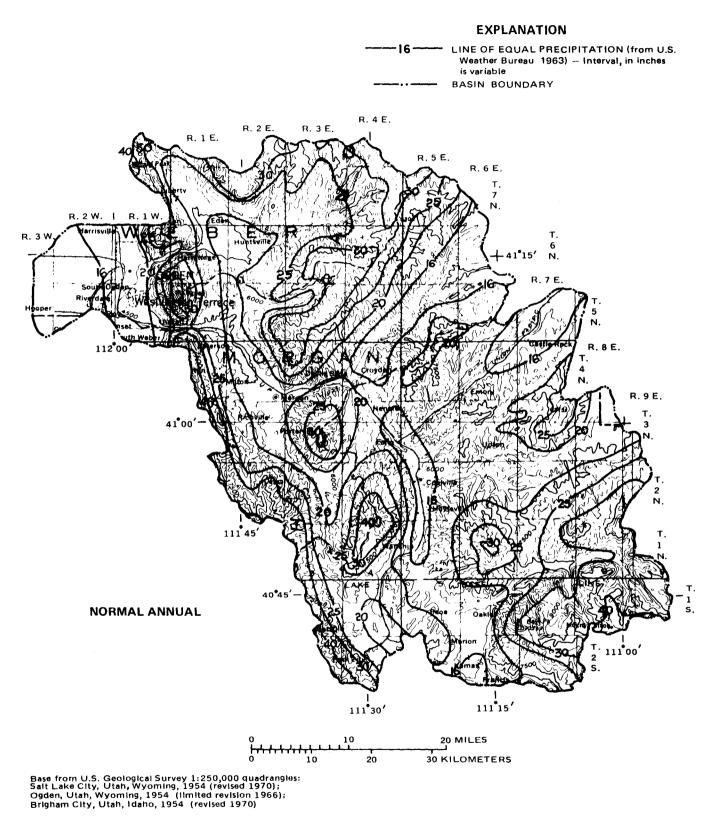
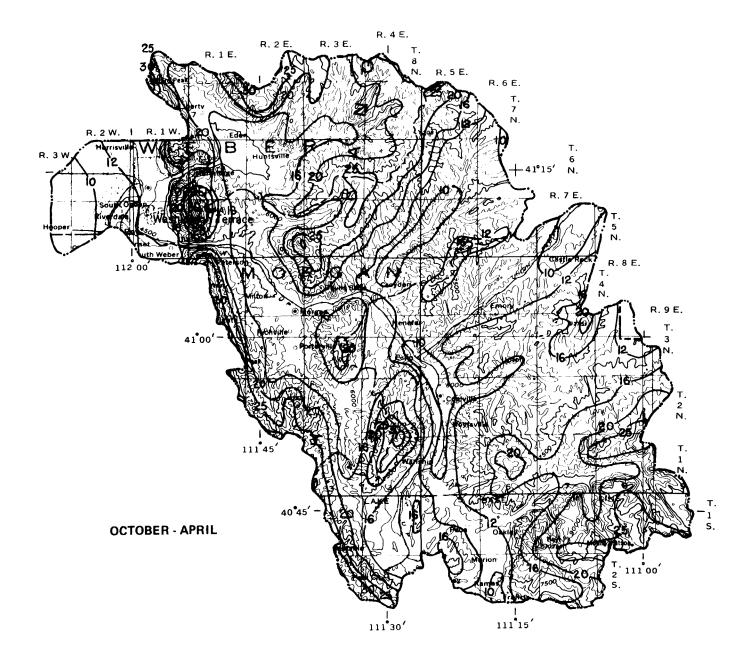



Figure 2.--Normal annual precipitation and normal October-April precipitation (1931-60).

Isohyetal analysis prepared by the Water Supply Forecast Unit and Office of State Climatologist, U.S. Weather Bureau, Salt Lake City, Utah, using adjusted climatological data and values derived by correlation with physiographic factors

Figure 2.--Continued

Seven major reservoirs in the study were built primarily for storage of water for irrigation and some recreational use. These reservoirs are listed below:

Reservoir	Drainage basin	Usable capacity, in acre-feet
ausey	South Fork Ogden River	6,870
East Canyon	East Canyon Creek	48,110
Echo	Weber River	73,940
lost Creek	Lost Creek	20,040
Pineview	Ogden River	110,000
Rockport	Weber River	60,860
Villard Bay ¹	Weber River	198,200
Tot	al	518,020

¹Off-stream reservoir, located 6 miles north of Plain City.

General Geology

Rocks exposed in the Weber River basin range in age from Precambrian to Quaternary. They consist largely of conglomerates, but also include various other sedimentary rocks as well as some igneous and metamorphic rocks (pl. 2). In most parts of the basin the rocks have been complexly folded and faulted, and in some areas they contain economic ore deposits.

The Precambrian rocks in the headwater areas of the Weber River basin consist chiefly of quartzite, which contributes relatively little to the dissolved-solids concentration of the streamflow. The Tertiary and Cretaceous rocks are widely exposed in the central part of the basin. They include shale and siltstone strata, which contain large amounts of readily soluble minerals and, therefore, probably comprise the most important geologic source of dissolved solids in the streamflow. The dissolved solids are carried to the streams by influent ground water. The Tertiary and Cretaceous rocks also include considerable amounts of easily eroded tuffaceous material. Consequently, they probably are the most important natural source of fluvial sediment in the basin.

Several fault-related saline springs occur in the Morgan and Ogden areas. Some of the discharge from those springs directly or indirectly reach the Weber River; however, this discharge has very little effect on the chemical quality of the streamflow.

Population and Land Use

Most people in the Weber River basin reside in the Ogden area near the mouth of the Weber River. Ogden, which is a major railroad terminal, is the fourth largest city in Utah with a population of 64,444, according to the 1980 census.

The largest uses of land in the basin are for agriculture, forestry, and recreation; the largest consumptive use of water is for agriculture. Population, according to the 1980 census, and principal land use (Haws, 1970; Lee, 1979, p. 14) are shown below:

<u></u>	Population	Land use, in acres						
County		Cropland	Pasture	Range	Forest	Industry		
Weber Morgan Summit	143,170 4,914 10,227	48,353 18,736 43,857	1,770 5,212 1,718	117,803 192,045 284,292	86,346 148,087 292,359	1,910 154 267		

GENERAL CHEMICAL QUALITY OF THE SURFACE WATER

The principal factors that affect the water quality in the Weber River are tributary inflow from both surface- and ground-water sources, irrigationreturn flow, and reservoir storage. The effect of any of these factors varies with differing locations and times in the basin. If water quality in the main stem Weber River is analyzed during three periods--winter base flow, spring runoff, and summer irrigation--certain trends become evident.

During the winter base-flow period, reservoir releases are decreased and the river is maintained principally by ground-water inflow and some overland runoff. Dissolved-solids concentrations in the Weber River generally are slightly increased and fluctuate little except near the mouth of the river as shown on plate 3B and 3C.

The transition between winter base-flow and spring runoff is shown on plate 3(D). Snowmelt begins earlier in the downstream part of the basin, decreasing dissolved-solids concentrations in this area.

During the spring-runoff period, streamflow is derived principally from snowmelt and has relatively small dissolved-solids concentrations. The largest concentrations of dissolved solids in the Weber River during this period are caused by releases of water stored in Rockport and Echo Reservoirs during the winter base-flow period. Downstream from Echo Reservoir, dissolved-solids concentrations in the river gradually decrease, as shown on plate 3E, due to tributary inflow of fresher water. Near the mouth of the river, irrigation-return flows such as Hooper Slough (site 5) increase the dissolved-solids concentration of the remaining waters in the river. Sites 1-4 are located at diversion structures for the Ogden Bay Waterfowl Management Area and represent the mouth of the Weber River.

During the summer-irrigation period, discharge of the Weber River is affected largely by irrigation diversions. These numerous diversions dramatically decrease the flow in the river at several locations. Dissolvedsolids concentrations tend to increase in a downstream direction primarily due to both surface and subsurface irrigation-return flows. These return flows are the major sources of dissolved solids during the summer. Inflow from the Ogden River interrupts this trend and decreases the dissolved-solids concentration in the Weber River by dilution. The available data indicate that transpiration and evaporation along water courses cause minor increases in the dissolved-solids concentration of the river. It is beyond the scope of this project to quantify this relationship. To better discuss the quality of surface water in the Weber River basin, the basin has been divided into four areas and each area is discussed separately.

Headwaters of the Weber River to Echo Reservoir

Elevations in this area range from 5,560 feet (1,695 m) at Echo Reservoir to 11,708 feet (3,568 m) at Reids Peak near the headwaters of the Weber River (pl. 1). Water at the headwaters of the Weber River (site 95) is derived principally from snowmelt. Streamflow was principally a calcium magnesium bicarbonate type, having small concentrations of dissolved solids. A water sample collected on August 3, 1979, at site 95 had a dissolved-solids concentration of 14 milligrams per liter.

Two of the larger tributaries between the headwaters of the Weber River and the Weber River near Oakley (site 92) also were sampled. Smith and Morehouse Creek (site 94), sampled once during high-flow and once during lowflow conditions, had a dissolved-solids range of 52 to 97 milligrams per liter. This was slightly less than the dissolved-solids concentration of the Weber River upstream from Smith and Morehouse Creek (site 93), which ranged from 100 to 114 milligrams per liter during the same period. The South Fork of the Weber River at its mouth (site 92.5) also was sampled once during highflow and once during low-flow periods. Dissolved-solids concentrations determined from these two samples were 146 milligrams per liter during high flow and 168 milligrams per liter during low flow, which is significantly larger than for the Weber River at site 93.

Dissolved-solids concentrations of the Weber River near Oakley (site 92) were determined six times and ranged from 108 to 175 milligrams per liter. The water was a calcium bicarbonate type. (See table 1 and pls. 4 and 5.)

Water that is diverted from the Weber River basin to the Provo River basin by the Weber-Provo Diversion Canal (site 89) is characteristically a calcium bicarbonate type having small concentrations of dissolved solids. Small amounts of good quality water are diverted from the Provo River into the Weber River basin through an unnamed canal (table 7, site 90). Some of this water may reach the Weber River as irrigation-return flow. At times, during the irrigation season, streamflow is almost entirely diverted from the Weber River in the vicinity of Oakley. During these times, tributary inflow, ground-water inflow, and irrigation-return flow re-establish the flow in the river downstream from Oakley. Beaver Creek is the largest tributary in this reach and enters the Weber River downstream from Oakley. Water is diverted at many locations along Beaver Creek, including one that can divert Beaver Creek water into the Weber-Provo Diversion Canal at Kamas. Dissolved-solids concentrations of six samples from Beaver Creek near its mouth (site 87) ranged from 81 to 280 milligrams per liter. The water was a calcium bicarbonate type. The salinity hazard ranged from low to medium and the sodium hazard was low. Dissolved-solids concentrations in the Weber River at site 83 upstream from Beaver Creek typically were smaller than they were in Beaver Creek at site 87. (See table 1.) The only exception was during spring runoff when samples collected on May 13, 1980 had a dissolved-solids concentration of 81 milligrams per liter at site 87 and 112 milligrams per liter at site 83.

Rockport Reservoir, formed by Wanship Dam, near Wanship, is the first of the two principal impoundments of the Weber River in the upstream basin (pl. Water is stored in this reservoir principally for irrigation. Wanship 1). Dam [elevation 6,037 ft (1,840 m)] also includes a small hydroelectric plant. At times, releases from this reservoir have a larger dissolved-solids concentration than inflows to the reservoir. For example, during spring runoff on May 12, 1980, the Weber River upstream from Rockport Reservoir (site 81) had a dissolved-solids concentration of 136 milligrams per liter. The Weber River downstream from Rockport Reservoir (site 80) had a dissolvedsolids concentration of 181 milligrams per liter or an increase of 33 percent. This increase in dissolved-solids concentration results primarily from storage of water of greater dissolved-solids concentration during summer and winter rather than from reservoir evaporation. Water samples collected at site 81 had dissolved-solids concentrations of 218 milligrams per liter on August 2, 1979, 247 milligrams per liter on February 27, 1980, and 239 milligrams per liter on April 3, 1980. Although the water derived from spring runoff eventually dilutes the water stored in Rockport Reservoir, water discharged from earlier storage has a significantly larger dissolved-solids concentration.

During some periods, inflows to the reservoir have larger dissolvedsolids concentrations than the releases from the reservoir. For example, during the irrigation season on August 12, 1980, water entering the reservoir at site 81 had a dissolved-solids concentration of 241 milligrams per liter. Water discharged from the reservoir at site 80 had a dissolved-solids concentration of 133 milligrams per liter, 45 percent less than the inflow. This decrease is due principally to dilution in the reservoir by fresher spring runoff, as mentioned earlier. Because of the small size and the constant exchange of water in the reservoir, changes in water quality due to evaporation probably are minor. Chalk Creek is a major tributary that enters the Weber River at Echo Reservoir (pl. 1). Dissolved-solids concentrations in Chalk Creek are significantly larger than in the Weber River. Concentrations ranged from 163 to 256 milligrams per liter in the Weber River at site 79; during the same period they varied from 237 to 446 milligrams per liter in Chalk Creek at site 78 (table 1). Water sampled from Chalk Creek varied from a calcium bicarbonate to a calcium magnesium bicarbonate type (pls. 4 and 5). The salinity hazard was medium to high and the sodium hazard was low (table 1).

Echo Reservoir, having an elevation of 5,560 feet (1,695 m), is about 9 miles (14.5 km) downstream from Rockport Reservoir and is the second principal impoundment of the Weber River in the upstream basin. Water is stored in this reservoir principally for irrigation. At times this reservoir, like Rockport Reservoir, causes changes in the water quality of the Weber River. Inflow to this reservoir is principally releases from Rockport Reservoir, discharge from Chalk Creek and other smaller tributaries, and some irrigation-return flow. Differences in water quality between the inflow and outflow of this reservoir principally are due to the variations of quality of the outflow from Rockport Reservoir and the discharge of Chalk Creek. Comparison of inflow at site 79 and outflow at site 76 indicates that the difference in dissolved-solids concentrations ranged from a 2-percent decrease to a 27-percent increase during the study.

Changes in water quality by evaporation from this reservoir probably are small due to the small size of the reservoir and constant exchange of water in it. During the summer of 1979, the usable reservoir contents were almost entirely depleted due to large irrigation demands resulting from less than normal rainfall in the basin.

Park City Area

Elevations in the Park City area range from about 5,700 feet (1,737 m) at East Canyon Dam to 9,998 feet (3,047 m) at Jupiter Hill near Park City. Two major drainages originate in the Park City area--Silver Creek and McLeod-Kimball-East Canyon Creek.

Silver Creek

Silver Creek originates in the upstream Park City area and empties into the Weber River near the town of Wanship. The principal tributary to Silver Creek originates in the Dority Spring area (site 73) near Park City and hereafter will be referred to as Dority Spring Creek.

The principal water type of both Silver Creek (site 72) and Dority Spring Creek (site 73) is mixed, either calcium sulfate bicarbonate or calcium bicarbonate sulfate. Dissolved-solids concentrations ranged from 331 to 519 milligrams per liter at these two sites. Concentrations ranged from 273 to 568 milligrams per liter in Silver Creek near its mouth at Wanship (site 75), where the principal water type was calcium bicarbonate sulfate. Little change in water quality occurs between Silver Creek at Keetley Junction (site 74) and Silver Creek at Wanship (site 75). Exceptions are during periods of runoff when fresher tributary inflow dilutes the water in Silver Creek. For example, during May 12-14, 1980, Silver Creek at Keetley Junction had a dissolved-solids concentration of 513 milligrams per liter and a discharge of 10 cubic feet per second ($0.3 \text{ m}^3/\text{s}$) whereas Silver Creek at Wanship had a dissolved-solids concentration of 273 milligrams per liter and a discharge of 67 cubic feet per second ($1.9 \text{ m}^3/\text{s}$). The decrease in dissolved-solids concentration of 213 milligrams per liter and a discharge of 67 cubic feet per second ($1.9 \text{ m}^3/\text{s}$). The decrease in dissolved-solids concentration was 53 percent. At the same time the water type changed from calcium sulfate bicarbonate at the upstream site to calcium bicarbonate sulfate at the downstream site. The sulfate may be related to the sulfide ore-bearing rocks of the Park City mining district.

McLeod-Kimball-East Canyon Creek Drainage

The McLeod-Kimball-East Canyon Creek drainage originates as the Spiro Tunnel outflow (site 71) in Park City. Water from this system is stored in East Canyon Reservoir. East Canyon Creek empties into the Weber River downstream from the town of Morgan.

Water at site 71 was a calcium sulfate type. Dissolved-solids concentrations at this site ranged from 607 to 691 milligrams per liter. Downstream from site 71, tributary inflows of better quality water dilute the mainstem flow and change it from a calcium sulfate type to calcium bicarbonate type or a mixed calcium bicarbonate sulfate type. (See fig. 3.) The large concentrations of sulfate at site 71 may be derived from sulfide ores and from shale in the Woodside Formation of Triassic age; the Woodside reportedly yields water to the mine tunnels in the Park City area (Baker, 1970, p. 19). Dissolved-solids concentrations at site 57, which is near the mouth of East Canyon Creek, ranged from 206 to 334 milligrams per liter, 34 to 48 percent less than at site 71.

One small tributary to East Canyon Creek originates in the Parleys Park area. This tributary had an unusual water type of calcium sodium magnesium chloride bicarbonate (table 1, site 68). Cause for the unusually large concentrations of sodium and chloride could not be determined. Water from two wells in the Parleys Park area were of calcium bicarbonate or calcium sulfate bicarbonate type (Baker, 1970, p. 45) which implies that ground water is not the source of the larger concentrations of sodium and chloride. A more intensive investigation would be necessary to determine the cause of the large sodium and chloride concentrations in this tributary.

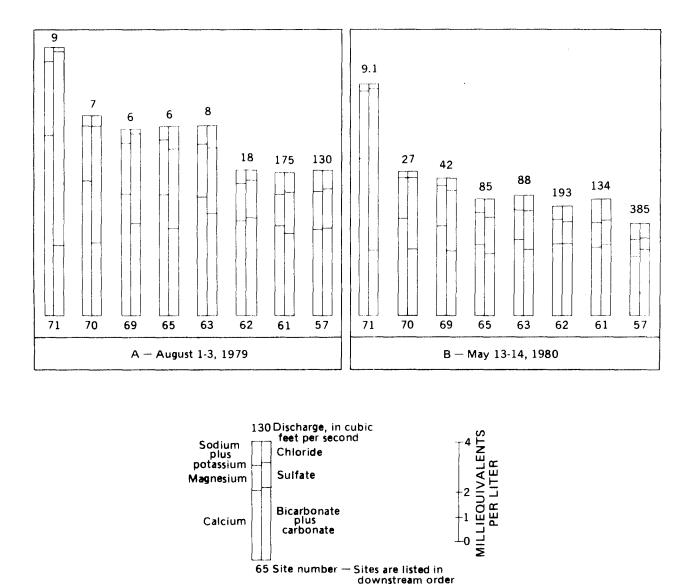


Figure 3.—Changes in the chemical characteristics of water in the McLeod-Kimball-East Canyon Creek drainage.

Echo Reservoir to Gateway

Elevations in this area range from 4,800 feet (1,460 m) at Gateway to 5,560 feet (1,695 m) at Echo Reservoir. Echo Creek enters the Weber River downstream from Echo Reservoir. Dissolved-solids concentrations in Echo Creek (site 77) are significantly larger than in the Weber River upstream from Echo Creek (site 76). In Echo Creek, the dissolved-solids concentrations ranged from 273 to 509 milligrams per liter, whereas in the Weber River at site 76 they ranged from 192 to 296 milligrams per liter. Water in Echo Creek was of a calcium magnesium bicarbonate type and had a medium salinity hazard and a low sodium hazard. (See pl. 3 and table 1.)

Lost Creek is a major tributary that enters the Weber River in the vicinity of the small town of Croydon. Lost Creek Reservoir [elevation 6,005 feet (1,830 m)] impounds the waters of Lost Creek primarily for irrigation purposes. Dissolved-solids concentrations in Lost Creek (site 60) ranged from 169 to 315 milligrams per liter and were, in general, slightly less than in the Weber River upstream from Lost Creek where they ranged from 203 to 396 milligrams per liter. An exception was noted during the irrigation season on August 1, 1979, and August 12, 1980, when dissolved-solids concentrations in Lost Creek (site 60) exceeded those in the Weber River upstream from Lost of the Solved the sease apparently is the result of irrigation-return flow. Water in Lost Creek was a calcium bicarbonate type and had a medium salinity hazard and a low sodium hazard.

Irrigation-return flow from the Henefer area (site 59.5) was sampled because water use there is typical of the agricultural water use in this part of the Weber River basin. The source of the water diverted for irrigation in the Henefer area is best represented by site 76, Weber River downstream from Echo Reservoir. Water samples were collected at site 76 and site 59.5 on May 13, 1980; a 31-percent increase in dissolved-solids concentration was determined in the irrigation-return flow from the Henefer area.

East Canyon Creek, also discussed in the section about the Park City area, originates near Park City and is impounded in East Canyon Reservoir primarily for irrigation. During August 1, 1979, to August 12, 1980, dissolved-solids concentrations in six samples collected from East Canyon Creek near its mouth ranged from 300 to 334 milligrams per liter, except during spring runoff, when dissolved-solids concentrations were decreased to 206 milligrams per liter. Water at this site was a calcium bicarbonate type. East Canyon Creek enters the Weber River downstream from Morgan and upstream from the Stoddard Diversion.

At times during the irrigation season, flow in the Weber River is greatly decreased downstream from the Stoddard Diversion, which diverts water from the river into Gateway Canal. On October 26, 1979, for example, the Weber River upstream from Stoddard Diversion (site 53) had a flow of 116 cubic feet per second $(3.3 \text{ m}^3/\text{s})$ of which 82 percent was diverted into the Gateway Canal, leaving about 21 cubic feet per second $(0.6 \text{ m}^3/\text{s})$ in the Weber River downstream from the diversion.

Seepage measurements were made during the October 1979 sampling period as part of another hydrologic study by the U.S. Geological Survey (J. S. Gates and J. I. Steiger, U.S. Geological Survey, written commun., 1981). The measurements indicated that the Weber River is a gaining stream from downstream of the Stoddard Diversion to Gateway. Between the Stoddard Diversion and Peterson, the river increased in flow by 90 percent from 21.4 to 40.6 cubic feet per second (0.6 to 1.1 m³/s). Between Peterson and Gateway, the flow increased 50 percent from 40.6 to 61.1 cubic feet per second (1.1 to 1.7 m^3/s). The total increase in flow from the Stoddard Diversion to Gateway was 186 percent. These increases are due principally to ground-water inflow (J. S. Gates, U.S. Geological Survey, oral commun., Sept. 1980). Water samples were collected during the seepage measurements to determine if any changes were occurring in the quality of streamflow as a result of the groundwater inflow in this stream reach. Dissolved-solids concentrations in the Weber River upstream from Stoddard Diversion (site 53) were 353 milligrams per liter. In the Weber River at Gateway upstream from the powerplant (site 37.5), dissolved-solids concentrations were 347 milligrams per liter, or 1.4 percent less. This small decrease indicates that no significant change in water quality occurred in the river as a result of the ground-water inflow.

At Gateway (downstream from site 37.5) water from the Gateway Canal can re-enter the Weber River after passing through a small hydroelectric generating plant or as overflow from the canal. Water quality in the concrete-lined Gateway Canal changes very little. During August 1-2, 1979, the dissolved-solids concentration in a sample from the canal at the Stoddard Diversion (site 54) was 284 milligrams per liter. The dissolved-solids concentration in a sample collected at the downstream end of the canal at Gateway (site 38) was 297 milligrams per liter. Although the flow of the Weber River between the Stoddard Diversion and Gateway increased substantially during the irrigation season, the change in water quality was insignificant.

Gateway to the Mouth of the Weber River

(Wasatch Front Area)

This is the most populated and intensely irrigated part of the basin. Elevations in the area range from about 4,210 feet (1,280 m) at the mouth of the Weber River to 4,800 feet (1,460 m) at Gateway. The Weber River flows through Ogden, which is the fourth largest city in Utah. The confluence of the Weber River and the Ogden River, the largest tributary of the Weber River, occurs downstream from Ogden. The Ogden River is impounded at Pineview Reservoir, which is the second largest reservoir in the Weber River basin.

The Wasatch Front area, because of its dense population, industrial growth, and diversified agriculture, is where the greatest change in surfacewater quality was expected to occur. Therefore, it was the focus of more detailed study. Several large irrigation diversions are located in the Wasatch Front area. Many times, during the irrigation season, the flow of the Weber River is decreased greatly in the vicinity of Plain City (site 8) principally because of the irrigation diversions. During August 11-12, 1980, for example, only 12 percent of the total flow of the river at site 37 (including the inflow of the Ogden River) reached site 8.

Changes in the dissolved-solids concentration of the Weber River between the mouth of Weber Canyon (site 33) and the Ogden River (site 23) were small. This stream reach had a medium salinity hazard and a low sodium hazard. Water type changed from calcium bicarbonate to calcium magnesium bicarbonate between these two sites.

The greatest change in dissolved-solids concentrations in the Weber River occurred during the irrigation season between site 23, upstream from the confluence of the Weber and Ogden Rivers, and the mouth of the river. In this reach, the Ogden River decreases the dissolved-solids concentrations in the Weber River by dilution. Data collected during the irrigation seasons of 1979 and 1980 at site 20 downstream from the confluence of the two rivers indicated about a 30-percent decrease in dissolved-solids concentration (pls. 3A and 3F). It is in the area downstream from site 20 that dissolved-solids concentrations begin to rapidly increase, principally because of irrigationreturn flow. Without the inflow of the Ogden River, the increase of dissolved solids in the Weber River would undoubtedly be much greater.

Irrigation-return flow was sampled at two sites--Hooper Slough (site 5) and Howard Slough (site 6). Dissolved-solids concentrations in Hooper Slough, which enters the Weber River upstream from site 4 (pl. 1), ranged from 444 to 937 milligrams per liter; the range is much greater than that upstream in the Weber River. Dissolved-solids concentrations in the Weber River near Plain City (site 8) ranged from 181 to 470 milligrams per liter. The effect of irrigation-return flow from Hooper Slough on the dissolved-solids concentrations in the Weber River at site 4 is shown on plates 3A and 3F. Howard Slough is representative of numerous sources of return water from irrigation systems that empty directly into Great Salt Lake and, therefore, have no return effect on the Weber River. Howard Slough probably also receives water other than just return water from irrigation systems. The slough was the only water source sampled during this reconnaissance that contained boron in concentrations that might be toxic to at least some of the most boron-sensitive plants (table 1).

Downstream from the confluence of the Weber and Ogden Rivers, water types during low-flow periods changed from calcium magnesium bicarbonate at site 20 to calcium sodium magnesium bicarbonate at site 8. Usually mixed water types varying from a calcium sodium magnesium bicarbonate type to a sodium calcium magnesium bicarbonate chloride type occurred at sites 1-4 (pl. 4). Sodium hazard was low and salinity hazard ranged from medium to high. The major cause for the poorer quality water downstream from site 20 is the numerous irrigation-return flows to the Weber River, which itself has been greatly decreased in flow because of irrigation diversions. Soils in this area become more saline and poorly drained westward toward Great Salt Lake. The U.S. Soil Conservation Service (1968) has compiled a detailed soil map of this area.

As noted earlier, Willard Bay, the largest reservoir in the Weber River basin, is used for redistribution of water for irrigation in the most downstream part of the basin. There was no such redistribution, and therefore, no sampling of outflow from the reservoir during this reconnaissance.

OTHER CHARACTERISTICS OF THE WATER

Fluvial Sediment

The accurate determination of the sediment characteristics of a river basin requires numerous measurements during a wide range of streamflow conditions. It was not within the scope of this reconnaissance to determine the sediment characteristics of the Weber River basin. The few measurements made were intended to provide only very general information at selected sites. Suspended sediment was sampled during spring runoff, summer low flow, and storm-runoff conditions. These three conditions are intended to represent the extremes that might occur in the Weber River basin.

Suspended-sediment concentrations in general increase with increasing discharge of a stream. Dissolved solids, however, generally decrease with increasing stream discharge. Thus, the quality of water due to sediment loads usually is best when discharge is small and the quality of water due to dissolved-chemical consituents usually is best when discharge is large.

Suspended-sediment concentrations during low-flow conditions were typically very small, ranging from 4 to 43 milligrams per liter at the sampled sites (table 2). Most of the suspended-sediment transport in the basin occurs during spring-runoff and storm-runoff conditions when discharges are large. Samples taken during spring runoff had sediment concentrations ranging from 6 to 174 milligrams per liter. The largest suspended-sediment load of 1,130 tons per day (1,025 Mg/d) was measured at the Weber River near Plain City (site 8). At site 8, suspended-sediment loads calculated from 51 samples that generally were collected on a monthly basis from October 1976 to August 1980 ranged from a minimum of 0.84 ton per day (0.76 Mg/d) to a maximum of 2,900 tons per day (2,630 Mg/d) with a mean value of 167 tons per day (152 Mg/d) (table 3).

Because rainstorms are of limited extent, they generally affect only parts of the Weber River basin. One storm having intense rainfall occurred on June 2, 1980, in that part of the basin between Morgan and the mouth of the river. Runoff from that storm was sampled at selected sites and analyzed for suspended sediment. The largest suspended-sediment concentration occurred in samples from the Weber River at Gateway (site 37). The concentration was 998 milligrams per liter, which equates to 6,470 tons per day (5,870 Mg/d). The complexities of this largely regulated river become apparent when suspended sediment sampled at site 37 during this storm are compared to suspended sediment at site 8, which is located downstream. Although discharges differed by only 9 percent, suspended sediment expressed in tons per day was 350 percent greater at site 37 than at site 8. This apparent anomaly is largely the result of the numerous diversions between the two sites, the inflow of the Ogden River, and a collapsible dam located upstream from site 8.

Echo Creek, a small tributary that enters the Weber River downstream from Echo Reservoir, may be a large contributor of suspended sediment to the Weber River during storms. Echo Creek drains an area that is underlain by the Echo Canyon Conglomerate of Cretaceous age, which is red in color (pl. 2). Local residents have observed Echo Creek during storms and noted its distinct red color as it enters the Weber River. The Weber River itself is then observed to have a red color from the confluence to Plain City. One sample was obtained from Echo Creek during a storm on July 1, 1980. A suspended-sediment concentration of 1,080 milligrams per liter was determined from this sample and was the largest concentration measured during the reconnaissance.

Most of the suspended sediment transported by the river apparently occurs primarily during storm-runoff periods and secondarily during spring runoff. Reservoirs located on three of the five major tributaries, and on the Weber River itself, undoubtedly are a major control of sediment transport in the Weber River. For example, during spring runoff on May 13, 1980, suspended-sediment concentrations upstream from East Canyon Reservoir were 29 times greater than the concentrations downstream from the reservoir.

Sanitary Quality of the Water

The sanitary quality of the water in the Weber River basin was considered using three indicator bacteria: total coliform, fecal coliform, and fecal streptococcus. Total bacteria have been used as indicators of sanitary quality of water since 1880. Fecal coliform and fecal streptococcus bacteria are more specific indicators of warmblooded animal contamination.

Bacteria were sampled at nine sites in the basin during July 31 through August 2, 1979. Data obtained during this period are not adequate to assess, accurately, the sanitary quality of the water in the basin, but can be used as an indicator of sanitary quality. Site 8 is part of the National Stream Quality Accounting Network. Fecal coliform and fecal streptococci bacteria are sampled on a monthly basis at this site (table 3). Results of the bacteriological analyses are reported in number of colonies per 100 milliliters of water sampled (table 4). A useful ratio has been developed to help clarify results of this type of bacteriologic analysis (American Public Health Association, 1981, p. 819). The ratio is derived by dividing the fecal coliform count (expressed as colonies per 100 milliliters of sample) by the fecal streptococcus count (expressed as colonies per 100 milliliters of sample).

Fecal coliform count (colonies per 100 milliliters) Fecal streptococcus count (colonies per 100 milliliters) = Ratio

The ratio can be interpreted as follows:

- If the ratio is greater than 4.1, it indicates that pollution derives from human waste.
- If the ratio is less than 0.7, it indicates that pollution derives from livestock or poultry.
- If the ratio is between 0.7 and 4.1, it indicates mixed pollution sources.

Total coliform densities should not exceed 20,000 colonies per 100 milliliters, and fecal coliform densities should not exceed 2,000 colonies per 100 milliliters in raw surface water intended for public-water supplies (National Academy of Sciences and National Academy of Engineering, 1973, p. 58). The results of bacteriological analyses for this reconnaissance indicate an absence of serious sanitary problems in the Weber River.

Dissolved Oxygen

Dissolved oxygen was measured seasonally at selected sites in the Weber River basin. The dissolved-oxygen concentrations ranged from a minimum of 5.5 milligrams per liter (80 percent saturation) at site 1 to a maximum of 14.7 milligrams per liter (138 percent saturation) at site 59. The maximum value occurred during low-flow conditions with a large amount of bright green algae in the streambed. All these measurements were made during daylight hours.

To obtain an indication of the diel fluctuation of dissolved oxygen, a recorder was installed at site 8, Weber River near Plain City. Dissolved oxygen was monitored during low-flow conditions, August 5-6, 1980. During this period, discharge ranged from 57 to 58 cubic feet per second (1.61 to 1.64 m^3/s), and specific conductance ranged from 580 to 650 micromhos per centimeter at 25°C. A minimum concentration of 4.1 milligrams per liter was recorded during the early morning hours and the maximum concentration of 6.4 A rapid increase in milligrams per liter occurred during the afternoon. dissolved-oxygen concentrations occurred immediately after sunrise, showing the effect of photosynthesis on the dissolved-oxygen concentration of the The minimal concentrations that occurred during the early morning river. hours probably were due to respiration. The U.S. Environmental Protection Agency (1977, p. 123) recommends a minimum concentration of 5.0 milligrams per liter of dissolved oxygen to maintain good fish populations.

Trace Elements and Pesticides

Substances that typically occur in concentrations of less than 1.0 milligram per liter commonly are referred to as "minor" or "trace" elements or constituents (Hem, 1970, p. 188). Samples collected July 31-August 2, 1979 at 17 sites were analyzed semiquantitatively for 23 trace elements (table 5). In reporting semiquantitative analysis, results for each element are repeated The steps are incremented as follows: 1, 3, 5, 7, 10, 30, 50, 70 in steps. During the calculation of reported results, the intermediate and so forth. values are rounded to the nearest step. At the 68-percent confidence level (one standard deviation) the true value will occur within plus or minus one reporting level (step) of that which is stated. Similarly, at the 95-percent confidence level (two standard deviations), the true value will occur within plus or minus two reporting levels (steps) of that which is stated. Based on the results of the semiquantitative analysis, 14 sites were sampled for analysis of 10 trace elements using quantitative methods (table 5).

As indicated in table 1, the limits recommended by the U.S. Environmental Protection Agency (1977) for manganese and cadmium were exceeded at some sites. Some of the values, however, were analyzed using semiquantitative methods, and therefore may not accurately represent exceedance of recommended limits.

Pesticides in bottom materials were sampled at three sites downstream from the major irrigated areas. The results of these analyses are presented in table 6. Concentrations of pesticides in water, collected as part of the National Stream Accounting Network program at site 8 are summarized in table 3.

SUMMARY

Surface water in most of the Weber River basin is suitable for most common uses. The principal water type generally is either calcium bicarbonate or calcium magnesium bicarbonate. In the Park City area, principal water types are variable, varying from calcium sulfate to calcium bicarbonate sulfate.

In the area between the headwaters of the Weber River and the vicinity of Slaterville (which includes all the major irrigation diversions), water diverted for irrigation had no detectable sodium hazard and a low to medium salinity hazard with regard to solubility from irrigation.

Releases from both Rockport and Echo Reservoirs may increase or decrease the dissolved solids in the Weber River, depending on the time of the year. The greatest increase in dissolved solids occurs downstream from Slaterville. This increase is chiefly due to irrigation-return flows. Water types downstream from Slaterville are mixed, ranging from calcium magnesium bicarbonate to sodium calcium magnesium bicarbonate chloride. The following two factors decrease the potential impact of irrigation-return flow downstream from Slaterville:

- 1. Inflow of the good quality water from the Ogden River.
- 2. Only minor amounts of irrigation-return water flows to the river because most return water from irrigation systems flows directly into Great Salt Lake.

Most sediment in the basin is transported primarily during storm runoff and secondarily during spring runoff. Echo Creek may be a significant contributor of suspended sediment to the Weber River during storm runoff. No serious sanitary problems were found in the basin. Dissolved oxygen may periodically be a problem in the downstream reaches of the river. Pesticide and trace-metal concentrations were characteristically small. Manganese and cadmium concentrations did exceed limits recommended by the U.S. Environmental Protection Agency at some sites.

- American Public Health Association, 1981, Standard methods for the examination of water and waste water, 15th ed.: Washington, D.C., American Public Health Association.
- Baker, C. H., Jr., 1970, Water resources of the Heber-Kamas-Park City area north-central Utah: Utah Department of Natural Resources Technical Publication 27.
- Davis, S. N., and DeWiest, R. J. M., 1966, Hydrogeology: New York, John Wiley.
- Durfor, C. N., and Becker, Edith, 1964, Public water supplies of the 100 largest cities of the United States, 1962: U.S. Geological Survey Water-Supply Paper 1812.
- Haws, F. W., 1970, Water-related land use in the Weber River drainage area: Logan Utah Water Research Laboratory, Report PR-WG 40-4.
- Haws, F. W., Jeppson, R. W., and Huber, A. L., 1970, Hydrologic inventory of the Weber River study unit: Logan Utah Water Research Laboratory, Report PR-WB 40-6.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water, 2d ed.: U.S. Geological Survey Water-Supply Paper 1473.
- Lee, W. G., 1979, Land inventory, *in* Utah agricultural statistics 1979: Utah Department of Agriculture Report.
- Mountainland Association of Governments, 1977, Areawide water quality management plan for Summit, Utah and Wasatch Counties: Technical Report 16.
- National Academy of Sciences and National Academy of Engineering, 1973 [1974], Water quality criteria, 1972: Washington, D.C., U.S. Government Printing Office.
- Smith, G. R., 1959, Effects of pollution on the Weber River, Utah: unpublished Master of Science thesis, University of Utah.

Stokes, W. L., ed., [1964], Geologic map of Utah: University of Utah.

U.S. Environmental Protection Agency, 1976a, National interim primary drinking water regulations: Office of Water Supply, EPA-570/9-76-003: U.S. Government Printing Office.

1977, Quality criteria for water: 258-389/6057.

U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Department of Agriculture Handbook 60.

- U.S. Soil Conservation Service, 1968, Soil survey of Davis-Weber area, Utah: U.S. Soil Conservation Service Report.
- U.S. Weather Bureau, 1963, Normal annual and May-September precipitation (1931-60) for the State of Utah: Map of Utah, scale 1:500,000.
- Utah State Division of Health, 1975, Weber basin water quality study: Salt Lake City, Utah, Technical report prepared by Steven, Thompson, and Runyan, Inc., and Nielsen, Maxwell, and Wansgard, Inc., Salt Lake City, Utah.

· · · ·

[Abbreviations: ft³/s, cubic feet per second; mg/h, willigrams

Boron hazard: If the concentration of boron is less than 750 mg/L, the hazard is listed as none. This applies to average conditions only. Dissolved-solids hazard: If the concentration of dissolved solids is less than 500 mg/L, the hazard is listed as none. This applies to average conditions only.

Site No.	Site name	Number of chemical analyses	Discharge range (ft ³ /s)	Dissolved- solids range (mg/L)	Specific- conductance range (µmhos)	Hardness range
١	Weber River North Fork at Ogden Bay dike at (B-6-3)35bcb	6	5-1,250	180-483	320-820	Hard-very hard
2	Weber River Middle Fork at Ogden Bay dike at (B-6-3)35cbb	6	85-200	179-456	330-785	Hard-very hard
3	Weber River South Fork at Ogden Bay dike at (B-5-3)11bcb	3	245-1,480	207-450	385-730	Hard-very hard
4	South Run Canal at Ogden Bay dike at (B-5-3)11bcb	6	24-98	318-674	520-1,155	Hard-very hard
5	Hooper Slough at U.S.G.S. gage at (B-5-3)11baa	7	7.2-29.7	444-937	740-1,470	Very hard
6	Howard Slough at U.S.G.S. gage at (B-5-3)25add	11	8.6-27	446-907	795-1,360	Very hard
7	Weber River at bridge at 1150 South Street at (B-6-2)19bac	2	85-2,960	182-401	320-670	Hard-very hard
8	Weber River near Plain City at U.S.G.S. gage at (B-6-2)5dcc	18	54-2,960	181-470	320-770	Hard-very hard
9	Warren Canal above Fourmile Creek at (B-6-2)4bdc	2	43-65	226-433	400-740	Hard-very hard
10	Fourmile Creek at mouth at (B-6-2)4bdc	2	10-15	358-425	620-750	Very hard
11	Warren Canal above Mill Creek at (B-6-2)10dab	2	25-40	190-285	350-500	Hard-very hard
12	Slaterville sewer plant effluent at (B-6-2)10dab	2	84-93	467-523	790-915	Very hard
13	Mill Creek near mouth at (B-6-2)10daa	2	.57	175-226	315-415	Hard
14	Weber River near Slaterville at (B-6-2)15daa	2	35-2,870	177-247	305-410	Hard-very hard
15	Warren Canal at diversion at (B-6-2)23add	1	25	236	400	Hard
16	Weber River above Warren Canal diversion at (B-6-2)24bcc	2	60-2,910	174-229	300-405	Hard
17	Willard Canal at Slaterville diversion at (B-6-2)24dac	1	63	221	380	Hard
18	Weber River below Slaterville diversion at (B-6-2)24dca	1	55	214	380	Hard
19	Layton Intake canal above Hooper Canal diversion at (B-6-2)24ddb	1	150	220	380	Hard
20	Weber River above Slaterville diversion at (B-6-2)24dda	6	170-3,800	178-360	320-630	Hard-very hard
21	Neilson drain near Hooper Canal diversion at (B-6-2)25bac	2	2-4	562-711	870-1,170	Very hard
22	Hooper Canal at diversion with Layton Intake Canal at (B-6-2)25bda	· 1	150	224	385	Hard
23	Weber River below Union Stockyards at (B-6-1)30bdd	6	78-2,600	194-361	335-620	Hard-very hard
25	Ogden River near mouth at (B-6-1)29hbb	6	29-1,200	116-376	210-680	Moderately hard- hard
26	Wilson Canal at diversion at (B-6-1)30dad	1	70	308	490	Very hard
27	Weber River above Wilson Canal and Union Stockyards at (B-6-1)30dda	6	148-2,600	198-352	340-575	Hard-very hard
28	Weber River near I-15, 31st Street interchange at (B-5-1)6adb	6	140-2,600	195-346	310-595	Hard-very hard

data collected in the Weber River basin

per liter; µmhos, micromhos per centimeter at 25° Celsius.]

Dominant	cation(s)	Dominant	anion(s)		Water-us	e problems	3		Signifi-	Signifi-
						Irrigation	supply	Dissolved-	cant up- stream	cant up- stream
High flow	Low flow	High flow	Low flow	Public supply	Salinity hazard	Sodium hazard	Boron hazard	solids hazard	diver- sions	irriga- tion
Ca,Mg	Ca,Na,Mg	нсоз	нсоз	-	Medium-high	Low	None	None	Yes	Yes
Ca,Mg	Ca,Na,Mg Na,Ca,Mg	нсоз	нсо ₃ ,С1 нсо ₃ ,С1	-	Medium-high	Low	None	None	Yes	Yes
Ca,Mg,Na	-	нсоз	-	-	Medium-high	Low	None	None	Yes	Yes
Na,Ca,Mg	Ca,Na,Mg	нсоз,С1	нсоз	-	Medium-high	Low	None	Sensitive crops	Yes	Yes
Na,Mg	Ca,Mg,Na Ca,Na,Mg	нсо ₃ ,С1	HCO3	-	Medium-high	Low	None	Sensitive crops	No	Yes
Na,Mg	Ca,Na,Mg Na,Mg,Ca	нсоз	нсоз	-	Medium	Low	Sensitive crops	Sensitive crops	No	Yes
Ca,Mg	Ca,Na,Mg	нсо ₃	HCO3	-	Medium	Low	None	None	Yes	Yes
Ca,Mg	Ca,Na,Mg	нсоз	нсоз	Manganese	Medium-high	Low	None	Non <i>e</i>	Yes	Yes
Ca,Mg,Na	Ca,Na,Mg	нсоз	нсо ₃ ,с1	-	Medium	Low	None	None	-	-
Na,Ca,Mg	Ca,Mg,Na	нсоз	нсоз	-	Medium	Low	None	None	No	Yes
Ca,Mg	Ca,Mg,Na	нсоз	нсоз	-	Medium	Low	None	None	-	-
Ca,Na,Mg	Ca,Na,Mg	нсо ₃ ,с1	нсоз	-	High	Low	None	None	No	No
Ca,Na,Mg	Ca,Mg	нсоз	нсоз	-	Medium	Low	None	None	Yes	Yes
Ca,Mg	Ca,Mg	нсоз	нсоз	-	Medium	Low	None	None	Yes	Yes
-	Ca,Mg	-	нсоз	-	Medium	Low	None	None	-	-
Ca,Mg	Ca,Mg	нсоз	HCO3	-	Medium	Low	None	None	Yes	Yes
-	Ca,Mg	-	нсоз	-	Medium	Low	None	None	-	-
-	Ca,Mg Ca,Mg	-	нсо _з нсо _з	-	Medium Medium	Low	None	None None	Yes	Yes -
Ca,Mg	Ca,Mg	нсоз	нсоз	-	Medium	Low	None	None	Yes	Yes
Mg,Ca,Na	Ca,Na,Mg	-	HCO3,C1	-	Medium	Low	None	Sensitive	No	Yes
-	Ca,Mg	-	нсоз	-	Medium	Low	None	crops	-	-
Ca,Mg	Ca,Mg	нсоз	нсоз	-	Medium	Low	None	None	Yes	Yes
Ca	Ca,Mg	нсоз	нсоз	-	Low-medium	Low	None	None	Yes	Yes
-	Ca,Mg	-	нсоз	-	Medium	Low	None	None	-	-
Ca,Mg	Ca,Mg	нсоз	нсоз	-,	Medium	Low	None	None	Yes	Yes
Ca,Mg	Ca,Mg	нсоз	нсоз	-	Medium	Low	None	None	Yes	Yes

Site No.	Site name	Number of chemícal analyses	Discharge range (ft3/s)	Dissolved- solids range (mg/L)	Specific- conductance range (µmhos)	Hardness range
29	Weber River at Riverdale Road at (B-5-1)7dbd	6	135-2,550	205-337	345-580	Hard-very hard
30	Mill Creek near Pioneer Power Plant at (B-6-1)22bbc	2	16-21	108-138	185-245	Moderately hard
31	Pioneer Power Plant tailrace at (b-6-1)22bcb	2	96-241	106-129	185-235	Moderately hard
32	Ogden River at Rainbow Gardens at canyon mouth at (B-6-1)23ccb	2	190-1,000	116-158	205-305	Moderately hard
32.5	Burch Creek near Harrison Blvd. at (B-5-1)15dbb	1	12	54	97	Soft
33	Weber River at canyon mouth below Weber-Davis Canal diversion at (B-5-1)25dad	6	127-2,500	196-349	315-570	Hard-very hard
34	South Weber Canal below diversion at (B-5-1)25dcb	1	45	288	510	Very hard
35	Weber-Davis Canal at Job Corps Center at (B-5-1)36baa	1	284	305	505	Very hard
37	Weber River at Gateway at U.S.G.S. gage at (A-5-1)27cbd	16	80-2,570	173-367	320-650	Hard-very hard
37.5	Weber River at Gateway above power plant at bridge at (A-5-1)27cda	5	61-2,000	196-347	335-580	Hard-very hard
38	Gateway Canal at diversion to Gateway tunnel at (A-5-1)27cdc	1	560	297	500	Very hard
38.5	Unnamed creek at Gateway bridge at (A-5-1)27cda-2	1	6	54	86	Soft
39	Strawberry Creek at mouth at (A-5-1)27caa	2	0.1-15	39-74	63-125	Soft
40	Jacob's Creek at mouth at (A-5-1)27ddd	1	2	62	105	Soft
41	Gordon Creek near mouth at (A-5-1)26bdc	2	2-26	48-55	87-90	Soft
42	Dry Creek near mouth at (A-5-1)26acb	1	23	150	235	Moderately hard
43	Cottonwood Creek near mouth at (A-5-1)25dbb	1	152	65	115	Soft
44	Peterson Creek at mouth at (A-4-2)6bdd	2	0.1-23	84-276	150-460	Moderately hard- very hard
45	Ogden River below Pineview Reservoir at (A-6-1)16cad	3	7-900	107-173	185-325	Moderately hard- hard
46	Wheeler Creek at mouth at U.S.G.S. gage at (A-6-1)16dbc	2	3.6-82	144-196	245-375	Hard-very hard
47	South Fork of South Fork Ogden River near mouth at (A-6-2)19aab	2	3-350	119-226	205-430	Moderately hard- very hard
48	South Fork Ogden River near mouth at (A-6-2)19aab	2	5-275	116-223	200-405	Moderately hard- very hard
49	Spring Creek at mouth at (A-6-2)7dcc	2	5-13	235-271	405-455	Very hard
50	Middle Fork Ogden River near mouth at (A-6-2)6bcc	2	0.3-90	61-114	105-225	Soft-moderately hard
51	North Fork Ogden River near mouth at (A-7-1)34cdb	2	1-388	78-159	140-320	Soft-moderately hard
52	South Fork Ogden River at U.S.G.S. gage at (A-6-2)12cad	2	86-620	109-172	190-325	Moderately hard+ hard
52.3	Beaver Creek (Trib. to South Fork Ogden River) at mouth at (A-7-3)33cbd	2	3-110	101-179	170-350	Moderately hard- hard
52.6	South Fork Ogden River below Causey Reservoir at (A-7-3)34dcb	2	89-390	116-182	200-340	Moderately hard- hard

Dominant	cation(s)	Dominant	anion(s)		Water-us	e problems			Signifi- cant up-	Signifi- cant up-
High flow	Low flow	High flow	Low flow	Public supply	Salinity hazard	Irrigation Sodium hazard	Boron hazard	Dissolved- solids hazard	stream diver- sions	stream irriga- tion
Ca,Mg	Ca,Mg	нсоз	HCO3	-	Medium	Low	None	None	Yes	Yes
Са	Са	нсоз	нсоз	-	Low	Low	None	None	No	No
Са	Ca	нсо _з	нсоз	-	Low	Low	None	None	No	No
Ca	Ca,Mg	нсоз	HCO3	-	Low-medium	Low	None	None	Yes	Yes
Ca,Mg	-	нсо3		-	Low	Low	None	None	No	No
Ca	Са	нсоз	нсоз	Cadmium ² , ³	Medium	Low	None	None	Yes	Yes
-	Са	-	нсоз	-	Medium	Low	None	None	-	-
-	Ca	-	нсоз	-	Medium	Low	None	None	-	-
Ca	Ca	hco3	нсоз	-	Medium	Low	None	None	Yes	Yes
Ca	Са	hco3	нсоз	-	Medium	Low	None	None	Yes	Yes
-	Ca	-	нсоз	-	Medium	Low	None	None	-	-
Ca,Mg,Na	-	нсоз	-	-	Low	Low	None	None	No	No
Ca,Mg,Na	Ca,Mg,Na	нсоз	нсоз	-	Low	Low	None	None	No	No
Ca,Mg	-	нсоз	-	-	Low	Low	None	None	No	No
Ca	Ca,Mg	нсоз	нсоз	-	Low	Low	None	None	Yes	No
Ca	-	нсоз	-	-	Low	Low	None	None	No	No
Ca	-	HCO3	-	-	Low	Low	None	None	Yes	Yes
Са	Са	нсоз	нсоз	-	Low-medium	Low	None	None	Yes	Yes
Ca	Ca	нсоз	нсоз	-	Low-medium	Low	None	None	Yes	Yes
Ca	Са	HCO3	нсоз	-	Low-medium	Low	None	None	No	No
Ca	Ca	нсоз	нсоз	-	Low-medium	Low	None	None	Yes	Yes
Ca	Са	нсоз	нсоз	-	Low-medium	Low	None	None	Yes	Yes
Ca	Ca	HCO3	нсоз	-	Low-medium	Low	None	None	No	Yes
Ca	Са	нсоз	нсоз	-	Low	Low	None	None	Yes	Yes
Ca	Са	нсо _з	нсоз	-	Low-medium	Low	None	None	Yes	Yes
Са	Ca	нсоз	нсоз	-	Low-medium	Low	None	None	No	No
Ca	Ca	нсоз	нсоз		Low-medium	Low	None	None	No	No
Ся	Ca	нсоз	нсоз	-	Low-medium	Low	None	None	No	No

Site No.	Site name	Number of chemical analyses	Discharge range (ft ³ /s)	Dissolved- solids range (mg/L)	Specific- conductance range (µmhos)	Hardness range
53	Weber River above Stoddard diversion at (A-4-2)21acb	6	116-1,755	116-352	200-610	Moderately hard- very hard
54	Gateway Canal at Stoddard diversion at (A-4-2)21bda	1	610	284	495	Very hard
55	Line Creek at mouth at (A-4-2)21cdd	2	0.25-38	73-217	130-390	Soft-hard
56	Deep Creek at mouth at (A-4-2)34bcc	2	0.75-68	94-225	160-370	Moderately hard- hard
57	East Canyon Creek near mouth at Morgan at (A-4-2)35dcc	6	17-385	206-334	360-540	Hard-very hard
58	Weber River at Morgan at (A-4-2)36bbc	3	99-1,370	222 - 367	385-640	Hard-very hard
58.2	Como Springs at (A-4-3)31cab	1	-	553	880	Very hard
58.5	Hardscrabble Creek at mouth at (A-3-2)24cdb	2	2-225	146-222	260-400	Hard-very hard
59	Weber River above Lost Creek at (A-4-4)19cdd	6	74-800	203-396	370-720	Hard-very hard
59.5	Irrigation return flow from Henefer Valley at (A-4-4)32bad	1	5	318	560	Very hard
60	Lost Creek at mouth at (A-4-4)19dcc	6	25-400	169-315	280-545	Hard-very hard
60.5	Lost Creek below Lost Creek Reservoir at (A-5-5)8dba	2	55-190	224-239	355-380	Hard-very hard
61	East Canyon Creek below East Canyon Reservoir at U.S.G.S. Gage at (A-2-3)10bbc	3	16-175	279-352	470-585	Very hard
62	East Canyon Creek above East Canyon Reservoir at (A-2-3)26bda	2	18-193	258-342	430-540	Very hard
63	East Canyon Creek above Toll Creek near Gorgoza at (D-1-3)12bab	6	8-88	285-513	475-750	Very hard
64	Toll Creek near mouth at (D-1-3)liaad	2	1 - 1 4	328-475	575-850	Very hard
65	East Canyon Creek at Kimball Junction at (A+1-4)18cbc	2	6-85	282-457	470-680	Very hard
66	Unnamed creek at Kimball Junction at mouth at (D-1-4)19aba	2	2-26	197-395	350-590	Hard-very hard
67	Willow Draw Creek at mouth at (D-1-4)20bca	2	1-1.5	419-465	660-680	Very hard
68	Unnamed creek from Parley's Park at mouth at (D-1-4)20abd	3 ·	0.1-9.8	207-674	360-1,130	Hard-very hard
69	Kimball Creek above unnamed creek from Parley's Park at (D-1-4)20acb	5	6-42	338-531	530-750	Very hard
70	McLeod Creek below Park City at (D-2-4)6aab	5	7-25	363-604	560-815	Very hard
71	Spiro Tunnel outflow at Park City at (D-2-4)8dba	2	9-9.1	607-691	830-870	Very hard
72	Silver Creek below Park City at (D-2-4)10bbd	1	3	331	495	Very hard
73	Dority Spring Creek above Silver Creek at (D-2-4)3cdc	2	3-5.5	446-519	720-740	Very hard
74	Silver Creek at Keetley Junction at (D-2-4)2aab	5	0.5-10	513-575	805-875	Very hard
75	Silver Creek at Wanship at (A-1-5)20bad	5	1-67	273-568	425-875	Very hard
76	Weber River below Echo Reservoir at (A-3-4)25add	6	6-700	192-296	380-520	Very hard

•

Dominant		anion(s)			e problems			Signifi- cant up-	Signifi- cant up-	
High flow				Public supply	Salinity hazard	Irrigation Sodium hazard	Boron hazard	Dissolved- solids hazard	stream diver- sions	stream irriga- tion
Ca	Са	HCO3	нсоз	-	Low-medium	Low	None	None	Yes	Yes
-	Са	-	нсоз	-	Medium	Low	None	None	-	-
Ca	Ca	нсоз	нсоз	-	Low-medium	Low	None	None	Yes	No
Ca	Ca	HCO3	нсоз	-	Low-medium	Low	None	None	Yes	Yes
Са	Са	нсоз	нсо3	-	Medium	Low	None	None	Yes	Yes
Ca,Mg	Са	нсо3	нсоз	-	Medium	Low	None	None	Yes	Yes
Ca,Mg	-	SO4, НСО ₃	-	-	High	Low	None	Sensitive crops	No	No
Ca	Ca	нсо3	нсоз	-	Medium	Low	None	None	Yes	Yes
Ca,Mg	Ca,Mg	нсоз	нсоз	-	Medium	Low	None	None	Yes	Yes
Ca,Na,Mg	-	нсоз	-	-	Medium	Low	None	None	No	Yes
Ca	Са	нсо3	нсоз	-	Medium	Low	None	None	Yes	Yes
Са	Са	нсоз	нсоз	-	Medium	Low	None	None	No	No
Ca,Mg	Са	HCO3, SO4	HCO3, SO4	-	Medium	Low	None	None	Yes	Yes
Са	Са	нсоз	нсоз	-	Medium	Low	None	None	Yes	Yes
Ca	Ca	нсо ₃ , SO4	нсо ₃ , SO4	-	Medium	Low	None	Sensitive crops	Yes	Yes
Ca	Са	нсо ₃ ,с1	нсо ₃ ,с1	-	Medium-high	Low	None	None	No	No
Ca	Са	HCO3, SO4	нсо ₃ , So ₄	-	Medium	Low	None	None	Yes	Yes
Ca	Ca	HCO3	нсо ₃ , so ₄	-	Medium	Low	None	None	No	No
Ca	Са	SO4, НСОз	SO4, НСО́3	-	Medium	Low	None	None	No	No
Ca,Na,Mg	Ca,Na,Mg Ca,Mg,Na	нсоз	с1,нсо ₃	Manganese ¹	Medium-high	Low	None	Sensitive crops	No	No
Ca	Ca	HCO3, SO4	нсоз, so4 so4 , нсоз	-	Medium	Low	None	Sensitive crops	Yes	Yes
Ca	Са	so4, нсо3	so ₄ , hco ₃ so4	Sulfate ⁴	Medium-high	Low	None	Sensitive crops	Yes	Yes
Ca	Ca	so4	so ₄	Sulfate ⁴	High	Low	None	Sensitive crops	No	No
Ca,Na	-	SO4,Cl, НСО3	-	-	Medium	Low	None	None .	NO	No
Ca	Ca	SO4, нсО ₃	HCO3, SO4	-	Medium	Low	None	Sensitive crops	No	No
Са	Ca	SO4, НСО3	нсо _з , SO4	-	Medium	Low	None	Sensitive crops	Yes	No
Ca	Ca	нсо _з , SO4	нсо ₃ ,so ₄ нсо ₃ ,с1	Manganese ¹	Medium-high	Low	None	Sensitive crops	Yes	Yes
Сн	Са	нсоз	нсоз	Manganese 1,3	Medium	Low	None	None	Yes	Yes

Site No.	Site name	Number of chemical analyses	Discharge range (ft ³ /s)	Dissolved- solids range (mg/L)	Specific- conductance range (µmhos)	Hardness range
77	Echo Creek at mouth at (A-3-5)19ccc	5	3-109	273-509	480-960	Very hard
78	Chalk Creek at mouth at U.S.G.S. gage at (A-2-5)8dab	6	14.5-319	237-446	390-775	Very hard
78.5	Chalk Creek above Upton at (A-2-5)4adb	2	12-230	202-234	375-380	Very hard
79	Weber River near Coalville above Echo Reservoir at U.S.G.S. Gage at (A-2-5)20aca	5	134-790	163-256	290-435	Hard-very hard
80	Weber River below Rockport Reservoir at (A-1-5)29acb	6	20-800	133-234	225-395	Moderately hard- very hard
80.5	Crandall Creek at mouth at (D-1-5)4aac	2	0.3-21	197-541	320-850	Hard-very hard
81	Weber River above Rockport Reservoir at (D-1-5)10bdb	5	55-750	136-247	230-405	Hard-very hard
82	Fort Creek near mouth at (D-1-5)23aac	2	9	251-316	385-550	Very hard
83	Weber River above Weber-Provo diversion at (D-1-6)21cca	5	4-500	112-177	220-295	Moderately hard- hard
85	Whites Creek at mouth at (D-1-6)15cbc	1	13	227	355	Very hard
86	Crooked Creek at mouth at (D-1-6)31cab	2	10-13	187-194	330-340	Hard
87	Beaver Creek near mouth at (D-2-5)laad	6	26.4-133	81-280	155-430	Moderately hard- very hard
88	Beaver Creek above Weber-Provo canal at Kanas at (D-2-6)17dac	2	4-51	111-145	225-275	Moderately hard- hard
89	Weber-Provo Canal above Beaver Creek at (D-2-6)17dac	1	5	181	350	Kard
90	Unnamed canal from Provo River at Francis at (D-2-6)28ccb	2	10-12	66-81	110-160	Soft-moderately hard
90.5	Beaver Creek below Fish Hatchery at (D-2-6)26baa	2	9-91	57-133	90-250	Soft-hard
91	Beaver Creek above diversions near Samak at (D-2-6)25dbb	2	7-88	33-48	70-77	Soft
92	Weber River near Oakley at U.S.G.S. gage at (D-1-6)15aca	6	38.5-500	108-175	180-305	Moderately hard- hard
92.5	South Fork Weber River at mouth at (D-1-6)12dbb	2	10-44	146-168	250-310	Hard
93	Weber River above Smith and Morehouse Creek at (A-1-7)26daa	2	60-280	100-114	175-210	Moderately hard
94	Smith and Morehouse Creek at U.S.G.S. gage at (A-1-7)36bbb	2	20-153	52-97	90-190	Soft-moderately hard
95	Headwaters of Weber River below Reid's Meadow near Mirror Lake at (D-1-9)22dbc	1	0.15	14	24	Soft

¹ The U.S. Environmental Protection Agency (1977, p. 95) recommended limit for manganese in public-water supplies is 50 µg/L.
² The U.S. Environmental Protection Agency (1976, p. 5) maximum contaminant level for cadmium in public-water supplies is 10 µg/L.
³ Semiquantitative methods were used in the analysis.
⁴ The U.S. Environmental Protection Agency (1977, p. 205) recommended limit for sulfate in domestic water supplies is 250 mg/L.

Dominan	t cation(s)	Dominan	t anion(s)	· · · · · · · · · · · · · · · · · · ·	Water-us	<u>e problems</u> Irrigation	supply		Signifi- cant up-	Signifi- cant up-
High flow	Low flow	High flow	Low flow	Public supply	Salinity hazard	Sodium hazard	Boron hazard	Dissolved solids hazard	stream diver- sions	stream irriga- tion
Ca,Mg	Ca,Mg	нсоз	нсоз	-	Medium	Low	None	Sensitive crops	Yes	Үев
Ca	Ca,Mg	HCO3	нсоз	-	Medium-high	Low	None	None	Yes	Yes
Ca	Ca,Mg	нсоз	нсоз	-	Medium	Low	None	None	No	No
Са	Са	нсоз	нсоз	-	Medium	Low	None	None	Yes	Yes
Ca	Ca	нсоз	нсоз	-	Low-medium	Low	None	None	Yes	Yes
Ca	Ca,Mg,Na	нсоз	нсо ₃ ,504	-	Medium-high	Low	None	Sensitive crops	No	No
Ca	Са	HCO3	нсоз	-	Low-medium	Low	None	None	Yes	Yes
Ca	Са	нсоз	нсоз	-	Medium	Low	None	None	No	Yes
Ca	Ca	HCO3	нсоз	-	Low-medium	Low	None	None	Yes	No
Ca	-	нсоз	-	-	Medium	Low	None	None	No	No
Ca	Са	нсоз	нсоз	-	Medium	Low	None	None	No	Yes
Ca	Са	нсоз	нсоз	-	Low-medium	Low	None	None	Yes	Yes
Са	Са	нсоз	нсоз	-	Low-medium	Low	None	None	Yes	Yes
Са	-	нсоз	-	-	Medium	Low	None	None	-	-
Са	Ca	нсоз	нсоз	-	Low	Low	None	None	-	-
Ca,Mg	Ca,Mg	HCO3	нсоз	-	Low	Low	None	None	No	No
Ca,Mg	Ca,Mg	HCO3	нсоз	-	Low	Low	None	None	No	No
Ca	Са	нсоз	нсоз	-	Low-medium	Low	None	None	No	No
Ca	Са	нсоз	нсоз	-	Medium	Low	None	None	No	No
Ca	Са	нсоз	нсоз	-	Low	Low	None	None	No	No
Ca	Са	нсоз	нсоз	-	Low	Low	None	None	No	No
-	Ca,Mg	-	нсоз	-	Low	Low	None	None	No	No
		····-								

Site No.	Site name (abbreviated)	Water discharge (cubic feet per second)	Suspended- sediment concentration (milligrams per liter)	Suspended- sediment discharge (tons per day)
	Low flow: Augu	st 11-13, 198	30	
8	Weber River near Plain City	54	10	1.4
37	Weber River at Gateway	456	43	53
37.5	Weber River at Gateway above powerplant at bridge	115	13	4
61	East Canyon Creek below East Canyon Reservoir	175	4	1.9
62	East Canyon Creek above East Canyon Reservoir	236	3	•2
75	Silver Creek at Wanship	1	26	.07
76	Weber River below Echo Reservoir	470	25	32
77	Echo Creek at mouth	5.2	20	.3
79	Weber River near Coalville	134	9	3.2
81	Weber River above Rockport Reservoir	80	22	4.8
	Spring runoff:	May 12-13, 19	80	
8	Weber River near Plain City	2,960	1 41	1,130
37	Weber River at Gateway	2 ,4 50	119	7 90
61	East Canyon Creek below East Canyon Reservoir	134	6	2.2
62	East Canyon Creek above East Canyon Reservoir	193	174	91
75	Silver Creek at Wanship	67	51	9.2
76	Weber River below Echo Reservoir	700	14	26
79	Weber River near Coalville	7 90	77	160
81	Weber River above Rockport Reservoir	750	24	49

Site No.	Site name (abbreviated)	Water discharge (cubic feet per second)	Suspended- sediment concentration (milligrams per liter)	Suspended- sediment discharge (tons per day)
	Storm runoff:	June 2, 198	0	
8	Weber River near Plain City	2,180	244	1,440
32.5	Birch Creek near Harrison Boulevard	24	3 82	25
37	Weber River at Gateway	2,400	998	6,470
57	East Canyon Creek near mouth	308	188	160
61	East Canyon Creek below East Canyon Reservoir	112	5	1.5
62	East Canyon Creek above East Canyon Reservoir	170	50	23
75	Silver Creek at Wanship	10	7	.2
76	Weber River below Echo Reservoir	500	12	16
77	Echo Creek at mouth	33	397	35
79	Weber River near Coalville	425	16	18
81	Weber River above Rockport Reservoir	675	9	16
	Storm runoff:	July 1, 1980)	
77	Echo Creek at mouth	30	1,080	87

Table 2.--Suspended sediment at selected sites--Continued

Table 3.--Descriptive statistics of water-quality data collected at selected U.S. Geological Survey stream-gaging stations

[Constituent concentrations listed as .0 are concentrations below the analytical detection limit for that constituent.]

Parameter	Number of analyses	Mean	Standard deviation	Minimum value	Maximum value	Standard error of mean	Range
	Weber Riv	er at Gatewa	y (s[te 37)				
emperature, water (^o C)	140	8.6	5.3	0.0	20.0	0.4	20.0
emperature, air (^O C)	73	12.7	10.1	-9.5	34.0	1.2	43.5
itreamflow, instantaneous (ft ³ /s)	99	549	636	67	2,700	64	2,633
pecific conductance (umhos/cm at 25 ⁰ C)	275	466	83	259	650	5.0	391
)xygen, dissolved (mg/L)	72	10.5	1.6	6.2	14.9	.18	8.7
H (units)	264	7.9	.3	7.0	8.9	.02	1.9
arbon dioxide, dissolved (mg/L as CO ₂)	84	5.0	4.2	1.0	18.0	. 46	17.0
vikalinity (mg/L as CaCOz)	138	193	32	110	271	2.7	161
icarbonate (mg/L as HCOz)	254	233	43	114	330	2.7	216
arbonate (mg/L as CO3)	233	.96	3.29	.00	20.0	.22	20.0
itrogen, nitrate, dissolved (mg/L as N)	3	.32	.10	.2	.4	.061	.2
itrogen, NO ₂ + NO ₃ , dissolved (mg/L as N)	103	.42	.37	.0	3.3	.037	3.3
hosphorus, õrthophosphate, total (mg/L)	4	.01	.01	.0	.03	.006	.0
hosphorus, orthophosphate, dissolved (mg/L)	118	.06	.07	.0	.49	.007	.4
ardness (mg/L as CaCO ₃)	268	217	38	110	285	2.3	175
ardness, noncarbonate (mg/L as CaCO3)	267	25	11	.0	78	.66	78.0
alcium, dissolved (mg/L as Ca)	188	59.9	10.6	26	80	.77	54
agnesium, dissolved (mg/L as Mg)	188	15.9	3.3	7.1	22.0	.24	14.9
odlum, dissolved (mg/L as Na)	255	17.7	5.2	7.6	51.0	.33	43.4
odium-adsorption ratio	268	.52	.13	.2	1.5	.008	1.3
odium, percent	138	14.6	4.8	7	64	. 40	57
odium + potassium, dissolved (mg/L as Na)	25	19.9	6.5	7.2	31.0	1.30	23.8
otassium, dissolved (mg/L as K)	1 83	2.4	.6	1.2	7.7	.05	6.5
hioride, dissolved (mg/L as CI)	269	22.6	6.6	9.5	49.0	. 40	39.5
ulfate, dissolved (mg/L as SO ₄)	269	32.7	7.6	15	49	. 46	34
luoride, dissolved (mg/L as F)	132	.2	.1	.0	1.3	.01	1.3
liica, dissolved (mg/L as SiO ₂)	184	10.0	2.7	.3	31.0	.20	30.7
oron, dissolved (ug/L as B)	175	52.0	28.8	.03	200.0	2.18	200.9
opper, dissolved (ug/L as Cu)	2	.5	.7	.0	1.0	. 50	1.0
ron, total recoverable (ug/L as Fe)	11	17.3	26.1	.0	90.0	7.87	90.0
ron, dissolved (ug/L as Fe)	53	37.4	71.4	.0	430	9.8	430
anganese, dissolved (ug/L as Mn)	53	16.1	10.3	.0	50	1.4	50
inc, dissolved (ug/L as Zn)	3	6.0	1.7	4.0	7.0	1.0	3.0
bilds, dissolved, residue at 180°C	165	280.3	49.7	154	376	3.87	222
olids, dissolved, sum of constituents (mg/L)	123	276	47	165	367	4.2	202
olids, dissolved (tons per day)	268	334	281	46.2	1,484	17.1	1,438
olids, dissolved (tons per acre-feet)	267	.38	.07	.21	.51	.004	.30
ltrogen, nitrate total (mg/L as NO ₃)	44	1.92	.64	1.00	3.40	.097	2.40
itrogen, nitrate dissolved (mg/L as NOz)	61	1.66	.75	.10	3,80	- 096	3.70

Table	3Desc	riptive	sta [.]	tistics	of	water-q	ualit	ty data	a co	llected	at	selected	
	U.S.	Geologi	Cal	Survey	str	ream~gag	ing s	statio	nsi	Continue	эd		

Parameter	Number of analyses	Меал	Standard deviation	Minimum value	Maximum value	Standard error of mean	Range
	Howar	d Slough (sl	te 6)				
Temperature, water (^O C)	77	11.2	8.2	0.0	29.0	0 94	29.0
Temperature, air (^o C)	35	13.1	9.0	5	32.0	1.5	32.5
Streamflow, Instantaneous (ft ³ /s)	56	29.3	18.9	3.6	87.0	2.52	83.4
specific conductance (umhos/cm at 25°C)	77	897	244	590	1,780	27.9	1,190
xygen, dissoived (mg/L)	17	9.4	1.9	6.0	12.1	. 46	6.1
oH (units)	71	8.2	.3	7.5	9.0	.04	1.5
Carbon dioxide, dissolved (mg/L as CO ₂)	54	4.6	3.4	.5	16.0	- 47	15.5
Vikalinity (mg/L as CaCO ₃)	78	328	76	156	532	8.6	376
Icarbonate (mg/L as HCO ₂)	69	3 89	88	190	649	10.5	459
Carbonate (mg/L as CO3)	61	4.5	9.2	.0	43	1.18	43.0
litrogen, NO ₂ + NO ₃ , dissolved (mg/L as N)	72	2.88	4.30	.0	29.0	.51	29.0
hosphorus, orthophosphate, dissolved (mg/L)	74	.69	.75	.03	4.3	.087	4.2
yanide, total (mg/L as Cn)	7	.001	.004	.00	.01	.001	.0
lardness (mg/L as CaCO ₃)	75	301	55	200	460	6.4	260
ardness, noncarbonate (mg/L as CaCO ₃)	75	3.1	8.5	.0	54.0	. 99	54.0
alcium, dissolved (mg/L as Ca)	75	57.9	9.2	30	87	1.06	57
agnesium, dissolved (mg/L as Mg)	75	37.8	11.4	23	71	1.32	48
odium, dissoived (mg/L as Na)	77	83.0	36.8	41	190	4.20	149
odium-adsorption ratio	75	2.08	. 82	1.1	4.4	.094	3.3
odlum, percent	75	35.2	7.2	24	58	.83	34
odium + potassium, dissolved (mg/L as Na)	3	126.7	56.9	80	190	32.8	110
otassium, dissoived (mg/L as K)	75	15.2	7.3	6.8	49.0	. 85	42.2
hioride, dissolved (mg/L as Ci)	75	69.9	28.5	33	150	3.29	117
ulfate, dissolved (mg/L as SO ₄)	75	59.3	19.1	33	110	2.20	77
luoride, dissolved (mg/L as F)	74	. 43	.24	.1	2.1	.028	2.0
ilica, dissolved (mg/L as SiO ₂)	75	16.4	4.8	.3	26.0	.56	25.7
rsenic, dissolved (ug/L as As)	9	30.9	17.7	13	65	5.90	52
arium, dissolved (ug/L as Ba)	7	114	69	.0	200.0	26.1	200.0
oron, dissolved (ug/L as B)	74	252	119	90	820	13.9	730
admium, dissolved (ug/L as Cd)	8	.5	.5	.0	1.0	.19	1.0
hromium, dissolved (ug/L as Cr)	8	2.8	4.5	.0	10.0	1.60	10.0
opper, dissolved (ug/L as Cu)	10	3.2	2.0	1.0	7.0	.65	6.0
ron, dissolved (ug/L as Fe)	65	77.2	80.5	.0	430.0	9.98	430.0
ead, dissolved (ug/L as Pb)	9	3.2	2.9	.0	10.0	.98	10.0
anganese, dissolved (ug/L as Mn)	65	30.8	23.3	.0	120.0	2.88	120.0
liver, dissolved (ug/L as Ag)	7	.14	.38	.0	1.0	.143	1.0
inc, dissolved (ug/L as Zn)	9	15.6	8.5	4.0	30.0	2 82	26.0
ithium, dissolved (ug/L as Li)	8	78.8	22.9	50.0	110.0	8.12	60.0
elenium, dissolved (ug/L as Se)	9	.7	1.3	.0	4.0	.44	4.0
olids, dissolved, sum of constituents (mg/L)	75	551	143	359	972	16.5	613
ollds, dissolved (tons per day)	75	44.8	39.9	7.6	282.0	4.62	274.4
olids, dissolved (tons per acre-feet)	76	.75	.19	.49	1.32	.022	.8
ercury, dissolved (ug/L as Hg)	9	.08	. 20	.0	.6	.066	.6

•

Parameter	Number of analyses	Mean	Standard deviation	Minimum value	Maximum value	Standard error of mean	Range
	Weber Rive	er at Plain C	lty (site 8)				
Temperature, water (^O C)	116	10.6	6.6	0.0	24.0	0.61	24.0
Temperature, air (^o C)	83	11.7	9.4	-10.0	34.0	1.04	44.0
itreamflow, instantaneous (ft ³ /s) Turbidity (JTU)	96 43	543 15.3	740 16.5	37 3	3,060 92	75.6 2.5	3.023 89
urbidity (NTU)	25	13.6	15.4	ĩ	65	3.1	64
pecific conductance (umhos/cm at 25 ⁰ C)	181	659	209	280	1,390	15.6	1,110
xygen, dissolved (mg/L)	66	8.7	2.0	5.4	13.4	.25	8.0
H (units)	139	7.9	.326	7.300	8.7	.028	1.4
arbon dioxide, dissolved (mg/L as CO ₂)	70	5.2	3.0	.7	16.0	.36	15.3
ikalinity (mg/L as CaCO ₃)	82	206.9	42.6	23	300	4.7	277
licarbonate (mg/L as HCO ₃)	125	262.2	54.7	28.4	360.0	4.89	331.6
arbonate (mg/L as CO3)	107	1.1	3.7	.0	21.0	.36	21.0
eriphyton, biomass, ash weight (g/mi ²)	15	27.1	30.3	- 4	104.0	7.8	103.6
eriphyton, blomass, total dry weight (g/m1 ²) litrogen, total (mg/L as N)	15 66	181.8	568.1 1.2	.5 1.00	2,231 7.1	146.7 .15	2,230.5 6.1
	12						
itrogen, dissolved (mg/L as N) litrogen, organic, total (mg/L as N)	12 30	1.94 .96	.94 .49	.76 .39	4.1 3.0	.27 .090	3.3 2.6
itrogen, organic, dissolved (mg/L as N)	11	.72	.43	.16	1.80	.129	1.6
itrogen, ammonia, dissolved (mg/L as N)	11	. 23	.17	.06	.63	.051	.5
itrogen, ammonia, total (mg/L as N)	35	.2	.2	.00	1.10	.03	1.1
ltrogen, ammonia + organic, dissolved (mg/L as N)	34	. 89	.46	• 29	2.20	- 079	1.9
(mg/L as N)	30	.36	.36	.0	1.20	.065	1.2
litrogen, ammonia + organic, total (mg/L as N)	66	1.17	.61	.05	3.80	.075	3.7
litrogen, NO ₂ + NO ₃ , total (mg/L as N)	71	1.18	1.16	.12	7.00	.137	6.8
1 trogen, NO_2^2 + NO_3^2 , dissolved (mg/L as N)	22	1.037	.645	.31	2.70	.138	2.3
hosphorus, orthophosphate, total (mg/L)	3	1.50	.62	1.00	2.20	.361	1.2
hosphorus, orthophosphate, dissolved (mg/L)	10	1.69	1.23	.18	3.40	.388	3.2
hosphorus, total (mg/L as P)	71	1.06	1.02	.18	5,20	.121	5.0
hosphorus, dissolved (mg/L as P) arbon, organic, total (mg/L as C)	35 34	.82 11.2	.67 11.7	.06 3	3.00 57	.113 2.00	2.9
					,,	2.00	54
Carbon, organic, dissolved (mg/L as C)	13	6.8	2.5	3.3	11.0	.70	7.7
arbon, organic, suspended (mg/L as C) lardness (mg/L as CaCOz)	11 135	1.32 237.5	.54 46.1	.6 120	2.3 330	- 16 3.97	1.7 210
ardness, noncarbonate (mg/L as CaCO ₃)	134	23.9	21.2	.0	220	1.83	220
alcium, dissolved (mg/L as Ca)	131	62.9	11.3	35	81	.99	46
agnesium, dissolved (mg/L as Mg)	131	19.8	5.1	8.7	33.0	. 45	24.3
odlum, dissolved (mg/L as Na)	138	50.3	28.9	12	190	2.46	178
odium-adsorption ratio	134	1.4	.8	.4	5.1	.067	4.7
odium, percent	81	28.1	9.8	15	60	1.09	45
odium + potassium, dissolved (mg/L as Na)	14	47.8	11.5	28	69	3.07	41
otessium, dissolved (mg/L as K)	119	6.4	2.9	1.3	17.0	.27	15.7
hloride, dissolved (mg/L as Cl)	137	70.2	45.5	11	290	3.8	279
ulfate, dissolved (mg/L as SO _d) luoride, dissolved (mg/L as F)	137 85	34.7	10.1	15	86	.86	71
llica, dissolved (mg/L as SiO ₂)	132	.21 10.1	.08 2.0	.1 4.9	.7 15.0	.009	.6 10.1
rsenic, dissolved (ug/L as As)	25	2.2					
rsenic, suspended, total (ug/L as As)	19	.8	1.2	.0 .0	5.0 3.0	- 25 - 24	5.0 3.0
rsenic, totai (ug/L as As)	25	2.9	1.3	1.0	5.0	.24	4.0
arium, dissoived (ug/L as Ba)	13	105.3	29.0	80	200	8.06	120
arium, suspended recoverable (ug/L as Ba)	13	110	228	.0	800	63.2	800
arium, total recoverable (ug/L as Ba)	13	185	247	.0	900	68.7	900
oron, dissolved (ug/L as B)	58	108	46	30	210	6.0	1.80
admium, dissolved (ug/L as Cd)	25	1.2	1.4	.0	5.0	.28	5.0
admium, suspended recoverable (ug/L as Cd) admium, total recoverable (ug/L as Cd)	22 25	4.9	4.6	.0	10.0	.98	10.0
	23	5.5	4.5	.0	10.0	.91	10.0
hromium, dissolved (ug/L as Cr)	25	2.0	5.0	.0	20.0	1.00	20.0
hromium, suspended recoverable (ug/L as Cr)	24	5.0	10.2	.0	40.0	2.08	40.0
hromium, totai recoverable (ug/L as Cr) obalt, dissolved (ug/L as Co)	25 25	6.0 1.3	10.4	.0	40.0	2.08	40.0
obait, dissolved (ug/L as co)	22	23.6	24.7	.0 .0	3.0	.29 5.26	3.0
	££	0, 62	27.1	•0	50.0	5,26	50.0

Table 3.--Descriptive statistics of water-quality data collected at selected U.S. Geological Survey stream-gaging stations--Continued

Parameter	Number of analyses	Mean	Standard deviation	Minimum value	Maximum value	Standard error of mean	Range
W	eber River at	Plain City (s!te 8)Conti	nued			
obalt, total recoverable (ug/L as Co)	25	23.2	24.6	.0	50.0	4.92	50.0
Copper, dissolved (ug/L as Cu)	25	3.4	1.9	.0	8.0	.38	8.0
opper, suspended recoverable (ug/L as Cu) opper, total recoverable (ug/L as Cu)	24 25	25 28	59 57	.0	270 270	12.0	270
ron, suspended recoverable (ug/L as Fe)	10	812	1,245	240	4,300	11.4 393	268 4,060
ron, total recoverable (ug/L as Fe)	33	2,902	12,641	.0	73,000	2,200	73.000
ron, dissolved (ug/L as Fe)	29	50	105	10	590	19.6	5 80
ead, dissolved (ug/L as Pb)	25	5.9	10.4	.0	48.0	2.09	48.0
ead, suspended recoverable (ug/L as Pb) ead, total recoverable (ug/L as Pb)	24	61.2	39.6	4	100	8.09	96
	25	68.8	40.5	4	100	8.1	96
anganese, suspended recoverable (ug/L as Mn) anganese, total recoverable (ug/L as Mn)	25 25	86.4 129	216.6	.0	1,100	43.3	1.100
anganese, dissolved (ug/L as Mn)	30	43	206 23	40 .0	1,100 100	41.2	1,060
ickel, dissolved (ug/L as NI)	5	2.2	1.1	1.0	3.0	4.3 0.49	100 2.0
ickel, suspended recoverable (ug/L as NI)	5	3.4	2.5	.0	7.0	1.12	7.0
ickel, total recoverable (ug/L as NI)	5	5.0	3.7	.0	10.0	1.67	10.0
ilver, dissolved (ug/L as Ag)	13	.0	0.0	.0	-0	-0	0
liver, suspended recoverable (ug/L as Ag)	13	.9	2.8	.0	10.0	.76	10
ilver, total recoverable (ug/L as Ag)	17	.9	2.4	.0	10.0	59	10
inc, dissolved (ug/L as Zn)	25	16.9	21.4	.0	110	4.28	110
inc, suspended recoverable (ug/L as Zn)	25	42.4	79.8	.0	350	15.97	350
inc, total recoverable (ug/L as Zn) elenium dissolved (ug/L as Sa)	25 25	55	79	10.0	350	15.9	340
elenium, dissolved (ug/L as Se) elenium, suspended total (ug/L as Se)	25	.04	.20	.0	1.0	.040	1.0
elenium, total (ug/L as Se)	25	.16	.38 .37	.0 .0	1.0	.078 .075	1.0
oliform, fecal, 0.45 UM-MF (cois/100 mL)	21	65	61	.0	220	13.4	
oliform, fecal. 0.7 UM-MF (cols/100 mL)	50	368	1,450	,	10.000	205	220 9 . 99 9
reptococci, fecal, KF agar (cols/100 mL)	49	252	455	t	2,500	65	2,499
treptococci, fecal (cois/100 mL) alorophyll, B periphyton, uncorrected (mg/m ²)	26 6	77 6.8	158 11.3	2.0	980 28	30.9	978
						4.63	26
hiorophyli, A periphyton, uncorrected (mg/m ²) imazine, total, Coulson condition (ug/L)	6 9	60	90	.2	193	36.9	192.8
imazine, in bottom material (ug/kg, dry)	4	.0 .0	.0 .0	.0	.0	.0	.0
Idrin, total (ug/L)	21	.0	.0	.0 .0	.0 .0	.0 .0	.0
idrin, total in bottom material (ug/kg)	10	.0	.0	.0	.0	.0	.0 .0
ndane, total (ug/L)	21	.0	.0	.0	.0	.0	.0
ndane, total in bottom materiai (ug/kg)	10	.0	.0	.0	.0	.0	.0
lordane, total (ug/L)	21	.0	.0	.0	.0	.0	.0
ilordane, total in bottom material (ug/kg) D, total (ug/L)	10	.9	1.8	.0	5.0	. 55	5.0
-	21	.0	.0	.0	.0	.0	•0
D, total in bottom materiai (ug/kg) E, total (ug/L)	10	.0	.0	.0	.0	.0	.0
E, total in bottom material (ug/kg)	20 9	.0 .0	.0	.0	.0	.0	.0
T, total (ug/L)	21	.0	.0 .0	.0 .0	.0	.0	.0
T, total in bottom material (ug/kg)	10	.0	.0	.0	.0 .0	.0 .0	.0 .0
eldrin, total (ug/L)	21	.0	.002	.000	.010	.0	
eldrin, total in bottom material (ug/kg)	10	.08	.18	.000	.43	.0	.010 .43
drin, total (ug/L)	21	.000	.0	.0	.0	.057	.45
drin, total in bottom material (ug/kg) blog, total (ug/l)	10	.0	.0	.0	.0	.0	.0
hion, total (ug/L)	20	.0	•0	.0	.0	.0	.0
hion, total in bottom material (ug/kg) ×aphene, total (ug/L)	10	.0	.0	.0	.0	.0	.0
xaphene, total (ug/L) Kaphene, total in bottom material (ug/kg)	21 10	.0	.0	.0	.0	.0	.0
otachior, total (ug/L)	21	.0 .0	.0 .0	.0	.0	.0	.0
otachlor, total in bottom material (ug/kg)	10	.0	.0	.0 .0	.0 .0	.0 .0	.0 .0
ptachlor, epoxide, total (ug/L)	21	.0	.0	.0	.0	.0	
otachior, epoxide, total in bottom material	10	.0	.0	.0	.0	.0	.0 .0
thoxychior, total (ug/L) thoxychior, total in bottom material (ug/kg)	21	.0	.0	.0	.0	.0	.0
	10	.0	.0	•			
clor, total in bottom material, 1242	2	.68	.96	.0 .00	.0 1.36	.0 .68	.0

•

Table 3Descriptive statis	stics of water-qualit	y data collected at selected
U.S. Geological	Survey stream-gaging	stationsContinued

Parameter	Number of analyses	Mean	Standard deviation	Mînimum value	Maximum value	Standard error of mean	Range
We	ber River at P	lain City (si	te 8)Contin	ued			
rocior, total in bottom material, 1254 PCB series	6	5.8	6.1	2.3	18.1	2.49	15.8
CB, total (ug/L)	10	.0	.0	.0	.0	.0	.0
alathion, total (ug/L)	20 10	.0 .0	.0 .0	.0 .0	.0 .0	.0 .0	.0 .0
lalathion, total in bottom material (ug/kg) arathion, total (ug/L)	20	.0	.0	.0	.0	.0	.0
arathion, total in bottom material (ug/kg)	10	.0	.0	.0	.0	.0	.0
lazinon, total (ug/L)	20 10	.01	.04	.0	-2	.01	.2
lazinon, total in bottom material (ug/kg) ethyl parathion, total (ug/L)	20	.0	.09	.0 .0	.3	.03 .0	.0
(ug/kg)	10	.0	.0	.0	.0	.0	.0
trazine, total (ug/L)	12	.0	.0	.0	.0	.0	.0
trazine, total in bottom material (ug/kg)	4	.0	.0	.0	.0	.0	.0
,4-D, total (ug/L) .4-D, total in bottom mater!al (ug/kg)	13 5	.0 .0	.0 .0	.0 .0	.0 .0	.0 .0	.0 .0
,4,5-T, total (ug/L)	13	.0	.0	.0	.0	.0	.0
,4,5-T, total in bottom material (ug/kg)	5	.0	.0	.0	.0	•0	.0
llvex, total (ug/L)	13	.0	.0	.0	.0	-0	.0
iivex, total in bottom material (ug/kg) rithion, total (ug/L)	5 20	.0 .0	.0 .0	.0 .0	.0 .0	.0 .0	.0 .0
rithion, total in bottom material (ug/kg)	10	.0	.0	.0	.0	.0	.0
ethyl frithion, total (ug/L)	20	.0	.0	.0	.0	.0	.0
ethyl trithion, total in bottom material (ug/kg)	10	.0	.0	.0	.0	.0	.0
hytoplanktkon, total (cells/mL)	51	5,944	8,111	100	35,000	1,136	34,900
oiids, dissoived residue at 180 ⁰ C (mg/L) olids, dissolved, sum of constituents (mg/L)	136 81	406 372	121 124	165 163	772 788	10.4 13.8	607 625
olids, dissolved (tons per day)	135	276	303	5	1,520	26	1.515
olids, dissolved (tons per acre-feet)	147	.54	.16	.22	1.05	.014	. 83
ediment, suspended, sieve dlameter (% finer than .062 mm)	67	82.9	27.5	7	247	3.4	240
iomass, chlorophyll ratio periphyton hlor-A periphyton, chromospectmetric (mg/m ²)	7 4	2,225 2.081	3,754 2.795	24.7 .413	9,201 6.230	1,419.1 1.398	9,176.3 5.81
hlor-B periphyton, chromospectmetric (mg/m ²)	4	.201	.150	.019	.387	.075	.36
hlor-A periphyton, chromographic fluorometric (mg/m ²)	9	23.47	33.99	.06	105	11.33	104-94
hlor-B periphyton, chromographic fluorometric (mg/m ²)	9	3.23	4.67	.0	13.4	1.56	13.4
itrogen, ammonia, totai (mg/L as NH ₄) itrogen, ammonia, dissoived (mg/L as NH ₄)	17 11	.26 .29	.18 .22	.05 .08	.74 . 81	.044 .066	.69 .73
itrogen, nitrate, total (mg/L as NO3)	23	8.0	5.6	1.0	18	1.17	17.0
litrogen, nitrate, dissolved (mg/L aš NO3) ron (ug/L as Fe)	46 13	6.8	5.2	1.0	18	.77	17
hosphorus, total (mg/L as PO _A)	17	9.2 3.1	9.5 2.7	.0 .85	20 12.0	2.65 .66	20 11.14
ltrogen, total (mg/L as NO3)	66	9.9	5.3	4.4	31	.65	26.6
ercury, dissolved (ug/L as Hg)	25	.05	.13	.0	.6	•026	.6
ercury, suspended recoverable (ug/L as Hg)	24	.02	.06	.0	.2	.012	.2
ercury, total recoverable (ug/L as Hg)	25	.06	.13	.0	.6	.027	.6
ediment, suspended (mg/L)	70	82	235	4	1,790	28.0	1,785

Table 4.--Bacteriological data from selected sites

[NI, nonideal colony count.]

<u></u>		Colonies pe	er 100 milli	liter sample	
Site No.	Site name (abbreviated)	Total coliform	Fecal coliform (F.C.)	Fecal streptococci (F.S.)	F.C./F.S. ratio
5	Hooper Slough	26,000	1,000	1,200	0.83
6	Howard Slough	29,000	510	3,000	.17
8	Weber River near Plain City	900	96	120	. 80
20	Weber River near Slaterville	2,100NI	700	82	8.54
23	Weber River below Union Stockyards		1,500NI	340N1	4.41
29	Weber River at Riverdale Road		270	84	3.21
37	Weber River at Gateway		180NI	340N I	.53
45	Ogden River below Pineview Reservoir	990N1	5N I	21	.24
92	Weber River near Oakley	720	5N I	100	.05

[Constituents are dissolved and constituent values are reported in

Site No.	Site name (abbreviated)	Semi- Quanti- tative (S) Quanti- tative (Q)	Date of collection	Dis- charge (ft ³ /s)	Alu- minum (Al)	Anti- mony (Sb)	Arse- nic (As)	Bar- ium (Ba)	Beryl- lium (Be)	- Bis- muth (Bi)	Cad- mium (Cd)	Chro- mium (Cr)	Cobalt (Co)
5	Hooper Slough near Hooper	S Q	7-31-79 8-11-80	16 29.7	300	< 30	19	100	<1	<1,000	5 <1	<50 10	<5
6	Howard Slough at U.S.G.S. gage	S Q	7-31-79 8-11-80	23 20.7	300	<30	19	100	<1	<1,000	1 <1	<50 10	<5
8	Weber River near Plain City	S Q Q Q Q Q Q Q	7-31-79 7-18-79 10-31-79 12-4-79 2-12-80 5-21-80 8-11-80	75 163 136 293 2,640 54	300	<30 - - - -	- 2 1 2 2 1 4	100 100 100 100 100 80	<1 - - -	<1,000 - - - - - - -	5 4 <1 <1 <1 <1 <1	<50 0 0 0 0 20	<5 <3 <3 <3 <3 <3 <3
20	Weber River above Slaterville diversion	S	7-31-79	270	300	<30	-	70	<1	<1,000	3	<50	<5
23	Weber River below Union Stockyards	S	7-31-79	90	300	< 30	-	100	<1	<1,000	10	<50	<5
25	Ogden River near mouth	S Q	7-31-79 8-11-80	187 220	300	< 30	2	50 -	<1	<1,000	10 <1	<50 10	<5
27	Weber River above Union Stockyards	S	7-31-79	160	100	<30	-	100	<1	<1,000	3	<50	<5
28	Weber River near I-15 31st Street	S	7-31-79	160	100	<30	-	100	<1	<1,000	10	<50	<5
29	Weber River at Riverdale Road	S	7-31-79	160	100	< 30	-	100	<1	<1,000	10	<50	<5
33	Weber River at canyon mouth	S	8-1-79	160	100	<30	-	100	1	<1,000	19	<50	<5
37	Weber River at Gateway	S Q	8-1-79 8-12-80	432 456	100	< 30	2	100	<1	<1,000	10 <1	<50 10	<5 -
57	East Canyon Creek near mouth	S Q	8-1-79 8-12-80	130 135	100	<30	4	100	<1	<1,000	5 <1	<50 0	<5 -
58	Weber River at Morgan	S	8-1-79	560	10	<30	-	100	<1	<1,000	3	<50	<5
60	Lost Creek at mouth	Q	8-12-80	49	-	-	1	-	-	-	<1	O	-
68	Unnamed creek from Parleys Park	Q	8-13-80	.1	-	-	3	-	-	-	3	10	-
70	McLeod Creek below Park City	Q	8-13-80	12	-	-	12	-	-	-	<1	0	-
75	Silver Creek at Wanship	Q	8-12-80	1	-	-	11	-	-	-	3	10	~
76	Weber River below Echo Reservoir	S	8-2-79	510	100	<30	-	100	<1	<1,000	5	<50	<5
77	Echo Creek at mouth	Q	8-12-80	5.2	-	-	2	-	-	-	<1	0	-
78	Chalk Creek at mouth at U.S.G.S. gage	Q	8-12-80	23	-	-	1	-	-	-	<1	10	-
80	Weber River below Rockport Reservoir	S	8-2-79	165	100	<30	-	100	<1	<1,000	3	<50	<5
87	Beaver Creek near mouth	S	8-2-79	27	100	<30	-	70	<1	<1,000	3	<50	<5
92	Weber River near Oakley	S Q	8-2-79 8-13-79	85 124	100	< 30	ī	100	<1	<1,000	3 <1	<50 10	<5

in water samples from selected sites

micrograms per liter. Abbreviations: ft^3/s , cubic feet per second.]

Cop- per (Cu)	Gal- lium (Ga)	Ger- manium (Ge)	Iron (Fe)	Lead (Pb)	Lith- ium (Li)	Manga- nese (Mn)	Mer- cury (Hg)	Molyb- denum (Mo)	Nick- el (Ni)	Sele- nium (Se)	Sil- ver (Ag)	Stron- tium (Sr)	Tin (Sn)	Tita- nium (Ti)	Vana- dium (V)	Zir- con (Zr)	Zinc (Zn)
<10 1	< 30	300	10 20	ō	70	10 10	- 0.0	<10	<50 -	ō	<10	500	100	<5	<10	<5 -	<5 <3
<10 2	< 30	300	30 40	2	70	30 20	1	<10	<50	ō	<10	500	100	<5	<10	<5	<5 4
<10 2	<30	100	10 20	21	50 -	30 60	1	<10	<50	0	<10 0	300	<50	<5	<10	<5 - -	<5 5 10
0 3 1	-	-	20 20 <10	0 6 0	-	30 40 40	.0 .0 .0	-	1 1 3	0 0 0	0 0 0		-	Ξ	-	-	20 10
5 2	-	-	40 20	0 2	-	20 40	.1 .0		3	0 0	0 -	-	-	-	-	-	5 3
<10	<30	70	5	-	10	30	-	<10	<50	-	<10	100	<50	<5	<10	<5	5
<10	<30	100	7	-	10	30	-	<10	<50	-	<10	300	<50	<5	<10	<5	<5
<10 1	< 30	30	7 20	ō	30	30 20	0	<10	<50 -	ō	<10	100	<50	<5 -	<10	<5 -	30 <3
<10	<30	100	10	-	10	30	-	<10	<50	-	<10	300	100	<5	<10	<5	<5
<10	<30	100	10	-	10	10	-	<10	<50	-	<10	300	100	<5	<10	<5	<5
<10	<30	100	7	-	10	10	-	<10	<50	-	<10	300	100	<5	<10	<5	10
<10	<30	100	7	-	10	10	-	<10	<50	-	<10	300	100	<5	<10	<5	<5
<10 1	<30 -	100	<5 10	- 0	10 -	10 8	0	<10	<50 -	ō	<10	300	100	<5	<10	<5 -	<5 4
<10 0	<30 -	100	5 <10	ō	10	7 6	0	<10	<50 -	ō	<10	300	100	<5 -	<10	<5 -	<5 <3
<10	<30	100	7	-	10	30	-	<10	<50	-	<10	300	100	<5	<10	<5	<5
U	-		10	0	-	6	.0	-	-	0	-	-	-	-	-	-	4
1	-	-	20	3	-	140	.0	-	-	0	-	-	-	-	-	-	5
U	-	-	10	0	-	30	.0	-	-	2	-	-	-	-	-	-	20
4	-	-	<10	3	-	60	•0	-	-	0 ·	-	-	-	-	-	-	150
<10	<30	100	5	-	10	70	-	<10	<50	-	<10	300	70	<5	<10	<5	<5
1	-	-	20	0	-	9	.0	-	-	1	-	-	-	-	-	-	<3
2	-	-	20	1	-	10	.0	-	-	0	-	-	-	-	-	-	<3
<10	<30	100	<5	-	10	7	-	<10	<50	-	<10	100	70	<5	<10	<5	<5
<10	<30	100	10	-	10	10	-	<10	<50	-	<10	300	70	<5	<10	<5	<5
<10 0	<30	70	10 10	- 1	<10	5 4	0	<10	< 50	ō	<10	70	70	<5 -	<10	<5 -	<5 <3

Table 6.--Pesticide concentrations in stream-bottom materials at selected sites, July 31, 1979

[Concentrations are reported in micrograms per kilogram. The analytical detection limit for all pesticides listed is 0.1 microgram per kilogram except for Chlordane and PCB which is 1 microgram per kilogram and Toxaphene which is 10 micrograms per kilogram. The symbol "--" represents levels below the limit of detection.]

	· · · · · · · · · · · · · · · · · · ·	Site name (abbreviated)
Pesticide	Hooper Slough near Hooper (site 5)	Howard Slough at Hooper (site 6)	Weber River at 1150 South Street (site 7)
Aldrin	-		
Chlordane	1		6
DDD	.6		•5
DDE	.4	0.1	•1
DDT	.4		.2
Diazinon			
Dieldrin			•2
Endosulfan			
Endrin			
Ethylparathion			
Ethyltrithion			
Ethion			
Heptachior epoxide			
Heptachlor			
Lindane			
Malathion			
Methylparathion			
Methyltrithion			
Methoxychlor			
Mirex			
PCB	1		5
Perthane			- en
Toxaphene			

[Abbreviations: ft³/s, cubic feet per second; °C, degrees Celsius; µmhos, micromhos

Discharge:	Ε,	estimated.
------------	----	------------

Disc	charge: E, estimated.												
Site No.		Date of collection	Dis- charge (ft ³ /s)	Temper- ature (°C)	Spe- cific con- duct- ance (µmhos)	pН	Dis- solved solids (sum of consti- tuents)	Dis- solved silica (SiO ₂)	Dis- solved cal- cium (Ca)	Dis- solved magne- sium (Mg)	Dis- solved sodium (Na)	Dis- solved potas- sium (K)	
1	Weber River North Fork at Ogden Bay dike at (B-6-3)35bcb	7-31-79 10-24-79 2-25-80 4-1-80 5-12-80 8-11-80	8.0 23 455 325 1,250 5	23.0 10.0 7.0 5.0 8.0 22.0	820 800 610 540 320 720	8.4 7.9 8.3 8.3 8.0 8.5	483 460 367 302 180 418	14 13 10 7.2 8.6 4.8	69 68 62 57 38 59	23 23 20 16 10 23	75 64 44 30 13 63	11 8.9 6.1 3.9 2.6 8.2	
2	Weber River Middle Fork at Ogden Bay dike at (B-6-3)35cbb	7-31-79 10-24-79 2-25-80 4-1-80 5-12-80 8-11-80	104 85 160 136 200 88	24.5 11.0 5.0 5.0 8.0 23.0	675 770 590 515 330 785	8.8 7.9 8.3 8.3 8.1 8.7	400 447 355 301 179 456	11 13 9.7 7.7 8.7 6.0	60 69 65 59 38 60	20 23 20 17 10 22	56 58 37 28 12 78	9.7 8.9 5.1 3.8 2.5 8.9	
3	Weber River South Fork at Ogden Bay dike at (B-5-3)11bcb	7-31-79 10-24-79 2-25-80 4-1-80 5-12-80 8-11-80	Dry Dry 300 E 245 1,480 Dry	- 6.0 5.0 9.0 -	- 730 540 385 -	- 8.2 8.4 8.1 -	450 318 207	- 12 7.4 8.7 -	- 61 58 38 -	- 25 18 11	68 32 20	- 11 4.6 4.0	
4	South Run Canal at Ogden Bay dike at (B-5-3)11bcc	7-31-79 10-24-79 2-25-80 4-1-80 5-12-80 8-11-80	34 37 98 48 56 24	23.0 10.0 6.0 5.0 9.0 21.5	770 1,155 1,060 585 520 720	8.3 8.1 8.7 8.4 7.9 8.6	455 663 674 334 318 423	16 15 17 7.6 10 12	56 65 61 59 38 52	28 34 38 19 17 26	62 120 130 39 49 59	17 21 22 5.5 9.9 15	
5	Hooper Slough at U.S.G.S. gage at (B-5-3)11baa	7-31-79 10-24-79 2-25-80 3-17-80 4-1-80 5-12-80 8-11-80	16 7.2 21.8 8.3 9.0 20 29.7	21.5 10.0 7.0 5.0 4.0 9.0 27.0	820 1,130 1,470 1,390 1,290 1,450 740	8.2 8.1 8.3 8.2 8.4 8.2 8.0	494 695 937 883 804 898 444	21 24 25 23 18 24 20	63 69 73 76 65 57 57	36 49 66 64 59 60 30	60 93 160 150 130 170 50	2.0 32 33 31 30 47 17	
6	Howard Slough at U.S.G.S. gage at (B-5-3)25add	$\begin{array}{c} 7-31-79\\ 10-24-79\\ 2-25-80\\ 3-17-80\\ 4-1-80\\ 4-16-80\\ 5-7-80\\ 5-12-80\\ 6-10-80\\ 7-21-80\\ 7-31-80\\ 8-11-80\\ \end{array}$	23 10.3 27 15 13.7 8.6 16 73 24 22 20 20.7	18.0 8.0 4.5 11.5 8.0 16.5 8.0 20.5 18.5 20.0 16.0	795 1,040 1,360 1,230 1,220 1,010 1,220 1,010 1,220 700 710 870 820	7.8 8.2 8.4 8.3 8.4 8.3 8.4 7.5 7.6 7.7	497 651 907 737 756 793 612 749 446 419 526 494	21 25 26 23 20 21 19 20 13 17 25 22	65 60 62 54 45 30 45 57 57 56	35 47 71 61 64 43 43 33 29 34 34	68 95 160 130 140 110 160 65 57 75 69	12 19 25 18 22 21 21 49 11 10 17 15	
7	Weber River at bridge at 1150 So. Street at (B-6-2)19bac	7-31-79 5-12-80	85 2,960	23.0 8.0	670 320	7.9 8.1	401 182	12 8.7	64 38	22 10	53 13	7.4 2.9	
8	Weber River near Plain City at U.S.G.S. gage at (B-6-2)5dcc	$\begin{array}{c} 7-31-79\\ 8-22-79\\ 9-11-79\\ 10-24-79\\ 10-31-79\\ 12-4-79\\ 1-4-80\\ 1-30-80\\ 2-12-80\\ 3-12-80\\ 3-12-80\\ 4-1-80\\ 4-9-80\\ 5-12-80\\ 5-21-80\\ 5-21-80\\ 5-24-80\\ 7-10-80\\ 8-11-80\\ \end{array}$	75 82 129 145 163 136 65 189 293 744 910 735 7,75 2,960 2,645 426 69 54	21.5 20.5 19.5 8.0 3.0 2.0 3.0 5.5 5.5 5.5 7.5 12.0 20.0 20.0	665 580 770 710 665 755 635 600 580 480 495 320 320 320 320 320 450 710 665	7.8 7.9 7.8 8.1 7.9 7.7 8.4 8.2 7.8 8.3 8.2 8.3 8.1 7.6 7.7 8.2	372 384 343 432 397 470 460 374 359 347 298 288 288 288 288 288 286 181 197 261 404 371	12 13 11 12 9.9 11 10 8.9 9.5 8.2 7.1 6.9 8.8 8.7 7.9 12 11	63 60 61 65 72 63 65 63 59 52 39 40 59 52 39 40 58	20 20 22 21 23 20 19 20 18 16 16 10 10 10 5 21 19	45 49 36 43 55 61 43 35 43 24 24 24 15 12 12 22 46 47	6.4 7.3 5.3 7.4 7.7 5.6 4.4 4.0 3.5 2.6 2.0 3.5 2.6 2.0 3.5 8 6.1	
9	Warren Canal above Fourmile Creek at (B-6-2)4bdc	7-31-79 5-12-80	65 43	20.0 9.5	740 400	7.7 8.0	433 226	14 9.2	72 42	23 13	55 21	7.7 4.5	

in the Weber River basin, July 1979 through August 1980

per centimeter at 25°C, mg/L, milligrams per liter; pCi/L, picocuries per liter.] Milligrams per liter

	11111grams	per rre		Dis-	Dissolved							
Alka- linity (total as CaCO ₃)	Dis- solved sul- fate (SU ₄)	Dis- solved chlor- ide (Cl)	Dis- solved fluor- ide (F)	solved nitrate (NO ₃) + nitrite (NO ₂) (as N)	phos- phorus, ortho- phos- phate (as P)	Dis- solved phos- phate, ortho (as PO ₄)	Total hard- ness (as CaCO ₃)	Non- car- bonate hard- ness (as CaCO ₃)	Sodium adsorp- tion ratio	Dis- solved boron (B) (mg/L)	Potas- sium-40 (pCi/L)	Dis- solved oxygen (mg/L)
260 250 210 190 120 250	39 44 36 32 18 31	95 81 58 39 17 78	0.2 .2 .2 .2 .2 .1 .4	0.00 1.6 1.0 .64 .19 .00	0.64 .89 .32 .25 .01 .72	2.0 2.7 .98 .77 .03 2.2	270 260 240 210 140 240	7 15 27 18 16 0	1.9 1.7 1.2 .9 .5 1.8	100 160 100 80 60 170	8.2 6.6 4.6 2.9 1.9 6.1	5.5 7.2 9.8 10.4 9.2 14.1
230 250 210 190 120 240	35 42 34 32 18 37	69 75 53 36 16 99	.2 .2 .2 .1 .3	.08 1.7 1.0 .63 .34 .003	.49 .95 .27 .23 .01 .48	1.5 2.9 .83 .71 .03 1.5	230 270 240 220 140 240	2 17 35 77 16 0	1.6 1.5 1.0 .8 .4 2.2	200 140 90 80 50 180	7.2 6.6 3.8 2.8 1.9 6.6	13.2 7.0 9.7 10.0 9.1 15.8
240 200 1 30	46 33 20	- 78 41 26 -	- .2 .1 .1	- 1.0 .70 .30	- .26 .25 .07	- .80 .77 .21	- 260 220 140	15 19 10	- 1.9 .9 .7	- 150 70 70	- 8.2 3.4 3.0 -	- 7.8 11.0 6.1
270 280 320 200 170 240	46 65 76 35 29 40	64 170 130 45 61 71	.3 .3 .1 .2 .3	.66 .83 1.5 .79 .38 .62	.21 .38 .37 .25 .18 .21	.64 1.2 1.1 .77 .55 .64	260 300 310 230 160 240	0 22 0 26 0 0	1.7 3.0 3.2 1.1 1.7 1.7	250 240 290 80 160 210	13 16 16 4.1 7.4 11	6.7 8.3 6.0 9.9 6.2 11.1
310 400 490 450 430 440 270	56 81 110 110 100 94 43	61 91 160 140 130 170 56	.3 .4 .5 .5 .4 .4 .4	1.8 3.3 3.9 2.8 2.4 1.8	.22 .35 .51 .80 .30 .75 .17	.67 1.1 1.6 2.5 .92 2.3 .52	310 370 450 450 410 390 270	0 0 3 0 0 0	1.5 2.1 3.3 3.1 2.8 3.8 1.3	280 290 400 350 290 550 200	1.5 24 25 23 22 35 13	6.0 8.0 9.5 - 6.4
310 400 500 400 450 350 410 280 280 340 340 320	56 73 100 83 84 89 61 74 48 47 48 47 48 48	51 78 130 95 100 110 95 120 55 55 63 54	.3 .4 .6 .5 .6 .4 .3 2.1 .5 .4	.44 3.0 6.1 5.3 4.4 5.1 1.5 1.3 1.1 .77 .47 .63	.21 .18 .51 .24 .18 .31 .35 1.1 .13 .16 .34 .20	.64 .55 1.6 .74 .55 .95 1.1 3.4 .40 .49 1.0 .61	310 340 460 410 380 290 250 250 250 250 280 280	0 0 6 0 0 0 0 0 14 0 0	1.7 2.2 3.3 2.8 2.9 3.1 2.8 4.4 1.8 1.6 1.9 1.8	140 290 310 330 420 820 270 190 220 240	9.0 14 19 13 16 16 37 8.2 7.5 13 11	6.9 10.1 11.8 10.0 11.0 12.1 12.1 7.8 7.6 6.0 5.6 7.7
220 100	38 19	67 16	•2 •1	1.2 .40	.73	² .2 .28	250 140	30 16	1.5 .5	160 60	5.5 2.2	9.0
210 220 210 250 230 240 260 210 210 190 160 120 110 120 110 170 240 210 230	31 33 442 39 83 37 36 32 28 30 28 30 28 30 28 31	61 69 47 72 68 84 60 50 36 32 20 16 11 30 67 69 86	.2 .2 .2 .2 .2 .2 .2 .2 .1 .1 .1 .1 .2 .4 .3	1.5 -43 1.6 1.2 1.6 1.9 .95 .85 .93 .63 .55 .36 .33 .31 .40 1.5 .093 1.3	.78 - - - - - - - - - - - - - - - - - - -	2.4 	240 230 250 250 270 240 250 240 250 230 210 180 140 140 190 250 220 270	30 12 25 10 35 10 20 31 37 41 23 23 19 31 24 11 13 45	1.3 1.4 1.0 1.3 1.4 1.6 1.0 .9 .7 .7 .5 .4 .4 .7 1.3 1.4	140 140 100 140 - - - 60 - - 150 140	4.8 5.4 6.2 5.5 6.0 4.2 3.3 3.6 2.1 1.5 5.4 4.6 5.7	6.9 8.0 8.7 10.4 8.8 12.8 13.4 11.2 9.9 11.2 10.5 9.7 8.4 7.6 5.6 7.0
140	20	30	li	.42	.22	.67	160	18	.7	70	3.4	

								· ·				
Site No.	Site name	Date of collection	Dis- charge (ft ³ /s)	Temper- ature (°C)	Spe- cific con- duct- ance (µmhos)	рН	Dis- solved solids (sum of consti- tuents)	Dis- solved silica (SiO ₂)	Dis- solved cal- cium (Ca)	Dis- solved magne- sium (Mg)	Dis- solved sodium (Na)	Dis- solved potas- sium (K)
10	Fourmile Creek at mouth at (B-6-2)4bdc	7-31-79 5-12-80	10 15	27.0 8.5	620 750	8.1 8.0	358 425	14 13	60 47	25 28	36 66	8.5 14
11	Warren Canal above Mill Creek at (B-6-2)10dab	7-31-79 5-12-80	25 40	20.5 9.0	500 350	8.1 8.0	285 190	9.3 8.7	53 39	15 11	26 15	9.5 3.5
12	Slaterville Sewer Plant effluent at (B-6-2)10dab	7-31-79 5-12-80	84 93	19.0 12.5	790 915	7.5 7.7	467 523	16 15	75 72	25 29	60 75	9.2 10
13	Mill Creek near mouth at (B-6-2)10daa	7-31-79 5-12-80	•5 •7	26.0 11.0	315 415	8.8 8.3	175 226	7.2 7.6	39 39	8.5 12	15 29	2.7 4.5
14	Weber River near Slaterville at (B-6-2)15daa	7-31-79 5-12-80	35 2,870	22.0 8.0	410 305	8.1 8.1	247 177	8.7 8.9	50 39	14 9.9	21 11	3.6 2.3
15	Warren Canal at diversion at (B-6-2)23add	7-31-79	25	20.0	400	8.1	236	9.0	49	13	17	3.4
16	Weber River above Warren Canal diversion at (B-6-2)24bcc	7-31-79 5-12-80	60 2,910	21.5 8.5	405 300	7.9 8.1	229 174	8.2 8.7	47 38	13 9.7	17 9.7	3.4 2.1
17	Willard Canal at Slaterville diversion at (B-6-2)24dac	7-31-79	63	19.0	380	8.4	221	8.7	46	12	14	3.0
18	Weber River below Slaterville diversion at (B-6-2)24dca	7-31-79	55	19.0	380	8.3	214	8.7	46	12	14	2.8
19	Layton Intake Canal above Hooper Canal diversion at (B-6-2)24ddb	7-31 - 79	150	19.0	380	8.3	220	8.7	46	12	14	2.9
20	Weber River above Slaterville diversion at (B-6-2)24dda	7-31-79 10-24-79 2-25-80 4-1-80 5-12-80 8-11-80	270 170 700 1,200 3,800 288	18.5 10.0 5.0 5.0 8.5 15.0	380 630 495 425 320 360	8.3 7.8 8.2 8.3 8.2 8.2 8.2	214 360 300 261 178 197	9.0 11 8.6 6.5 9.3 8.7	47 71 64 59 38 42	12 20 17 15 11 10	15 29 22 17 11 15	2.9 4.8 3.3 2.8 3.5 2.5
21	Neilson Drain near Hooper Canal diversion at (B-6-2)25bac	7-31-79 5-12-80	2.0 4.0	24.5 11.0	870 1,170	8.4 7.9	562 711	21 26	77 63	35 68	70 71	21 47
22	Hooper Canal at diversion with Layton Intake Canal at (B-6-2)25bda	7-31-79	150	17.5	385	8.2	224	9.0	48	12	15	2.9
23	Weber River below Union Stockyards at (B-6-1)30bdd	7-31-79 10-24-79 2-25-80 4-1-80 5-12-80 8-11-80	90 140 400 975 2,600 78	22.0 9.5 5.0 5.0 7.5 19.0	505 620 520 500 335 490	8.4 7.9 8.2 8.4 8.1 8.2	304 361 336 293 194 285	11 11 10 7.2 9.3 9.5	63 72 71 64 42 60	19 20 20 17 11 16	21 27 25 20 11 19	3.5 4.2 3.3 2.8 2.2 3.2
25	Odgen River near mouth at (B-6-1)29bbb	7-31-79 10-24-79 2-25-80 4-1-80 5-12-80 8-11-80	187 29 300 224 1,200 220	18.0 10.0 4.5 5.5 10.0 15.0	305 680 370 360 210 295	8.4 7.9 8.2 8.6 8.2 8.3	181 376 214 210 E 116 166	8.8 8.1 5.0 - 7.5 8.8	41 58 49 - 28 36	9.5 18 12 6.7 8.2	13 49 15 6.1 13	2.4 7.9 2.5 2.6 1.3 2.4
26	Wilson Canal at diversion at (B-6-1)30dad	7-31-79	70	24.5	490	8.4	308	11	69	19	22	3.5

۰. ۲ in the Weber River basin, July 1979 through August 1980--Continued

	Milligrams	per lit	er									
Alka- linity (total as CaCO ₃)	Dis- solved sul- fate (SO4)	Dis- solved chlor- ide (Cl)	Dis- solved fluor- ide (F)	Dis- solved nitrate (NO ₃) + nitrite (NO ₂) (as N)	Dissolved phos- phorus, ortho- phos- phate (as P)	Dis- solved phos- phate, ortho (as PO ₄)	Total hard- ness (as CaCO ₃)	Non- car- bonate hard- ness (as CaCO ₃)	Sodium adsorp- tion ratio	Dis- solved boron (B) (mg/L)	Potas- sium-40 (pCi/L)	Dis- solved oxygen (mg/L)
240 240	27 28	43 83	0.2	0.02	0.16	0.49	250 230	13 0	1.0 1.9	130 190	6.3 10	:
170 120	24 18	44 21	•2 •1	.27 .32	.08 .15	.25 .46	190 140	24 23	•8 •5	100 70	7.1 2.6	-
250 270	35 41	79 110	.3 .3	3.8 1.9	2.2	6.7 7.7	290 300	40 29	1.5 1.9	180 220	6.9 7.5	Ξ
110 130	11 13	24 41	.1	.23 .37	.17 .07	.52 .21	130 150	22 17	.6 1.0	50 110	2.0 3.4	-
160 120	24 18	29 14	.1 .1	.17 .31	.08 .13	•25 •40	180 140	23 18	.7 .4	70 40	2.7 1.7	-
150	27	26	.1	.28	.05	.15	180	26	.6	80	2.5	-
150 120	24 18	25 14	.1 .1	.21 .30	.04 .08	.12 .25	170 130	21 15	.6 .4	60 40	2.5 1.6	-
150	22	24	.1	.30	.03	.09	160	14	. • 5	70	2.2	-
140	22	23	.1	.26	.05	.15	160	24	.5	80	2.1	* -
150	22	23	.1	.28	.03	.09	160	14	.5	80	2.2	-
140 230 200 180 120 130	21 42 30 29 17 16	22 41 32 22 14 23	.1 .2 .1 .1 .2	.20 .63 .59 .31 .32 .33	.01 .02 .07 .03 .08 .03	.03 .06 .21 .09 .24 .09	170 260 230 210 140 150	27 30 30 29 20 16	.5 .8 .6 .5 .4 .5	60 70 50 50 30 110	2.2 3.6 2.5 2.1 2.6 1.9	10.2 10.5 11.2 11.2 9.8 9.7
310 440	50 63	89 99	.3 .3	2.7 1.9	.32 1.5	.98 4.6	340 440	26 0	1.7 1.5	230 410	16 35	9.8
150	24	21	.1	.33	.05	.15	170	19	.5	60	2.2	-
200 240 220 200 130 200	40 43 36 35 23 28	25 37 35 25 16 27	.2 .2 .1 .2 .2	.15 .51 .67 .33 .31 .30	.03 .02 .07 .02 .01 .02	.09 .06 .21 .06 .03 .06	240 260 260 230 150 220	36 22 40 30 20 16	.6 .7 .6 .4 .6	40 70 70 60 50 130	2.6 3.1 2.5 2.1 1.6 2.4	10.2 11.0 10.8 11.3 10.1 9.8
120 190 150 150 84	15 34 15 14 7.0	17 84 24 19 8.1	.2 .2 .1 .1 .1	.35 .46 .31 .16 .25 .32	.01 .06 .03 .01 .00	.03 .18 .09 .03 .00	140 220 170 98	22 29 22 - 14	.5 1.4 .5 - .3	40 90 40 30 20 90	1.8 5.9 1.9 2.6 1.0	8.2 9.1 11.2 12.2 9.5
110 200	11 41	19 25	•1 •2	.32	.01 .01	.03 .03	120 240	14 41	.5 .6	90 60	1.8 2.6	8.6

Table 7.--Chemical analyses of water samples collected

Site No.	Site name	Date of collection	Dis- charge (ft ³ /s)	Temper- ature (°C)	Spe- cific con- duct- ance (µmhos)	рН	Dis- solved solids (sum of consti- tuents)	Dis- solved silica (SiO ₂)	Dis- solved cal- cium (Ca)	Dis- solved magne- sium (Mg)	Dis- solved sodium (Na)	Dis- solved potas- sium (K)
27	Weber River above Wilson Canal and Union Stockyards at (B-6-1)30dda	7-31-79 10-24-79 2-25-80 4-1-80 5-12-80 8-11-80	160 150 400 950 2,600 148	24.5 10.5 5.0 5.0 8.0 21.0	490 575 545 460 340 480	8.3 7.9 8.2 8.3 8.2 8.3	327 352 336 290 198 276	11 11 10 7.2 11 9.9	65 71 71 64 44 58	20 20 20 17 11 16	24 27 25 19 12 19	3.5 4.0 3.2 2.8 2.3 3.2
28	Weber River near I-15, 31st Street interchange at (B-5-1)6adb	7-31-79 10-24-79 2-25-80 4-1-80 5-12-80 8-11-80	160 140 395 925 2,600 148	24.0 11.0 5.0 5.0 8.0 21.5	475 595 545 490 310 460	8.3 8.0 8.2 8.3 8.2 8.5	288 346 334 293 195 265	11 11 10 7.4 9.6 9.8	59 71 71 66 44 56	19 20 20 17 11 16	21 27 25 19 12 18	3.2 3.8 3.0 2.7 2.1 3.0
29	Weber River at Riverdale Road at (B-5-1)7dbd	7-31-79 10-24-79 2-25-80 4-1-80 5-12-80 8-11-80	160 135 385 900 2,550 148	23.5 11.0 4.5 5.0 8.0 21.5	460 580 520 485 345 435	8.3 8.0 8.2 8.4 8.2 8.5	274 337 323 292 205 248	10 10 9.9 7.2 9.5 9.2	57 67 70 65 46 52	18 19 17 12 15	19 25 24 19 12 17	2.9 3.7 2.9 2.6 2.1 2.9
30	Mill Creek near Pioneer Power Plant at (B-6-1)22bbc	8-1-79 5-14-80	21 16	14.0 9.4	245 185	7.3 8.0	138 108	8.8 7.4	36 27	7.3 6.0	5.0 4.3	1.0
31	Pioneer Power Plant tailrace at (B-6-1)22bcb	8-1-79 5-14-80	96 241	14.5 9.0	235 185	7.1 7.9	129 106	7.5 7.4	30 27	6.5 6.0	4.7 4.3	1.2 1.0
32	Ogden River at Rainbow Gardens at canyon mouth at (B-6-1)23ccb	8-1-79 5-14-80	190 1,000	14.0 10.0	305 205	8.2 8.1	158 116	7.3 7.4	32 28	7.7 6.6	11 5.9	2.1 1.3
32.5	Burch Creek near Harrison Blvd. at (B-5-1)15dbb	5-13-80	12	6.5	97	8.4	54	9.0	9.5	3.2	4.4	.7
33	Weber River at canyon mouth below Weber- Davis Canal diversion at (B-5-1)25dcd	8-1-79 10-25-79 2-26-80 4-2-80 5-13-80 8-11-80	160 127 380 865 2,500 166	15.0 8.0 2.0 3.0 7.0 18.0	505 570 500 490 315 430	8.3 8.1 8.3 8.3 8.4 8.5	306 349 310 279 196 254	8.7 10 9.3 7.2 9.0 9.1	72 73 68 63 45 58	18 19 18 16 11 14	15 23 21 17 11 14	2.6 3.3 2.8 2.5 2.0 2.3
34	South Weber Canal below diversion at (B-5-1)25dcb	8-1-79 5-13-80	45 Dry	15.0	510	8.3 -	288	8.7	67	15 -	15	2.6
35	Weber-Davis Canal at Job Corps Center at (B-5-1)36baa	8-1-79 5-13-80	284 Dry	15.0	505	8.3 -	305	8.5 -	69 -	18 -	15 -	2.6 -
37	Weber River at Gateway at U.S.G.S. gage at (A-5-1)27cbd	8-2-79 8-23-79 9-18-79 10-25-79 12-13-79 1-23-80 2-21-80 2-26-80 3-18-80 4-22-80 4-23-80 5-12-80 6-18-80 7-21-80 8-12-80	432 360 333 127 80 133 493 373 441 858 2,570 2,450 2,180 846 551 456	15.0 15.0 8.0 1.0 2.0 2.5 3.0 7.0 7.0 11.0 11.5 13.5 14.5	505 530 490 580 650 565 520 505 450 320 360 360 360 360 440 420	8.0 8.1 7.9 8.3 8.3 8.3 8.3 8.3 8.2 7.1 7.9 8.0 8.1	299 306 302 357 304 367 276 314 300 287 173 207 181 212 270 245	8.0 10 9.0 11 13 11 8.2 11 7.2 8.6 9.4 8.6 12 9.2 8.7	70 65 67 76 51 68 68 64 39 47 43 49 60 58	18 16 18 19 20 16 19 17 16 9.8 12 10 12 14 13	15 17 26 22 27 22 28 18 11 11 11 11 12 14 13	2.6 2.8 3.4 2.2 3.0 3.9 2.5 2.5 2.5 2.1 1.8 2.5 2.3
37.5	Weber River at Gateway above power plant at bridge at (A-5-1)27cda	8-2-79 10-25-79 2-25-80 5-13-80 8-12-80	125 61 175 2,000 115	15.0 8.0 3.0 6.5 14.5	520 580 490 335 510	8.1 7.9 8.2 8.1 8.1	323 347 309 196 304	10 12 10 9.4 12	76 75 68 45 71	19 19 17 11 16	16 20 21 11 16	2.7 3.1 2.8 2.0 2.8
38	Gateway Canal at diversion to Gateway tunnel	8-2-79	560	15.0	500	8.1	297	7.9	71	15	15	2.5

at (A-5-1)27cdc

in the Weber River basin, July 1979 through August 1980--Continued

Milligrams	per	liter	

Alka- linity (total as CaCO3)	Dis- solved sul- fate (S04)	Dis- solved chlor- ide (Cl)	Dis- solved fluor- ide (F)	Dis- solved nitrate (NO ₃) + nitrite (NO ₂) (as N)	Dissolved phos- phorus, ortho- phos- phate (as P)	Dis- solved phos- phate, ortho (as PO4)	Total hard- ness (as CaCO3)	Non- car- bonate hard- ness (as CaCO ₃)	Sodium adsorp- tion ratio	Dis- solved boron (B) (mg/L)	Potas- sium-40 (pCi/L)	Dis- solved oxygen (mg/L)	
190 230 210 200 130 190	42 43 43 34 22 28	46 35 34 24 16 26	0.2 .2 .1 .1 .2	0.15 .51 .63 .32 .31 .25	0.01 .01 .07 .01 .01	0.03 .03 .21 .03 .03 .03	240 260 260 230 160 210	55 30 50 30 25 21	0.7 .7 .5 .4 .6	80 60 40 40 120	2.6 3.0 2.4 2.1 1.7 2.4	- 11.6 10.7 11.4 10.4 11.0	
180 220 220 200 130 180	42 44 36 35 22 28	24 35 34 24 15 25	•2 •2 •2 •1 •1 •2	.10 .47 .61 .32 .30 .15	.01 .02 .05 .01 .01	.03 .06 .15 .05 .03 .03	230 260 260 230 160 210	46 40 35 25 26	.6 .7 .7 .5 .4 .5	70 60 50 40 40 120	2.4 2.8 2.2 2.0 1.6 2.2	11.7 10.8 11.4 10.1 11.3	
170 220 210 200 130 170	41 44 35 35 27 28	23 34 33 24 16 21	•2 •2 •2 •1 •1 •1	.04 .35 .61 .31 .36 .07	.00 .01 .08 .01 .01 .01	.00 .03 .25 .03 .03 .03	220 250 250 230 160 190	46 26 43 32 34 22	.6 .7 .7 .5 .4 .5	70 60 50 50 40 100	2.2 2.8 2.2 1.9 1.6 2.2	9.6 11.6 10.7 11.4 9.9 11.0	
100 81	12 6.3	6.5 5.7	.1 .1	.35 .29	.00 .01	.00 .03	120 92	20 11	• 2 • 2	10	.8 .7	:	
100 81	11 5.2	6.6 5.4	.1 .1	.35 .28	.00 .03	.00 .09	100 92	2 11	:2 :2	10 10	.9 .7	Ξ	
110 84	15 6.7	15 8.7	.1 .1	.33 .25	.00 .04	.00 .12	110 97	2 13	.5 .3	40 20	1.6 1.0	Ξ	
25	5.9	4.4	.1	.33	.01	.03	37	12	.3	10	.5	-	
210 230 210 190 130 180	41 44 33 35 23 27	21 35 29 23 15 20	.2 .2 .1 .2 .2	.28 .61 .53 .28 .30 .29	.01 .03 .05 .01 .01 .01	.03 .09 .15 .03 .03 .03	250 260 240 220 160 200	44 31 34 33 28 23	.4 .6 .5 .4 .4	80 50 50 40 30 80	1.9 2.5 2.1 1.9 1.5 1.7	8.5 9.9 10.3 10.2 10.1 10.5	
190	42	22	2	.29	00	00	230	39 -	4	20	1.9	8.5	
210	42	22	_••2	29	00	.00	250	36 -	- 5	60	1.9		
200 210 200 230 190 230 160 210 190 200 110 140 120 140 200 170	42 39 37 47 31 48 31 35 35 21 24 20 24 20 24 27	22 28 29 39 24 38 37 32 27 23 14 16 13 18 20 19	.2 .1 .2 .2 .2 .2 .2 .2 .2 .1 .1 .2 .2 .1 .2 .2 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	. 23 . 31 . 21 . 48 . 78 . 88 . 55 . 45 . 49 . 31 . 39 . 26 . 26 . 40 . 35 . 32	.00 .04 .04 .01 .03 .08 .04 .05 .01 .02 .05 .00	.00 .12 .03 .03 .09 .25 .12 .15 .03 .06 .06 .15 .06	250 230 260 270 270 190 250 270 140 170 150 170 210 200	49 18 41 31 78 42 33 38 50 26 28 27 29 32 7 28	.455.767.8666.554444444	50 40 50 50 70 50 70 50 40 40 30 40 110	1.9 2.1 1.8 2.5 2.2 2.9 1.9 1.9 1.9 1.4 1.6 1.3 1.5 1.9	8.0 - 10.2 11.6 9.4 11.7 10.0 10.4 9.9 10.4 9.8 10.2 10.5 8.6 8.1	
220 240 210 130	42 40 34 22	23 30 27 16	.2 .2 .2 .2	.33 .66 .68 .28	.01 .01 .05 .01	.03 .03 .15 .03	270 270 240 160	48 26 30 28	.5 .5 .6 .4	10 50 50 30	2.0 2.3 2.1 1.5	10.7 10.1 10.2	
220 200	30 41	22 23	.2 .2	.026 .21	.00 .00	.00 .00	240 240	23 39	.4 .4	120 80	2.1 1.9	8.1	

Table 7.--Chemical analyses of water samples collected

Site No.	Site name	Date of collection	Dis- charge (ft ³ /s)	Temper- ature (°C)	Spe- cific con- duct- ance (µmhos)	рН	Dis- solved solids (sum of consti- tuents)	Dis- solved silica (SiO ₂)	Dis- solved cal- cium (Ca)	Dis- solved magne- sium (Mg)	Dis- solved sodium (Na)	Dis- solved Potas- sium (K)
38.5	Unnamed creek at Gateway bridge at (A-5-1)27cda-2	5-13-80	6.0	7.5	86	8.2	54	9.3	8.7	2.9	4.3	0.5
39	Strawberry Creek at mouth at (A-5-1)27caa	8-2-79 5-13-80	.10 15	13.0 7.5	125 63	8.2 7.7	74 39	12 8.7	11 6.4	3.5 2.2	6.2 3.2	.8 .7
40	Jacob's Creek at mouth at (A-5-1)27ddd	8-2-79 5-13-80	Dry 2.0	. 0	105	7.2	62	- 9.1	13	3.5	4.6	.5
41	Gordon Creek near mouth at (A-5-1)26bdc	8-2-79 5-13-80	2.0 26	13.5 8.0	87 90	7.1 7.6	48 55	4.2 9.6	10 12	2.6 2.2	3.6 3.9	.9 1.0
42	Dry Creek near mouth at (A-5-1)26acb	8-2-79 5-13-80	Dry 23	8.5	235	8.0	150	22	30	4.8	13	- 3.1
43	Cottonwood Creek near mouth at (A-5-1)25dbb	8-2-79 5-13-80	Dry 152	9. 0	115	- 8.1	65	- 9.1	15	3.5	3.5	. 9
44	Peterson Creek at mouth at (A-4-2)6bdd	8-2-79 5-13-80	23.10	20.0 9.5	460 150	8.7 7.9	276 84	.4 8.0	63 21	16 3.9	16 4.7	2.7 .7
45	Ogden River below Pineview Reservoir at (A-6-1)16cad	8-1-79 10-25-79 5-14-80	210 7 900	13.0 11.0 9.5	325 320 185	8.2 7.9 7.9	167 173 107	.4 3.3 7.3	42 43 27	11 11 5.9	4.4 6.7 4.3	.8 1.5 1.6
46	Wheeler Creek at mouth at U.S.G.S. gage at (A-6-1)16db	8-1-79 5-14-80	3.6 82	12.0 10.0	375 245	8.4 8.2	196 144	.7 7.7	50 37	15 8.9	4.4 5.7	.7 1.0.
47	South Fork of South Fork Ogden River near mouth at (A-6-2)19aab	8-1-79 5-14-80	3.0 350	15.0 7.5	430 205	7.9 7.9	226 119	.0 7.7	57 30	14 6.8	7.8	1.4 .8
48	South Fork Ogden River near mouth at (A-6-2)19aab	8-1-79 5-14-80	5.0 275	16.5 7.5	405 200	8.0 8.0	223 116	6.5 7.5	55 30	14 6.4	5.4 3.4	1.9 .8
49	Spring Creek at mouth at (A-6-2)7dcc	1 8-1-79 5-14-80	5.0 13	20.0 11.5	455 405	8.2 8.0	271 235	10 8.5	69 59	18 16	7.0 7.7	1.9 1.1
50	Middle Fork Ogden River near mouth at (A-6-2)6bcc	8-1-79 5-14-80	90 ^{•3}	21.0 7.5	225 105	7.1 8.0	114 61	.7 7.6	28 16	5.1 2.2	7.5 2.5	•4 •6
51	North Fork Ogden River near mouth at (A-7-1)34cdb	8-1-79 5-14-80	1.0 338	18.5 10.0	320 140	7.1 8.0	159 78	.7 5.6	40 18	8.2 3.4	6.0 3.9	.9 .6
52	South Fork Ogden River at U.S.G.S. gage at (A-6-2)12cad	8-1-79 5-14-80	86 620	18.5 7.0	325 190	8.5 8.1	172 109	.9 6.6	43 29	12 6.0	3.1 3.1	.7 .8
52.3	Beaver Creek (Trib. to South Fork Ogden River) at mouth at (A-7-3)33cbd	8-1-79 5-14-80	3.0 110	19.5 5.5	350 170	8.4 8.1	179 101	.0 7.8	44 28	12 3.9	5.7 3.7	.8 .8
52,6	South Fork Ogden River below Causey Reservoir at (A-7-3)34dcb	8-1-79 5-14-80	89 390	14.0 7.0	340 200	8.3 8.2	182 116	.7 5.9	47 31	12 7	2.6 2.5	•7 •7
53	Weber River above Stoddard diversion at (A-4-2)21acb	8-1-79 10-25-79 2-26-80 4-2-80 5-13-80 8-12-80	680 116 285 650 1,755 625	15.5 10.0 4.0 3.0 8.0 14.5	495 610 530 480 370 430	8.2 7.8 8.3 8.3 8.1 8.1	293 352 315 282 213 247	.0 9.3 8.3 6.6 8.7 8.6	70 72 68 64 47 57	17 19 20 17 12 14	16 27 22 18 12 14	2.5 3.3 2.6 2.5 2.1 2.3

,

in the Weber River basin, July 1979 through August 1980

	Milligrams	per lit	er	Dis-	Dissolved							
Alka- linity (total as CaCO ₃)	Dis- solved sul- fate (SO4)	Dis- solved chlor- ide (Cl)	Dis- solved fluor- ide (F)	solved nitrate (NO ₃) + nitrite (NO ₂) (as N)	phose- phorus, ortho- phos- phate (as P)	Dis- solved phos- phate, ortho (as PO ₄)	Total hard- ness (as CaCO ₃)	Non- car- bonate hard- ness (as CaCO3)	Sodium adsorp- tion ratio	Dis- solved boron (B) (mg/L)	Potas- sium-40 (pCi/L)	Dis- solved oxygen (mg/L)
24	9.7	3.7	0,1	0.10	0.01	0.03	34	10	0.3	20	0.4	-
42 18	10 3.5	4.6 2.4	.1 .1	.04 .14	.00 .01	.00	42 27	0 7	.4 .3	40 9	.6 .5	-
37	5.2	3.9	1	.01	01	03	47	10	.3	10	4	:
31 32	4.5 2.9	3.6 3.2	•1 •1	.01 .08	.00	.00	36 39	5 7	.3 .03	30 20	:7 :7	-
90	11	11	- .2	06	06	18	95	5	- .6	40	2.3	-
38	6.2	3.9	1	08	- .05	15	52	14	2	30	7	2
190 61	37 3.4	26 4.3	• 2 • 1	.02	.03	.09	220 69	33 8	.5 .2	60 20	2.0	-
150 140 80	11 13 5.6	6.2 9.3 5.9	• 1 • 1 • 1	.17 .15 .26	.01 .01 .03	.03 .03 .09	150 150 92	0 13 12	. 2 . 2 . 2	40 30 20	.6 1.1 1.2	8.8 9.0
180 120	11 4.8	6.0 6.4	.1	.06 .10	.01	.03	190 130	7 9	. 1 . 2	20 20	•5 •7	1
200 96	12 5.2	13 5.1	.1 .1	.05	.04 .02	.12	200 100	0 7	.2 .2	30 20	1.0	:
200 94	11 6.4	7.6 3.8	• 1 • 1	. 26 . 28	.00 .03	.00	200 100	0 7	.2	0 20	1.4	:
230 200	11 8.3	14 10	.1 .1	.35 .91	.01 .02	.03	250 210	16 13	.2	39 50	1.4	-
93 43	7.6 3.0	8.4 2.5	.1 .1	.00 .12	.00 .02	.00	91 49	0 6	• 3 • 2	30 40	• 3 • 4	Ξ
130 56	14 6.3	9.1 4.6	.1 .1	.46 .33	.00	.00	130 59	4 3	.2 .2	20 9	• 7 • 4	-
160 89	11 4.8	4.2 3.5	•1 •1	.28 .26	.01 .01	.03 .03	160 97	0 8	.1 .1	50 20	.5 .6	-
160 82	11 3.3	8.7 3.7	.1 .1	.02 .19	.00 .02	.00 .06	160 86	0 4	.2 .2	20 20	.6 .6	:
170 100	11 4.1	3.6 3.4	.1 .1	.38 .29	.00 .02	.00 .06	170 110	0 6	. 1 . 1	20 20	.5 .5	-
200 220 210 190 150 170	38 46 34 35 24 27	28 41 32 23 16 20	.1 .2 .1 .2 .2	.21 .47 .46 .26 .22 .37	.04 .01 .05 .01 .02 .02	.12 .03 .15 .03 .06 .06	240 260 250 230 170 200	45 38 42 40 17 30	.4 .7 .6 .5 .4 .4	40 50 60 60 40 110	1.9 2.5 1.9 1.9 1.6 1.7	8.2 11.0 10.8 10.1 9.9 -

Site No.	Site name	Date of collection	Dis- charge (ft ³ /s)	Temper- ature (°C)	Spe- cific con- duct- ance (µmhos)	рН	Dis- solved solids (sum of consti- tuents)	Dis- solved silica (SiO ₂)	Dis- solved cal- cium (Ca)	Dis- solved magne- sium (Mg)	Dis- solved sodium (Na)	Dis- solved potas- sium (K)
54	Gateway Canal at Stoddard diversion at (A-4-2)21bda	8-1-79	610	15.5	495	8.2	284	0.7	63	15	15	2.5
55	Line Creek at mouth at (A-4-2)21cdd	8-1-79 5-13-80	.25 38	16.5 9.5	390 130	8.5 8.1	217 73	.8 9.1	51 17	8.9 3.1	15 4.4	3.7
56	Deep Creek at mouth at (A-4-2)34bcc	8-1-79 5-13-80	.75 68	17.5 9.0	370 160	8.3 8.0	225 94	9.3 12	56 20	8.9 4.6	14 5.7	2.3 1.0
57	East Canyon Creek near mouth at Morgan at (A-4-2)35dcc	8-1-79 10-25-79 2-26-80 4-2-80 5-13-80 8-12-80	130 17 26 106 385 135	15.0 8.0 3.5 3.5 7.5 14.0	530 540 500 535 360 505	8.4 8.2 8.4 8.5 8.2 8.1	334 315 300 320 206 315	7.7 8.0 8.7 4.1 8.5 8.9	72 71 68 73 50 71	18 16 17 17 10 14	19 18 20 20 12 19	2.3 2.4 1.8 1.9 1.4 2.3
58	Weber River at Morgan at (A-4-2)36bbc	8-1-79 10-25-79 5-13-80	560 99 1,370	17.5 9.0 9.0	460 640 385	8.4 8.0 8.2	279 367 222	8.7 6.8 8.5	61 68 49	16 21 13	15 36 13	2.5 3.5 2.4
58.2	Como Springs at (A-4-3)31cab	5-13-80	-	27.5	880	7.3	553	19	99	32	33	8.2
58.5	Hardscrabble Creek at mouth at (A-3-2)24cdb	8-1-79 5-13-80	2.0 225	18.5 7.5	400 260	8.2 8.3	222 146	.7 8.1	56 39	13 7.6	8.2 5.0	1.3
59	Weber River above Lost Creek at (A-4-4)19cdd	8-1-79 10-25-79 2-25-80 4-2-80 5-12-80 8-12-80	525 74 190 445 800 460	21.0 11.0 7.0 5.0 7.0 18.0	445 720 535 480 470 370	8.5 8.2 8.4 8.4 7.8 8.3	239 396 311 276 243 203	.4 6.8 6.6 8.8 8.8 8.0	57 61 62 52 48	15 25 19 17 15 12	13 54 23 16 15 9.9	2.6 4.0 2.6 2.7 2.8 2.0
59.5	lrrigation return flow from Henefer Valley at (Λ-4-4)32bad	5-13-80	5.0	13.0	560	8.0	318	11	58	16	35	3.1
60	Lost Creek at mouth at (A-4-4)19dcc	8-1-79 10-25-79 2-26-80 4-2-80 5-12-80 8-12-80	35 25 35 96 400 49.4	17.0 11.0 7.5 6.0 5.0 13.5	485 545 500 450 280 460	7.9 7.7 8.0 8.4 7.6 8.0	302 315 299 262 169 268	7.2 9.3 7.3 5.0 6.4 8.8	70 70 69 61 39 65	16 15 16 14 8.7 13	18 19 19 14 9.1 15	3.0 3.3 3.3 2.0 1.5 1.9
60.5	Lost Creek below Lost Creek Reservoir at (A-5-5)8dba	8-1-79 5-12-80	55 190	8.0 5.0	380 355	8.2 8.5	239 224	6.2 3.9	58 52	12 12	11 11	1.3 1.4
61	East Canyon Creek below East Canyon Reservoir at U.S.G.S. gage at (A-2-3)10bbc	8-1-79 10-26-79 5-13-80	175 16 134	13.5 6.5 8.0	520 585 470	8.3 7.7 8.2	332 352 279	7.8 12 7.6	76 74 58	16 16 13	19 26 19	2.2 2.3 2.1
62	East Canyon Greek above East Canyon Reservoir at (A-2-3)26bda	8-1-79 5-13-80	18 193	23.0 9.0	540 430	8.6 8.2	342 258	12 12	79 60	18 12	15 14	1.9 1.5
63	East Canyon Creek above Toll Creek near Gorgoza at (D-1-3)12bab	8-3-79 10-26-79 2-26-80 4-3-80 5-14-80 8-13-80	8.0 16 20 21 88 13.3	13.0 10.0 .5 .5 5.0 24.0	660 700 750 750 475 620	8.2 8.5 8.3 8.2 8.2 8.7	445 475 513 480 285 388	14 11 13 13 11 13	98 100 110 100 65 84	26 25 28 25 16 23	19 16 28 22 13 13	1.9 2.5 2.2 2.0 1.4 1.5
64	Toll Creek near mouth at (D-1-3)llaad	8-3-79 5-14-80	1.0 14	12.5 4.5	850 575	8.2 8.2	475 328	13 9.8	110 76	22 12	24 29	1.7 1.2
65	East Canyon Creek at Kimball Junction at (A-1-4)18cbc	8-3-79 5-14-80	6.0 85	16.5 6.0	680 470	8.3 8.1	457 282	16 12	100 61	27 16	16 13	2.0 1.3
66	Unnamed creek Kimball Junction at mouth at (D-1-4)19aba	8-3-79 5-14-80	2.0 26	11.5 8,0	590 350	8.2 8.2	395 197	15 9.1	86 46	22 7.8	14 12	3.6

in the Weber River basin, July 1979 through August 1980

Milligrams per liter

	Pre i rigi ana	per rre	C. E										
Alka- linity (total as CaCO3)	Dis- solved sul- fate (SO4)	Dis- solved chlor- ide (Cl)	Dis- solved fluor- ide (F)	Dis- solved nitrate (NO ₃) + nitrite (NO ₂) (as N)	Dissolved phos- phorus, ortho- phos- phate (as P)	Dis- solved phos- phate, ortho (as PO ₄)	Total hard- ness (as CaCO ₃)	Non- car- bonate hard- ness (as CaCO ₃)	Sodium adsorp- tion ratio	Dis- solved boron (B) (mg/L)	Potas- sium-40 (pCi/L)	Dis- solved oxygen (mg/L)	
200	38	28	0.1	0.21	0.01	0.03	220	19	0.4	40	1.9	-	
150 50	15 4.2	31 3.9	.1 .1	.33 .13	.04 .04	.12	160 55	14 5	•5 •3	40 20	2.8	-	
160 63	14 6.1	24 5.7	• 2 • 1	.08 .09	.01 .03	.03	180 69	17 6	.5 .3	40 20	1.7 .7	-	
180 200 200 180 140 180	70 48 36 64 23 58	36 30 27 31 16 32	.1 .2 .1 .1 .2	.16 .28 .34 .12 .15 .31	.01 .04 .05 .02 .04 .06	.03 .12 .15 .06 .12 .18	250 240 250 170 240	74 43 40 72 26 55	.5 .5 .6 .5 .4 .5	20 30 30 30 40 100	1.7 1.8 1.3 1.4 1.0 1.7	7.9 11.2 11.8 12.4 10.1 8.4	
200 210 150	29 53 26	26 52 18	.1 .2 .2	.15 .13 .33	.01 .01 .04	.03 .03 .12	220 260 180	18 46 26	.4 1.0 .4	100 60 50	1.9 2.6 1.8	7.7 11.7	
200	210	30	1.5	.04	.03	.09	380	180	.7	10	6.1	-	
200 120	12 7.1	9.6 5.7	.1 .2	.21 .06	.01 .02	.03 .06	190 130	0 9	•2 •2	30 10	1.0	-	
170 210 220 200 170 150	25 40 26 26 25 17	23 78 33 24 21 14	.1 .2 .1 .2 .1	.15 .11 .27 .21 .30 .27	.00 .02 .05 .01 .03 .01	.00 .06 .15 .03 .09 .03	200 260 250 220 190 170	34 45 26 25 22 19	.4 1.5 .6 .5 .5 .3	60 80 50 40 40 100	1.9 3.0 1.9 2.0 2.1 1.5	- 9.6 10.8 9.5 8.0	
190	26	52	• 2	.48	.04	.12	210	21	1.1	50	2.3	-	
200 210 190 170 110 190	46 44 46 47 26 30	20 26 22 16 10 18	. 2 . 2 . 1 . 2 . 2	.31 .42 .36 .23 .36 .38	.00 .04 .03 .01 .04 .00	.00 .12 .09 .03 .12 .00	240 240 240 210 130 220	41 27 48 40 23 26	•5 •5 •4 •3 •4	50 40 40 30 30 110	2.2 2.5 2.5 1.5 1.1 1.4	9.6 9.2 10.8 9.3 8.6	
150 150	48 40	11 12	•2 •2	.34 .29	.00 .03	.00 .09	190 180 -	44 29	.3 .4	0 30	1.0	-	
170 180 150	79 74 55	29 37 33	.2 .2 .1	.14 .59 .25	.01 .12 .05	.03 .37 .15	260 250 200	86 71 48	.5 .7 .6	50 40 40	1.6 1.7 1.6	- 7.6 -	
200 150	73 44	23 22	.2	.00 .37	.01 .05	.03 .15	270 200	71 49	.4 .4	30 60	1.4 1.1	2	
210 170 190 180 140 170 210 170	130 190 160 71 130 68 23	29 26 55 47 21 21 110 74	.2 .1 .2 .1 .1 .2 .2 .1	.09 .40 .53 .50 .60 .02 .00 .13	.04 .08 .07 .04 .03 .03 .01 .02	.12 .25 .21 .12 .09 .09 .03 .06	350 350 390 350 230 300 370 240	140 180 200 170 88 130 160 69	.4 .6 .5 .4 .3 1.0 .8	70 40 20 20 110 60 30	1.4 1.9 1.6 1.5 1.0 1.1 1.3 .9	11.8 - 9.8 7.3 -	
180 130	160 76	28 22	• 2 • 1	.00	.10	.31	360 220	180 88	.4 .4	70 10	1.5	:	
200 120	110 24	23 22	• 2 • 1	.18 .60	.10 .03	.31 .09	310 150	110 27	• 3 • 4	40 10	2.7 .8	-	

Table 7.--Chemical analyses of water samples collected

Site No.	Site name	Date of collection	Dis- charge (ft ³ /s)	Temper- ature (°C)	Spe- cific con- duct- ance (µmhos)	рН	Dis- solved solids (sum of consti- tuents)	Dis- solved silica (SiO ₂)	Dis- solved cal- cium (Ca)	Dis- solved magne- sium (Mg)	Dis- solved sodium (Na)	Dis- solved Potas- sium (K)
67	Willow Draw Creek at mouth at (D-1-4)20bca	8-3-79 5-14-80	1.5 1.0	12.5 8.0	680 660	7.9 7.9	465 419	15 12	100 87	27 24	13 18	1.0 1.3
68	Unnamed creek from Parleys Park at mouth at (D-1-4)20abd	8-3-79 5-14-80 8-13-80	.25 9.8 .1	16.0 8.0 21.0	1,130 360 920	7.9 8.0 8.3	674 207 535	41 19 42	110 37 98	37 8.8 29	74 22 38	3.6 1.7 3.5
69	Kimball Creek above unnamed creek from Parleys Park at (D-1-4)20acb	8-3-79 2-26-80 4-3-80 5-14-80 8-13-80	6.0 19 16 42 8.1	12.5 .0 .5 7.0 23.0	700 740 750 530 670	8.2 8.2 8.2 8.1 8.5	469 531 523 338 438	16 13 13 11 15	100 120 110 77 97	26 31 29 20 25	11 15 12 8.7 10	1.2 1.8 1.7 1.3 1.2
70	McLeod Creek below Park City at (D-2-4)6aab	8-3-79 2-26-80 4-3-80 5-14-80 8-13-80	7 9 7.5 25 11.9	13.5 4.5 5.0 10.0 17.0	720 800 815 560 750	7.9 8.3 8.4 8.1 8.1	491 604 590 363 523	4.7 14 14 13 15	110 130 120 82 120	27 35 33 21 28	10 13 11 7.5 7.5	2.5 2.2 2.0 1.4 1.7
71	Spiro Tunnel out- flow at Park City at (D-2-4)8dba	8-3-79 5-14-80	9.0 9.1	9.5 9.0	870 830	7.9 7.8	691 607	6.5 16	150 130	37 34	5.9 5.4	2.2
72	Silver Creek below Park City at (D-2-4)10bbd	8-3-79 5-14-80	Dry 3.0	11.5	495	- 7.9	331	11	- 59	.2 9.2	36	2.1
73	Dority Spring Creek above Silver Creek at (D-2-4)3cdc	8-3-79 5-14-80	3.0 5.5	12.5 11.0	720 740	7.7 7.8	446 519	30 14	100 110	26 29	13 18	1.7 1.6
74	Silver Creek at Keetley Junction at (D-2-4)2aab	8-3-79 2-27-80 4-3-80 5-14-80 8-13-80	.5 3 2 10 1	18.5 3.0 3.5 11.0 20.0	840 810 865 805 875	7.7 8.1 8.0 7.9 7.8	557 553 570 513 575	1.6 13 13 13 20	130 120 120 110 130	31 31 29 23 32	17 22 23 23 17	.9 1.7 2.4 2.0 .4
75	Silver Creek at Wanship at (A-1-5)20bad	8-2-79 2-27-80 4-2-80 5-12-80 8-12-80	2 10 7.3 67 1	18.5 4.5 3.0 6.5 21.0	665 830 875 425 720	8.3 8.3 8.7 8.1 8.2	381 552 568 273 447	5.5 21 23 18 30	86 120 120 57 97	16 25 24 11 17	23 35 34 15 29	3.9 4.2 3.6 2.1 3.9
76	Weber River below Echo Reservoir at (A-3-4)25add	8-2-79 10-26-79 2-26-80 4-2-80 5-12-80 8-12-80	510 6 146 420 700 470	18.5 9.0 4.0 9.0 17.5	440 520 440 435 380 340	8.2 7.9 8.3 8.3 8.1 8.2	261 296 269 251 242 192	8.6 6.9 5.3 6.4 18 7.7	59 67 65 59 57 46	15 18 17 15 11 11	11 16 13 12 15 7.6	2.5 2.8 2.3 2.6 .3 1.7
77	Echo Creek at mouth at (A-3-5)19ccc	8-2-79 2-26-80 4-2-80 5-12-80 8-12-80	3 30 12 109 5.2	18.0 4.0 7.0 6.0 19.0	635 900 960 480 650	8.4 8.4 8.5 8.1 8.3	344 509 490 273 371	.4 10 6.1 11 7.5	57 77 82 44 62	33 43 55 24 33	28 54 51 21 30	3.2 4.6 4.1 2.1 3.1
78	Chalk Creek at mouth at U.S.G.S. gage at (A-2-5)8dab	8-2-79 10-25-79 2-27-80 4-2-80 5-12-80 8-12-80	21 14.5 36 15 319 23.1	15.5 11.0 3.0 6.5 5.5 16.0	775 720 590 690 390 650	7.5 7.6 8.2 8.2 8.1 7.7	423 412 361 446 237 408	2.1 11 7.5 11 7.8 12	90 84 78 74 60 88	28 27 24 25 15 27	28 30 27 30 9.8 25	3.4 3.8 3.0 2.5 1.6 3.5
78.5	Chalk Creek above Upton at (A-2-5)4adb	8-2-79 5-12-80	12 230	19.5 5.0	375 380	8.4 8.0	202 234	.8 7.0	49 57	16 17	7.5 8.9	1.0
79	Weber River near Coalville above Echo Reservoir at U.S.G.S. gage at (A-2-5)20aca	8-2-79 2-27-80 4-2-80 5-12-80 8-12-80	174 205 187 790 134	14.5 5.0 6.0 8.0 16.5	380 425 435 320 290	8.4 8.5 8.4 7.9 8.2	205 253 256 196 163	.1 8.4 9.8 11 8.6	52 62 62 48 40	12 15 15 12 8.9	7.8 11 11 8.1 5.8	2.1 2.6 2.8 2.4 1.4
80	Weber River below Rockport Reservoir at (A-1-5)29acb	8-2-79 10-26-79 2-27-80 4-3-80 5-12-80 8-12-80	165 20 150 160 800 155	13.0 12.0 2.0 3.0 7.0 13.0	340 360 375 395 310 225	8.2 7.8 8.3 8.3 8.0 8.1	193 202 224 234 181 133	.7 4.8 7.2 8.6 9.8 6.8	50 50 57 56 45 32	12 12 14 14 12 6.6	6.4 7.0 9.1 8.7 6.8 3.1	1.9 2.0 2.5 2.7 2.3 1.0

in the Weber River basin, July 1979 through August 1980

	Milligrams per liter				Dissolved							
Alka- linity (total as CaCO ₃)	Dis- solved sul- fate (SO4)	Dis- solved chlor- ide (Cl)	Dis- solved fluor- ide (F)	Dis- solved nitrate (NO ₃) + nitrite (NO ₂) (as N)	phos- phorus, ortho- phos- phate (as P)	Dis- solved phos- phate, ortho (as PO4)	Total hard- ness (as CaCO ₃)	Non- car- bonate hard- ness (as CaCO ₃)	Sodium adsorp- tion ratio	Dis- solved boron (B) (mg/L)	Potas- sium-40 (pCi/L)	Dis- solved oxygen (mg/L)
170 130	180 160	22 34	0.1	1.1 1.0	0.04	0.12	360 320	190 190	0.3	6 20	0.7	-
200 110 150	48 12 33	240 40 200	• 2 • 2 • 2	.02 .04 .26	.01 .05 .00	.03 .15 .00	430 130 360	230 19 210	1.6 .8 .9	70 30 120	2.7 1.3 2.6	-
190 170 160 140 170	180 220 240 120 170	18 25 19 13 15	.1 .2 .1 .1 .2	.57 .56 .47 .68 .55	.08 .08 .03 .02 .01	.25 .25 .09 .06 .03	360 430 390 270 350	170 260 230 130 180	.3 .3 .2 .2	70 30 20 20 100	.9 1.3 1.3 1.0 .9	14.6 11.4 10.1 8.6
150 150 140 140 150	230 300 310 140 250	11 18 14 11 8.5	.2 .2 .1 .1 .2	1.2 .41 .32 .58 .41	.37 .09 .06 .02 .02	1.1 .28 .18 .06 .06	390 470 440 290 420	240 320 300 150 270	.2 .3 .2 .2 .2	0 30 20 20 100	1.9 1.6 1.5 1.0 1.3	10.5 11.3 8.5 7.5
140 140	400 330	4.4 4.3	.2 .2	.14 .19	.05	.15 .03	530 460	390 320	:1	40 9	1.6	Ξ
66	120	51	2	.59	01	03	190	120	1.2	ī	1.6	
170 170	160 180	33 52	.1 .2	1.5 2.7	.04 .01	.12 .03	360 390	190 220	.3	50 20	1.3 1.2	-
250 180 170 130 230	190 190 210 200 190	36 61 63 56 47	.3 .2 .1 .2 .3	.01 1.3 1.6 1.7 .00	.17 .03 .02 .01 .13	.52 .09 .06 .03 .40	450 430 420 370 460	200 250 250 240 230	.3 .5 .5 .3	30 40 50 30 100	.7 1.3 1.8 1.5 .3	10.4
210 180 190 100 210	74 150 160 78 72	46 86 87 30 71	.2 .2 .2 .2 .3	.04 .47 .35 .29 .11	.08 .02 .01 .02 .07	.25 .06 .03 .06 .21	280 400 400 190 310	71 220 210 88 100	.6 .8 .7 .5 .7	70 50 40 40 110	2.9 3.1 2.7 1.6 2.9	11.2 10.5 9.6 7.0
200 220 210 190 160 150	28 31 23 25 26 15	16 21 16 16 17 11	.2 .1 .1 .1 .2 .2	.20 .15 .14 .19 .23 .28	.04 .02 .02 .01 .03 .00	.12 .06 .06 .03 .09 .00	210 240 230 210 190 160	9 21 22 19 28 10	.3 .4 .4 .5 .3	60 50 40 40 80	1.9 2.1 1.7 1.9 .2 1.3	7.8 10.8 11.2 7.6
220 290 320 180 230	49 52 65 25 45	41 90 92 34 51	.3 .3 .3 .3	.00 .82 .68 .67 .10	.01 .02 .01 .04 .01	.03 .06 .03 .12 .03	280 370 290 210 290	58 79 0 29 61	.7 1.2 .8 .6 .8	120 150 160 80 140	2.4 3.4 1.9 1.9 2.3	10.2 10.3 9.7 8.3
320 290 250 250 190 300	35 35 26 33 14 25	40 44 58 13 43	.4 .2 .2 .2 .2 .3	.83 .66 .31 .30 .41 .93	.03 .01 .00 .01 .02 .02	.09 .03 .00 .03 .06 .06	340 320 290 430 210 330	20 31 44 180 22 31	.7 .7 .7 1.1 .3 .6	120 90 50 60 40 110	2.5 2.8 2.2 3.1 1.2 2.6	9.3 10.9 11.0 11.0 6.6
180 190	8.1 15	11 12	•1 •2	.02 .38	.01 .01	.03 .03	190 210	8 22	.2	20 30	.7 1.0	-
170 190 190 140 130	18 24 26 19 11	10 15 14 1.0 8.2	.1 .2 .1 .1 .2	.13 .23 .23 .25 .24	.05 .00 .00 .01 .01	.15 .00 .00 .03 .03	180 220 220 170 140	9 27 27 29 7	.3 .3 .3 .2	60 40 30 30 70	1.6 1.9 2.1 1.8 1.0	11.0 11.0 9.2 8.1
160 170 180 190 140 99	17 16 15 17 12 7.2	7.4 7.3 9.4 12 8 3.6	.1 .1 .2 .1 .1 .1	.21 .08 .19 .22 .23 3.0	.05 .02 .01 .01 .03 .04	.15 .06 .03 .03 .09 .12	170 170 200 200 160 110	14 4 20 8 22 8	.2 .2 .3 .3 .2 .1	30 30 30 30 20 70	1.4 1.5 1.9 2.0 1.7 .7	7.3 10.2 11.1 7.9 7.8

'Table 7.--Chemical analyses of water samples collected

Site No.	Site name	Date of collection	Dis- charge (ft ³ /s)	Temper- ature (°C)	Spe- cific con- duct- ance (µmhos)	рН	Dis- solved solids (sum of consti- tuents)	Dis- solved silica (SiO ₂)	Dis- solved cal- cium (Ca)	Dis- solved magne- sium (Mg)	Dis- solved sodium (Na)	Dis- solved potas- sium (K)
80.5	Crandall Creek at mouth at (D-1-5)4aac	8-2-79 5-12-80	0.3 21	20.0 6.5	850 320	8.3 8.2	541 197	14 7.8	100 56	29 8.3	47 6.6	3.9 1.5
81	Weber River above Rockport Reservoir at (D-1-5)10bdb	8-2-79 2-27-80 4-3-80 5-12-80 8-12-80	55 80 73 750 80	20.5 6.0 7.0 19.0	400 395 405 230 400	8.8 8.5 8.6 8.2 8.3	218 247 239 136 241	3.3 11 10 7.7 13	58 64 60 36 59	14 15 15 8.5 14	7.9 8.2 6.8 3.5 7.3	1.9 3.1 2.0 .9 1.7
82	Fort Creek near mouth at (D-1-5)23aac	8-2-79 5-12-80	9.0 9.0	23.0	550 385	8.2 8.1	316 251	6.3 18	77 61	17 14	16 12	2.0 2.3
83	Weber River above Weber-Provo diversion at (D-1-6)21cca	8-2-79 2-27-80 4-3-80 5-13-80 8-13-80	4.0 42 38.5 500 7	19.5 2.0 4.5 4.0 22.0	280 285 295 220 275	8.0 8.6 8.6 8.3 8.3	149 177 169 112 149	.7 5.1 5.2 5.1 4.8	41 46 43 31 40	9.9 13 12 6.9 9.7	2.3 2.6 2.4 2.2 2.3	.6 .5 .6 .6
85	Whites Creek at mouth at (D-1-6)15cbc	8-2-79 5-13-80	Dry 13	4.0	355	8.2	227	9.2	61	13	7.3	- 1.4
86	Crooked Creek at mouth at (D-1-6)31cab	8-2-79 5-13-80	10 13	23.5 5.0	340 330	8.5 8.1	187 194	.9 6.9	52 54	12 11	3.3 2.8	.8 1.1
87	Beaver Creek near mouth at (D-2-5)laad	8-2-79 10-26-79 2-27-80 4-3-80 5-13-80 8-13-80	27 30 50 37 133 26.4	21.5 8.0 3.0 3.5 4.5 18.5	375 405 430 470 155 345	8.7 8.0 8.2 8.3 8.0 8.6	227 245 253 280 81 217	13 12 11 13 6.6 11	59 62 64 67 17 61	13 13 16 17 5.1 2	5.8 6.8 9.2 7.6 2.6 4.8	1.6 2.3 4.0 3.0 .7 1.2
88	Beaver Creek above Weber-Provo Canal at Kamas at (D-2-6)17dac	8-2-79 5-13-80	4.0 51	19.0 7.5	275 225	8.4 8.0	145 111	.1 4.4	37 29	12 6.3	3.2 2.5	.8 .8
89	Weber-Provo Canal above Beaver Creek at (D-2-6)17dac	8-2-79 5-13-80	Dry 5.0	9.0	350	8.1	181	12	42	11	6.0	1.7
9 0	Unnamed canal from Provo River at Francis at (D-2-6)28ccb	8-2-79 5-13-80	12 10	21.0 7.0	160 110	8.5 8.1	81 66	.3 7.8	21 16	4.7 3.3	1.9 1.7	1.6 .9
90.5	Beaver Creek below fish hatchery at (D-2-6)26baa	8-2-79 5-13-80	9.0 91	20.0 7.0	250 90	8.2 8.0	133 57	.8 6.9	32 12	11 3.8	2.8 2.3	.8 .6
91	Beaver Creek above above diversions near Sanak at (D-2-6)25dbb	8-2-79 5-13-80	7.0 88	21.5 6.0	70 77	8.4 8.2	33 48	.1 7.2	7.2 9.2	2.0 3.0	1.5 2.3	.6 .6
92	Weber River near Oakley at U.S.G.S. gage at (D-1-6)15aca	8-2-79 10-26-79 2-27-80 4-3-80 5-13-80 8-12-80	85 61 41 38.5 500 124	20.5 7.0 1.5 2.0 4.0 18.0	250 305 280 290 180 240	8.7 8.0 8.6 8.6 8.3 8.3	137 167 175 171 108 135	4.3 5.3 5.2 5.4 5.1 4.8	35 43 46 43 30 36	8.7 11 12 12 6.5 8.6	1.9 2.6 2.8 2.4 2.0 2.0	.6 .5 .5 .5
92.5	South Fork Weber River at mouth at (D-1-6)12dbb	8-2-79 5-13-80	10 44	17.5 4.5	310 250	8.7 8.2	168 146	.3 5.6	42 39	12 10	2.1 2.0	•5 •5
93	Weber River above Smith and Morehouse Creek at (A-1-7)26daa	8-2-79 5-13-80	60 280	20.0 4.5	210 175	8.6 8.3	114 100	4.7	31 28	7.4 6.3	1.6 1.7	.5
94	Smith and Morehouse Creek at U.S.G.S. gage at (A-1-7)36bbb	8-2-79 5-13-80	20 153	19.0 4.0	190 90	8.4 8.3	97 52	.2 5.0	24 12	6.9 3.6	1.5 1.3	.6 .4
95	Headwaters of Weber River below Reid's Meadow near Mirror Lake	8-3-79	.15	13.5	24	7.3	14	.1	2	.5	.9	.3

near Mirror Lake at (D-1-9)22dbc

.

in the Weber River basin, July 1979 through August 1980

1	Milligrams	per lit	er									
Alka- linity (total as CaCO3)	Dis- solved sul- fate (SO4)	Dis- solved chlor- ide (Cl)	Dis- solved fluor- ide (F)	Dis- solved nitrate (NO ₃) + nitrite (NO ₂) (as N)	Dissolved phos- phorus, ortho- phos- phate (as P)	Dis- solved phos- phate, ortho (as PO4)	Total hard- ness (as CaCO ₃)	Non- car- bonate hard- ness (as CaCO ₃)	Sodium adsorp- tion ratio	Dis- solved boron (B) (mg/L)	Potas- sium-40 (pCi/L)	Dis- solved oxygen (mg/L)
270 140	140 25	4.2 5.4	•2 •2	0.61	0.01	0.03	370 170	99 34	1.1 .2	130 20	2.9 1.1	-
180 200 200 110 200	17 14 15 8.7 12	6.9 9.7 9.1 3.7 6.6	• 2 • 2 • 1 • 1 • 2	.06 .39 .19 .17 1.6	.01 .01 .02 .03	.03 .03 .06 .09	200 220 210 130 210	23 22 12 15 5	.2 .2 .2 .1 .2	30 30 40 20 70	1.4 2.3 1.5 .7 1.3	11.3 10.7 9.7 7.9
270 190	23 18	9.1 9.1	•2 •2	.73 .39	.07 .04	.21	260 210	0 20	• 4 • 4	70 30	1.5	- -
130 150 140 92 130	14 17 19 7.7 11	2.2 2.3 2.4 2.1 1.9	• 1 • 1 • 1 • 1 • 1	.01 .10 .06 .19 .08	.01 .00 .00 .02 .00	.03 .00 .00 .06 .00	140 170 160 110 140	13 18 17 14 10	- 1 - 1 - 1 - 1 - 1	30 10 8 20 50	. 4 . 4 . 4 . 4 . 4	12.2 11.1 10.2 8.0
180	22	- 4.1	. 1	19	01	.03	210	26	- .2	30	1.0	-
170 170	12 12	3.7 3.4	.1 .1	.01 .20	.00 .02	.00 .06	180 180	9 10	•1 •1	70 9	.6 .8	-
190 200 210 240 55 180	12 18 10 14 7.7 11	6.8 8.6 11 13 7.2 5.6	.2 .1 .2 .1 .1 .1	.24 .51 .36 .32 .17 .35	.01 .02 .04 .01 .02 .02	.03 .06 .12 .03 .06 .06	200 210 230 240 63 200	11 8 16 0 8 22	.2 .2 .3 .2 .1 .1	30 30 30 30 10 60	1.2 1.7 3.0 2.2 .5 .9	10.8 11.4 10.4 9.1 11.0
130 91	8.9 8.1	3.8 4.6	.2 .1	.17 .18	.01 .01	.03 .03	140 98	12 7	.1 .1	10 20	.6 .6	-
150	8.2	9.1	1	.23	.03	.09	150	ō	2	60	- 1.3	-
62 46	12 5.2	2.2 2.3	.1 .1	.05 .21	.03 .01	.09 .03	72 54	10 8	.1 .1	20 20	1.2 .7	-
120 33	8.7 7.7	3.2 2.7	•2 •1	.21 .13	.01 .01	.03 .03	130 46	5 13	.1 .1	20 40	.6 .4	-
23 24	5.7 8.3	1.8 2.6	.1 .1	.00 .08	.00 .01	.00	26 35	3 11	• 1 • 2	30 40	• 4 • 4	-
120 140 150 140 88 120	12 18 16 20 7.7 9.2	1.9 2.2 2.2 2.7 2.0 1.5	. 1 . 1 . 1 . 1 . 1	.00 .11 .10 .09 .17 .07	.00 .00 .00 .00 .01 .00	.00 .00 .00 .00 .03 .00	120 150 160 160 100 130	3 13 14 17 14 5	.1 .1 .1 .1 .1	30 10 10 8 20 50	- 4 - 4 - 4 - 4 - 4 - 4	6.8 9.4 11.6 10.7 12.0 6.8
150 120	18 14	2.3 2.1	.1 .1	.05 .15	.00 .01	.00 .03	150 140	4 19	.1 .1	40 9	.4 .4	-
100 82	11 6.9	1.6 1.7	.1 .1	.02 .17	.04 .03	.12 .09	110 96	8 14	.1 .1	10 20	. 4 . 4	-
84 30	12 7.9	1.5 3.1	.1 .1	.03 .08	.01 .02	.03 .06	88 45	4 15	.1 .1	20 10	.4 .3	- -
7	4.3	1.2	.0	.00	.01	.03	7	0	. 1	10	.2	-

PUBLICATIONS OF THE UTAH DEPARTMENT OF NATURAL RESOURCES, DIVISION OF WATER RIGHTS

(*)-Out of Print

TECHNICAL PUBLICATIONS

- *No. 1. Underground leakage from artesian wells in the Flowell area, near Fillmore, Utah, by Penn Livingston and G. B. Maxey, U.S. Geological Survey, 1944.
- No. 2. The Ogden Valley artesian reservoir, Weber County, Utah, by H. E. Thomas, U.S. Geological Survey, 1945.
- *No. 3. Ground water in Pavant Valley, Millard County, Utah, by P. E. Dennis, G. B. Maxey and H. E. Thomas, U.S. Geological Survey, 1946.
- *No. 4. Ground water in Tooele Valley, Tooele County, Utah, by H. E. Thomas, U.S. Geological Survey, in Utah State Engineer 25th Biennial Report, p. 91-238, pls. 1-6, 1946.
- *No. 5. Ground water in the East Shore area, Utah: Part I, Bountiful District, Davis County, Utah, by H. E. Thomas and W. B. Nelson, U.S. Geological Survey, in Utah State Engineer 26th Biennial Report, p. 53-206, pls. 1-2, 1948.
- *No. 6. Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah, by P. F. Fix, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S. Geological Survey, in Utah State Engineer 27th Biennial Report, p. 107-210, pls. 1-10, 1950.
- No. 7. Status of development of selected ground-water basins in Utah, by H. E. Thomas, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S. Geological Survey, 1952.
- *No. 8. Consumptive use of water and irrigation requirements of crops in Utah, by C. O. Roskelly and W. D. Criddle, Utah State Engineer's Office, 1952.
- No. 8. (Revised) Consumptive use and water requirements for Utah, by W. D. Criddle, Karl Harris, and L. S. Willardson, Utah State Engineer's Office, 1962.
- No. 9. Progress report on selected ground water basins in Utah, by H. A. Waite, W. B. Nelson, and others, U.S. Geological Survey, 1954.
- *No. 10. A compilation of chemical quality data for ground and surface waters in Utah, by J. G. Connor, C. G. Mitchell, and others, U.S. Geological Survey, 1958.

- *No. 11. Ground water in northern Utah Valley, Utah: A progress report for the period 1948-63, by R. M. Cordova and Seymour Subitzky, U.S. Geological Survey, 1965.
- *No. 12. Reevaluation of the ground-water resources of Tooele Valley, Utah, by J. S. Gates, U.S. Geological Survey, 1965.
- *No. 13. Ground-water resources of selected basins in southwestern Utah, by G. W. Sandberg, U.S. Geological Survey, 1966.
- *No. 14. Water-resources appraisal of the Snake Valley area, Utah and Nevada, by J. W. Hood and F. E. Rush, U.S. Geological Survey, 1966.
- *No. 15. Water from bedrock in the Colorado Plateau of Utah, by R. D. Feltis, U.S. Geological Survey, 1966.
- *No. 16. Ground-water conditions in Cedar Valley, Utah County, Utah, by R. D. Feltis, U.S. Geological Survey, 1967.
- *No. 17. Ground-water resources of northern Juab Valley, Utah, by L. J. Bjorklund, U.S. Geological Survey, 1968.
- No. 18. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah, by J. W. Hood and K. M. Waddell, U.S. Geological Survey, 1968.
- No. 19. An appraisal of the quality of surface water in the Sevier Lake basin, Utah, by D. C. Hahl and J. C. Mundorff, U.S. Geological Survey, 1968.
- No. 20. Extensions of streamflow records in Utah, by J. K. Reid, L. E. Carroon, and G. E. Pyper, U.S. Geological Survey, 1969.
- No. 21. Summary of maximum discharges in Utah streams, by G. L. Whitaker, U.S. Geological Survey, 1969.
- No. 22. Reconnaissance of the ground-water resources of the upper Fremont River valley, Wayne County, Utah, by L. J. Bjorklund, U.S. Geological Survey, 1969.
- No. 23. Hydrologic reconnaissance of Rush Valley, Tooele County, Utah, by J. W. Hood, Don Price, and K. M. Waddell, U.S. Geological Survey, 1969.
- No. 24. Hydrologic reconnaissance of Deep Creek valley, Tooele and Juab Counties, Utah, and Elko and White Pine Counties, Nevada, by J. W. Hood and K. M. Waddell, U.S. Geological Survey, 1969.
- No. 25. Hydrologic reconnaissance of Curlew Valley, Utah and Idaho, by E. L. Bolke and Don Price, U.S. Geological Survey, 1969.

- No. 26. Hydrologic reconnaissance of the Sink Valley area, Tooele and Box Elder Counties, Utah, by Don Price and E. L. Bolke, U.S. Geological Survey, 1970.
- No. 27. Water resources of the Heber-Kamas-Park City area, north-central Utah, by C. H. Baker, Jr., U.S. Geological Survey, 1970.
- No. 28. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah, by R. M. Cordova, U.S. Geological Survey, 1970.
- No. 29. Hydrologic reconnaissance of Grouse Creek valley, Box Elder County, Utah, by J. W. Hood and Don Price, U.S. Geological Survey, 1970.
- No. 30. Hydrologic reconnaissance of the Park Valley area, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1971.
- No. 31. Water resources of Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Harr, U.S. Geological Survey, 1971.
- No. 32. Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah, by C. T. Sumsion, U.S. Geological Survey, 1971.
- No. 33. Hydrologic reconnaissance of Hansel Valley and northern Rozel Flat, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1971.
- No. 34. Summary of water resources of Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Harr, U.S. Geological Survey, 1971.
- No. 35. Ground-water conditions in the East Shore area, Box Elder, Davis, and Weber Counties, Utah, 1960-69, by E. L. Bolke and K. M. Waddell, U.S. Geological Survey, 1972.
- No. 36. Ground-water resources of Cache Valley, Utah and Idaho, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1971.
- No. 37. Hydrologic reconnaissance of the Blue Creek Valley area, Box Elder County, Utah, by E. L. Bolke and Don Price, U.S. Geological Survey, 1972.
- No. 38. Hydrologic reconnaissance of the Promontory Mountains area, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1972.
- No. 39. Reconnaissance of chemical quality of surface water and fluvial sediment in the Price River Basin, Utah, by J. C. Mundorff, U.S. Geological Survey, 1972.
- No. 40. Ground-water conditions in the central Virgin River basin, Utah, by R. M. Cordova, G. W. Sandberg, and Wilson McConkie, U.S. Geological Survey, 1972.

- No. 41. Hydrologic reconnaissance of Pilot Valley, Utah and Nevada, by J. C. Stephens and J. W. Hood, U.S. Geological Survey, 1973.
- No. 42. Hydrologic reconnaissance of the northern Great Salt Lake Desert and summary hydrologic reconnaissance of northwestern Utah, by J. C. Stephens, U.S. Geological Survey, 1973.
- No. 43. Water resources of the Milford area, Utah, with emphasis on ground water, by R. W. Mower and R. M. Cordova, U.S. Geological Survey, 1974.
- No. 44. Ground-water resources of the lower Bear River drainage basin, Box Elder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1974.
- No. 45. Water resources of the Curlew Valley drainage basin, Utah and Idaho, by C. H. Baker, Jr., U.S. Geological Survey, 1974.
- No. 46. Water-quality reconnaissance of surface inflow to Utah Lake, by J. C. Mundorff, U.S. Geological Survey, 1974.
- No. 47. Hydrologic reconnaissance of the Wah Wah Valley drainage basin, Millard and Beaver Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1974.
- No. 48. Estimating mean streamflow in the Duchesne River basin, Utah, by R. W. Cruff, U.S. Geological Survey, 1974.
- No. 49. Hydrologic reconnaissance of the southern Uinta Basin, Utah and Colorado, by Don Price and L. L. Miller, U.S. Geological Survey, 1975.
- No. 50. Seepage study of the Rocky Point Canal and the Grey Mountain-Pleasant Valley Canal systems, Duchesne County, Utah, by R. W. Cruff and J. W. Hood, U.S. Geological Survey, 1976.
- No. 51. Hydrologic reconnaissance of the Pine Valley drainage basin, Millard, Beaver, and Iron Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1976.
- No. 52. Seepage study of canals in Beaver Valley, Beaver County, Utah, by R. W. Cruff and R. W. Mower, U.S. Geological Survey, 1976.
- No. 53. Characteristics of aquifers in the northern Uinta Basin area, Utah and Colorado, by J. W. Hood, U.S. Geological Survey, 1976.
- No. 54. Hydrologic evaluation of Ashley Valley, northern Uinta Basin area, Utah, by J. W. Hood, U.S. Geological Survey, 1977.
- No. 55. Reconnaissance of water quality in the Duchesne River basin and some adjacent drainage areas, Utah, by J. C. Mundorff, U.S. Geological Survey, 1977.

67

- No. 56. Hydrologic reconnaissance of the Tule Valley drainage basin, Juab and Millard Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1977.
- No. 57. Hydrologic evaluation of the upper Duchesne River valley, northern Uinta Basin area, Utah, by J. W. Hood, U.S. Geological Survey, 1977.
- No. 58. Seepage study of the Sevier Valley-Piute Canal, Sevier County, Utah, by R. W. Cruff, U.S. Geological Survey, 1977.
- No. 59. Hydrologic reconnaissance of the Dugway Valley-Government Creek area, west-central Utah, by J. C. Stephens and C. T. Sumsion, U.S. Geological Survey, 1978.
- No. 60. Ground-water resources of the Parowan-Cedar City drainage basin, Iron County, Utah, by L. J. Bjorklund, C. T. Sumsion, and G. W. Sandberg, U.S. Geological Survey, 1978.
- No. 61. Ground-water conditions in the Navajo Sandstone in the central Virgin River basin, Utah, by R. M. Cordova, U.S. Geological Survey, 1978.
- No. 62. Water resources of the northern Uinta Basin area, Utah and Colorado, with special emphasis on ground-water supply, by J. W. Hood and F. K. Fields, U.S. Geological Survey, 1978.
- No. 63. Hydrology of the Beaver Valley area, Beaver County, Utah with emphasis on ground water, by R. W. Mower, U.S. Geological Survey, 1978.
- No. 64. Hydrologic reconnaissance of the Fish Springs Flat area, Tooele, Juab, and Millard Counties, Utah, by E. L. Bolke and C. T. Sumsion, U.S. Geological Survey, 1978.
- No. 65. Reconnaissance of chemical quality of surface water and fluvial sediment in the Dirty Devil River basin, Utah, by J. C. Mundorff, U.S. Geological Survey, 1978.
- No. 66. Aquifer tests of the Navajo Sandstone near Caineville, Wayne County, Utah, by J. W. Hood and T. W. Danielson, U.S. Geological Survey, 1979.
- No. 67. Seepage study of the West Side and West Canals, Box Elder County, by R. W. Cruff, U.S. Geological Survey, 1980.
- No. 68. Bedrock aquifers in the lower Dirty Devil River basin area, Utah, with special emphasis on the Navajo Sandstone, by J. W. Hood and T. W. Danielson, U.S. Geological Survey, 1980.
- No. 69. Ground-water conditions in Tooele Valley, Utah, 1976-78, by A. C. Razem and J. I. Steiger, U.S. Geological Survey, 1980.

- No. 70. Ground-water conditions in the Upper Virgin River and Kanab Creek basins area, Utah, with emphasis on the Navajo Sandstone, by R. M. Cordova, U.S. Geological Survey, 1981.
- No. 71. Hydrologic reconnaissance of the Southern Great Salt Lake Desert and summary of the hydrology of West-Central Utah, by Joseph S. Gates and Stacie A. Kruer, U.S. Geological Survey, 1980.
- No. 72. Reconnaissance of the quality of surface water in the San Rafael River basin, Utah, by J. C. Mundorff and Kendall R. Thompson, U.S. Geological Survey, 1982.
- No. 73. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water, by R. W. Mower, U.S. Geological Survey, 1982.
- No. 74. Seepage study of the Sevier River and the Central Utah, McIntyre, and Leamington Canals, Juab and Millard Counties, Utah, by L. R. Herbert, R. W. Cruff, Walter F. Holmes, U.S. Geological Survey, 1982.
- No. 75. Consumptive use and water requirements for Utah, by A. Leon Huber, Frank W. Haws, Trevor C. Hughes, Jay M. Bagley, Kenneth G. Hubbard, and E. Arlo Richardson, 1982.

WATER CIRCULARS

- No. 1. Ground water in the Jordan Valley, Salt Lake County, Utah, by Ted Arnow, U.S. Geological Survey, 1965.
- No. 2. Ground water in Tooele Valley, Utah, by J. S. Gates and O. A. Keller, U.S. Geological Survey, 1970.

BASIC-DATA REPORTS

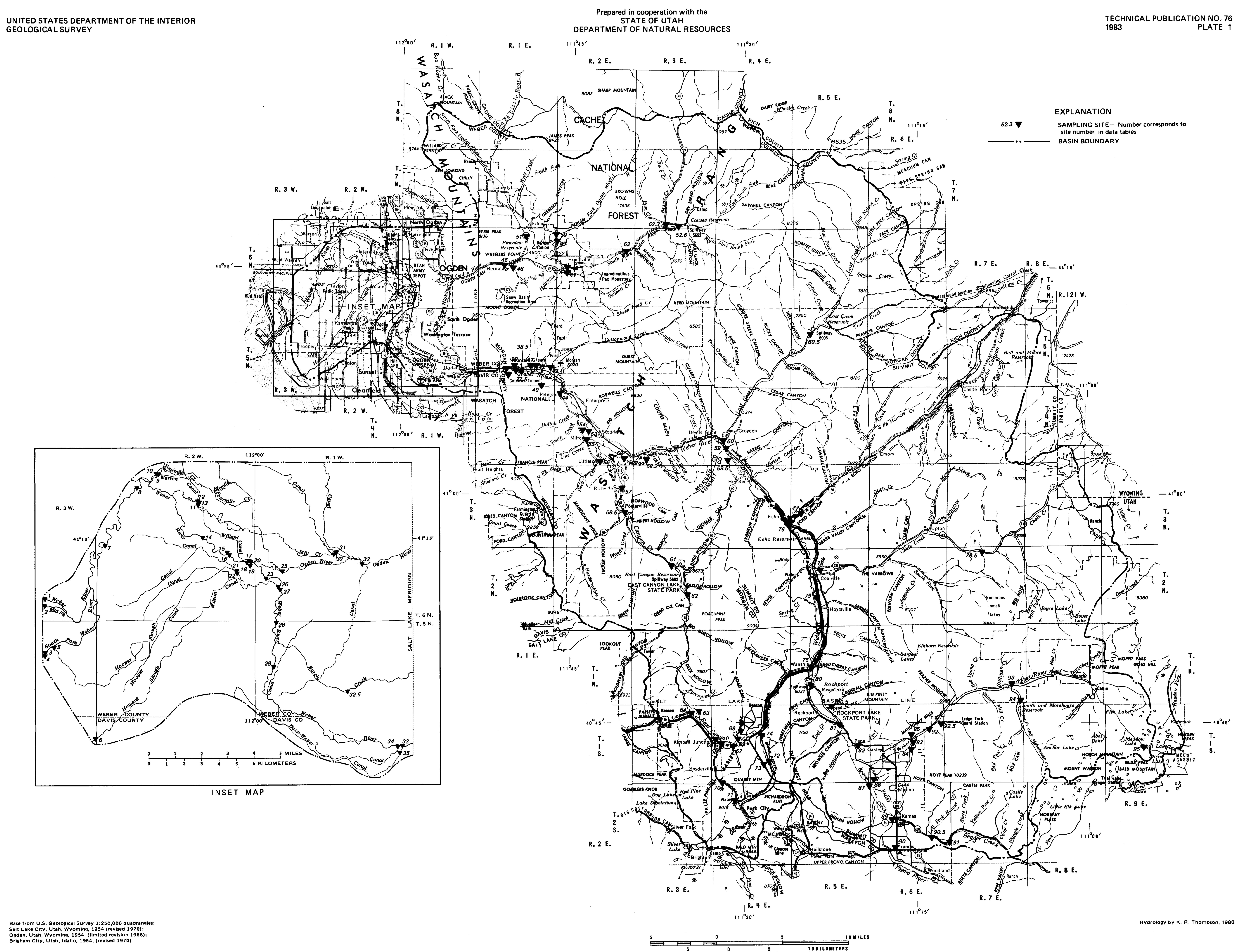
- *No. 1. Records and water-level measurements of selected wells and chemical analyses of ground water, East Shore area, Davis, Weber, and Box Elder Counties, Utah, by R. E. Smith, U.S. Geological Survey, 1961.
- No. 2. Records of selected wells and springs, selected drillers' logs of wells, and chemical analyses of ground and surface waters, northern Utah Valley, Utah County, Utah, by Seymour Subitzky, U.S. Geological Survey, 1962.
- No. 3. Ground-water data, central Sevier Valley, parts of Sanpete, Sevier, and Piute Counties, Utah, by C. H. Carpenter and R. A. Young, U.S. Geological Survey, 1963.

- *No. 4. Selected hydrologic data, Jordan Valley, Salt Lake County, Utah, by I. W. Marine and Don Price, U.S. Geological Survey, 1963.
- *No. 5. Selected hydrologic data, Pavant Valley, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
- *No. 6. Ground-water data, parts of Washington, Iron, Beaver, and Millard Counties, Utah, by G. W. Sandberg, U.S. Geological Survey, 1963.
- No. 7. Selected hydrologic data, Tooele Valley, Tooele County, Utah, by J. S. Gates, U.S. Geological Survey, 1963.
- No. 8. Selected hydrologic data, upper Sevier River basin, Utah, by C. H. Carpenter, G. B. Robinson, Jr., and L. J. Bjorklund, U.S. Geological Survey, 1964.
- *No. 9. Ground-water data, Sevier Desert, Utah, by R. W. Mower and R. D. Feltis, U.S. Geological Survey, 1964.
- No. 10. Quality of surface water in the Sevier Lake basin, Utah, by D. C. Hahl and R. E. Cabell, U.S. Geological Survey, 1965.
- *No. 11. Hydrologic and climatologic data, collected through 1964, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.
- No. 12. Hydrologic and climatologic data, 1965, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.
- No. 13. Hydrologic and climatologic data, 1966, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1967.
- No. 14. Selected hydrologic data, San Pitch River drainage basin, Utah, by G. B. Robinson, Jr., U.S. Geological Survey, 1968.
- No. 15. Hydrologic and climatologic data, 1967, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1968.
- No. 16. Selected hydrologic data, southern Utah and Goshen Valleys, Utah, by R. M. Cordova, U.S. Geological Survey, 1969.
- No. 17. Hydrologic and climatologic data, 1968, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1969.
- No. 18. Quality of surface water in the Bear River basin, Utah, Wyoming, and Idaho, by K. M. Waddell, U.S. Geological Survey, 1970.

70

- No. 19. Daily water-temperature records for Utah streams, 1944-68, by G. L. Whitaker, U.S. Geological Survey, 1970.
- No. 20. Water-quality data for the Flaming Gorge area, Utah and Wyoming, by R. J. Madison, U.S. Geological Survey, 1970.
- No. 21. Selected hydrologic data, Cache Valley, Utah and Idaho, by L. J. McGreevy and L. J. Bjorklund, U.S. Geological Survey, 1970.
- No. 22. Periodic water- and air-temperature records for Utah streams, 1966-70, by G. L. Whitaker, U.S. Geological Survey, 1971.
- No. 23. Selected hydrologic data, lower Bear River drainage basin, Box Elder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1973.
- No. 24. Water-quality data for the Flaming Gorge Reservoir area, Utah and Wyoming, 1969-72, by E. L. Bolke and K. M. Waddell, U.S. Geological Survey, 1972.
- No. 25. Streamflow characteristics in northeastern Utah and adjacent areas, by F. K. Fields, U.S. Geological Survey, 1975.
- No. 26. Selected hydrologic data, Uinta Basin area, Utah and Colorado, by J. W. Hood, J. C. Mundorff, and Don Price, U.S. Geological Survey, 1976.
- No. 27. Chemical and physical data for the Flaming Gorge Reservoir area, Utah and Wyoming, by E. L. Bolke, U.S. Geological Survey, 1976.
- No. 28. Selected hydrologic data, Parowan Valley and Cedar City Valley drainage basins, Iron County, Utah, by L. J. Bjorklund, C. T. Sumsion, and G. W. Sandberg, U.S. Geological Survey, 1977.
- No. 29. Climatologic and hydrologic data, southeastern Uinta Basin, Utah and Colorado, water years 1975 and 1976, by L. S. Conroy and F. K. Fields, U.S. Geological Survey, 1977.
- No. 30. Selected ground-water data, Bonneville Salt Flats and Pilot Valley, western Utah, by G. C. Lines, U.S. Geological Survey, 1977.
- No. 31. Selected hydrologic data, Wasatch Plateau-Book Cliffs coal-fields area, Utah, by K. M. Waddell and others, U.S. Geological Survey, 1978.
- No. 32. Selected coal-related ground-water data, Wasatch Plateau-Book Cliffs area, Utah, by C. T. Sumsion, U.S. Geological Survey, 1979.

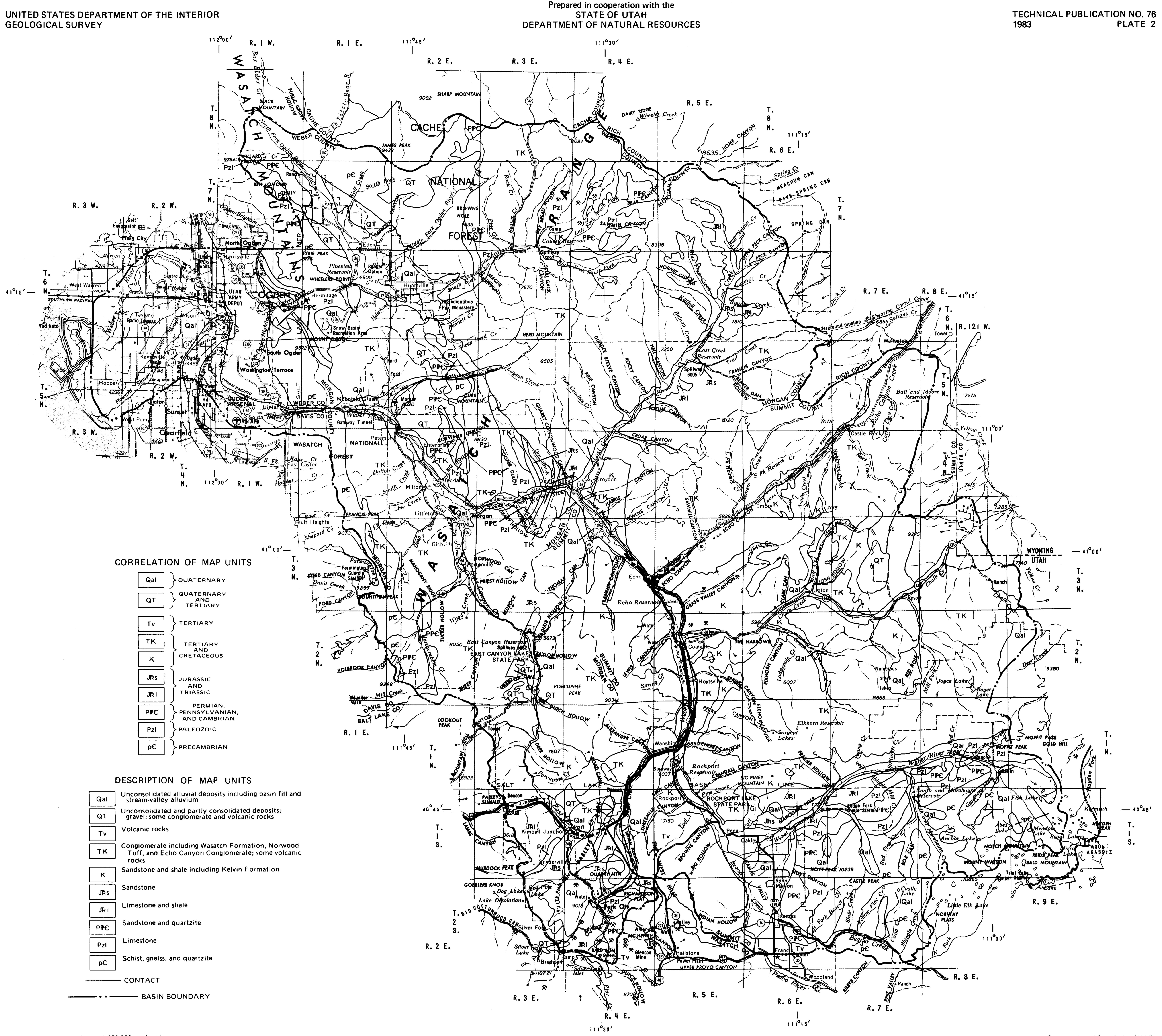
- No. 33. Hydrologic and climatologic data, southeastern Uinta Basin, Utah and Colorado, water year 1977, by L. S. Conroy, U.S. Geological Survey, 1979.
- No. 34. Hydrologic and climatologic data, southeastern Uinta Basin, Utah and Colorado, water year 1978, by L. S. Conroy, U.S. Geological Survey, 1980.
- No. 35. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah, by R. W. Mower, U.S. Geological Survey, 1981.
- No. 36. Surface-water and climatologic data, Salt Lake County, Utah, Water Year 1980, by G. E. Pyper, R. C. Christensen, D. W. Stephens, H. F. McCormack, and L. S. Conroy, U.S. Geological Survey, 1981.
- No. 37. Selected ground-water data, Sevier Desert, Utah, 1935-82, by Michael Enright and Walter F. Holmes, U.S. Geological Survey, 1982.
- No. 38. Selected hydrologic data, Price River Basin, Utah, water years 1979 and 1980, by K. M. Waddell, J. E. Dodge, D. W. Darby, and S. M. Theobald, U.S. Geological Survey, 1982.
- No. 39. Selected hydrologic data for Northern Utah Valley, Utah, 1935-82, by Cynthia L. Appel, David W. Clark, and Paul E. Fairbanks, U.S. Geological Survey, 1982.
- No. 40. Surface water and climatologic data, Salt Lake County, Utah, water year 1981, with selected data for water years 1980 and 1982, by H.
 F. McCormack, R. C. Christensen, D. W. Stephens, G. E. Pyper, J.
 F. Weigel, and L. S. Conroy, U.S. Geological Survey, 1983.
- No. 41. Selected hydrologic data, Kolob-Alton-Kaiparowits coal-fields area, south-central Utah, by Gerald G. Plantz, U.S. Geological Survey, 1983.

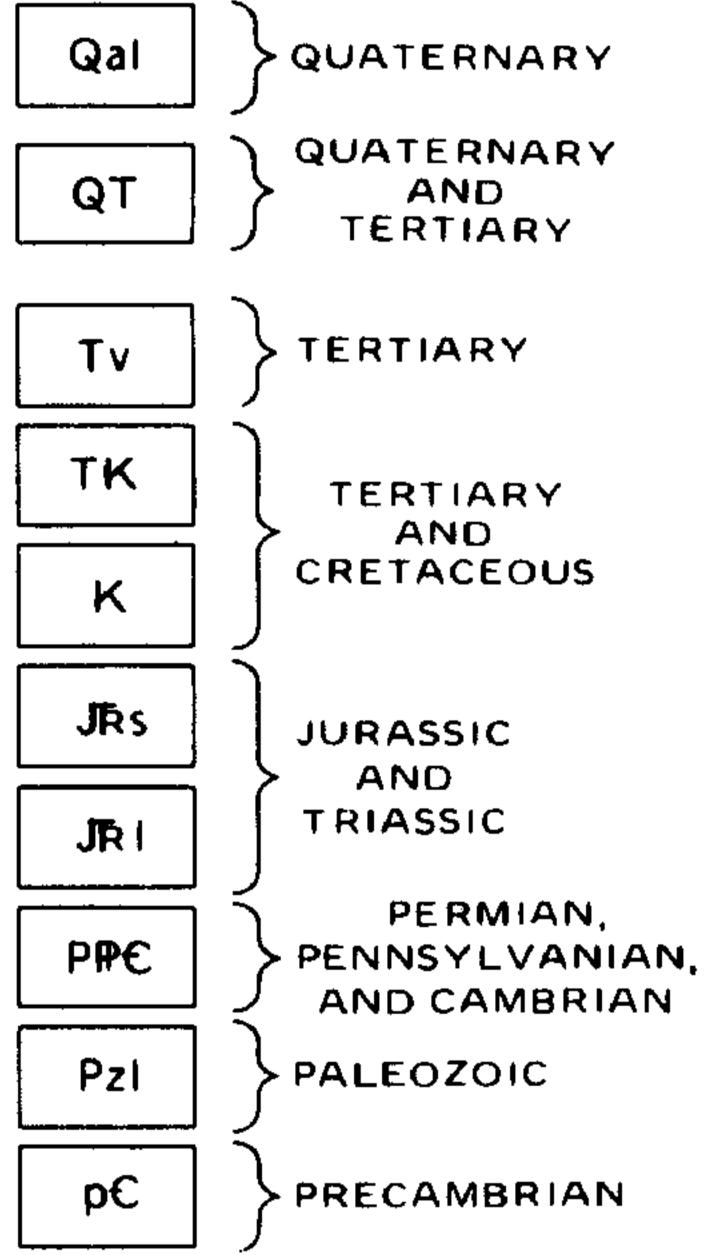

INFORMATION BULLETINS

- *No. 1. Plan of work for the Sevier River Basin (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1960.
- *No. 2. Water production from oil wells in Utah, by Jerry Tuttle, Utah State Engineer's Office, 1960.

- *No. 3. Ground-water areas and well logs, central Sevier Valley, Utah, by R. A. Young, U.S. Geological Survey, 1960.
- *No. 4. Ground-water investigations in Utah in 1960 and reports published by the U.S. Geological Survey or the Utah State Engineer prior to 1960, by H. D. Goode, U.S. Geological Survey, 1960.
- *No. 5. Developing ground water in the central Sevier Valley, Utah, by R. A. Young and C. H. Carpenter, U.S. Geological Survey, 1961.
- *No. 6. Work outline and report outline for Sevier River basin survey, (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1961.
- *No. 7. Relation of the deep and shallow artesian aquifers near Lynndyl, Utah, by R. W. Mower, U.S. Geological Survey, 1961.
- *No. 8. Projected 1975 municipal water-use requirements, Davis County, Utah, by Utah State Engineer's Office, 1962.
- No. 9. Projected 1975 municipal water-use requirements, Weber County, Utah, by Utah State Engineer's Office, 1962.
- *No. 10. Effects on the shallow artesian aquifer of withdrawing water from the deep artesian aquifer near Sugarville, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
- *No. 11. Amendments to plan of work and work outline for the Sevier River basin (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1964.
- *No. 12. Test drilling in the upper Sevier River drainage basin, Garfield and Piute Counties, Utah, by R. D. Feltis and G. B. Robinson, Jr., U.S. Geological Survey, 1963.
- *No. 13. Water requirements of lower Jordan River, Utah, by Karl Harris, Irrigation Engineer, Agricultural Research Service, Phoenix, Arizona, prepared under informal cooperation approved by Mr. W. W. Donnan, Chief, Southwest Branch (Riverside, California) Soil and Water Conservation Research Division, Agricultural Research Service, U.S.D.A., and by W. D. Criddle, State Engineer, State of Utah, Salt Lake City, Utah, 1964.
- *No. 14. Consumptive use of water by native vegetation and irrigated crops in the Virgin River area of Utah, by W. D. Criddle, J. M. Bagley, R. K. Higginson, and D. W. Hendricks, through cooperation of Utah Agricultural Experiment Station, Agricultural Research Service, Soil and Water Conservation Branch, Western Soil and Water Management Section, Utah Water and Power Board, and Utah State Engineer, Salt Lake City, Utah, 1964.

- *No. 15. Ground-water conditions and related water-administration problems in Cedar City Valley, Iron County, Utah, February, 1966, by J. A. Barnett and F. T. Mayo, Utah State Engineer's Office.
- *No. 16. Summary of water well drilling activities in Utah, 1960 through 1965, compiled by Utah State Engineer's Office, 1966.
- *No. 17. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by O. A. Keller, U.S. Geological Survey, 1966.
- *No. 18. The effect of pumping large-discharge wells on the ground-water reservoir in southern Utah Valley, Utah County, Utah, by R. M. Cordova and R. W. Mower, U.S. Geological Survey, 1967.
- No. 19. Ground-water hydrology of southern Cache Valley, Utah, by L. P. Beer, Utah State Engineer's Office, 1967.
- *No. 20. Fluvial sediment in Utah, 1905-65, A data compilation by J. C. Mundorff, U.S. Geological Survey, 1968.
- *No. 21. Hydrogeology of the eastern portion of the south slopes of the Uinta Mountains, Utah, by L. G. Moore and D. A. Barker, U.S. Bureau of Reclamation, and J. D. Maxwell and B. L. Bridges, Soil Conservation Service, 1971.
- *No. 22. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by B. A. LaPray, U.S. Geological Survey, 1972.
- *No. 23. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by B. A. LaPray, U.S. Geological Survey, 1975.
- No. 24. A water-land use management model for the Sevier River Basin, Phase I and II, by V. A. Narasimham and Eugene K. Israelsen, Utah Water Research Laboratory, College of Engineering, Utah State University, 1975.
- No. 25. A water-land use management model for the Sevier River Basin, Phase III, by Eugene K. Israelsen, Utah Water Research Laboratory, College of Engineering, Utah State University, 1976.
- No. 26. Test drilling for fresh water in Tooele Valley, Utah, by K. H. Ryan, B. W. Nance, and A. C. Razem, Utah Department of Natural Resources, 1981.
- No. 27. Bibliography of U.S. Geological Survey Water-Resources Reports for Utah, compiled by Barbara A. LaPray and Linda S. Hamblin, U.S. Geological Survey, 1980.


UNITED STATES DEPARTMENT OF THE INTERIOR **GEOLOGICAL SURVEY**

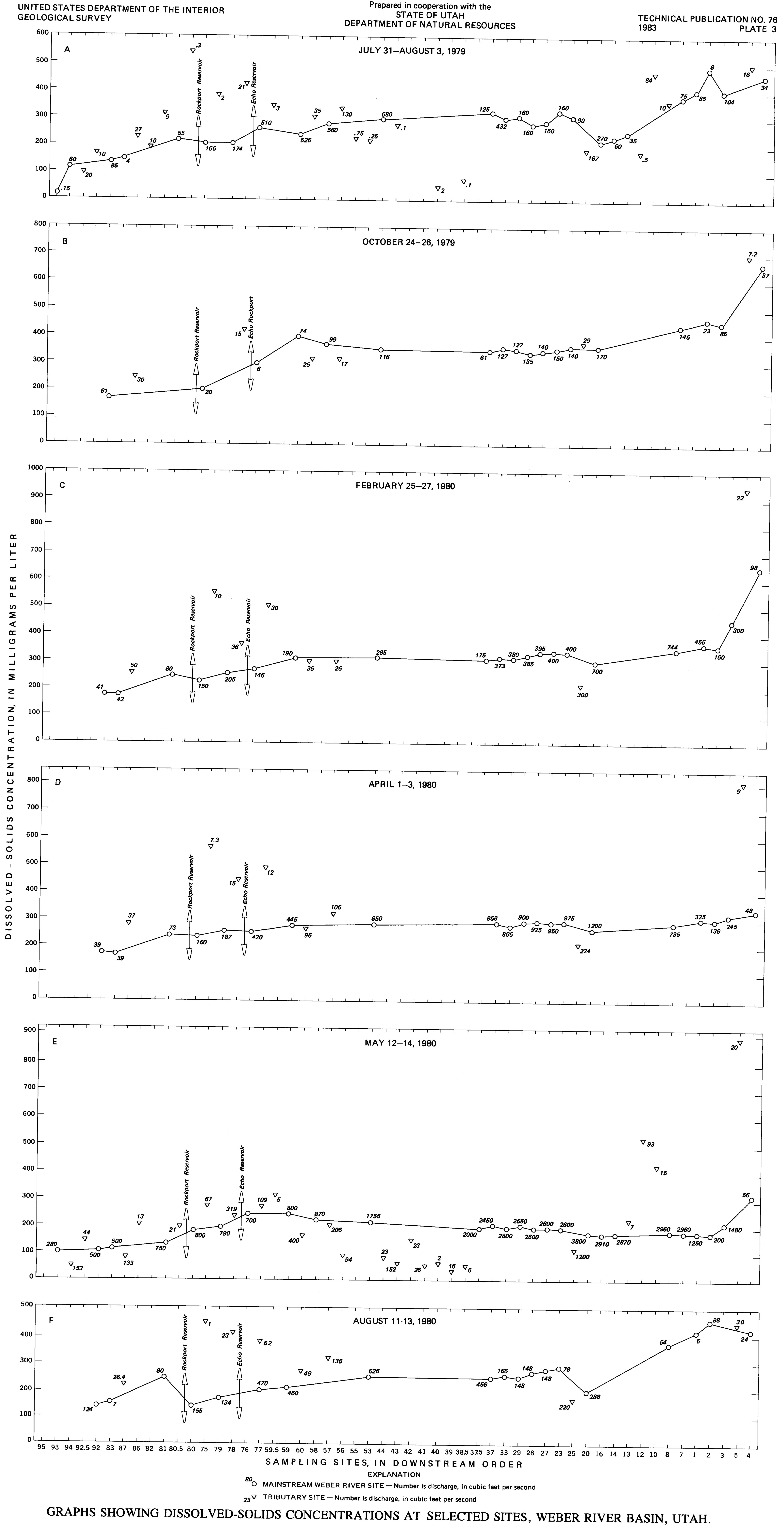


Base from U.S. Geological Survey 1:250,000 quadrangles: Sait Lake City, Utah, Wyoming, 1954 (revised 1970);

MAP SHOWING LOCATION OF WATER-QUALITY SAMPLING SITES, WEBER RIVER BASIN, UTAH

.

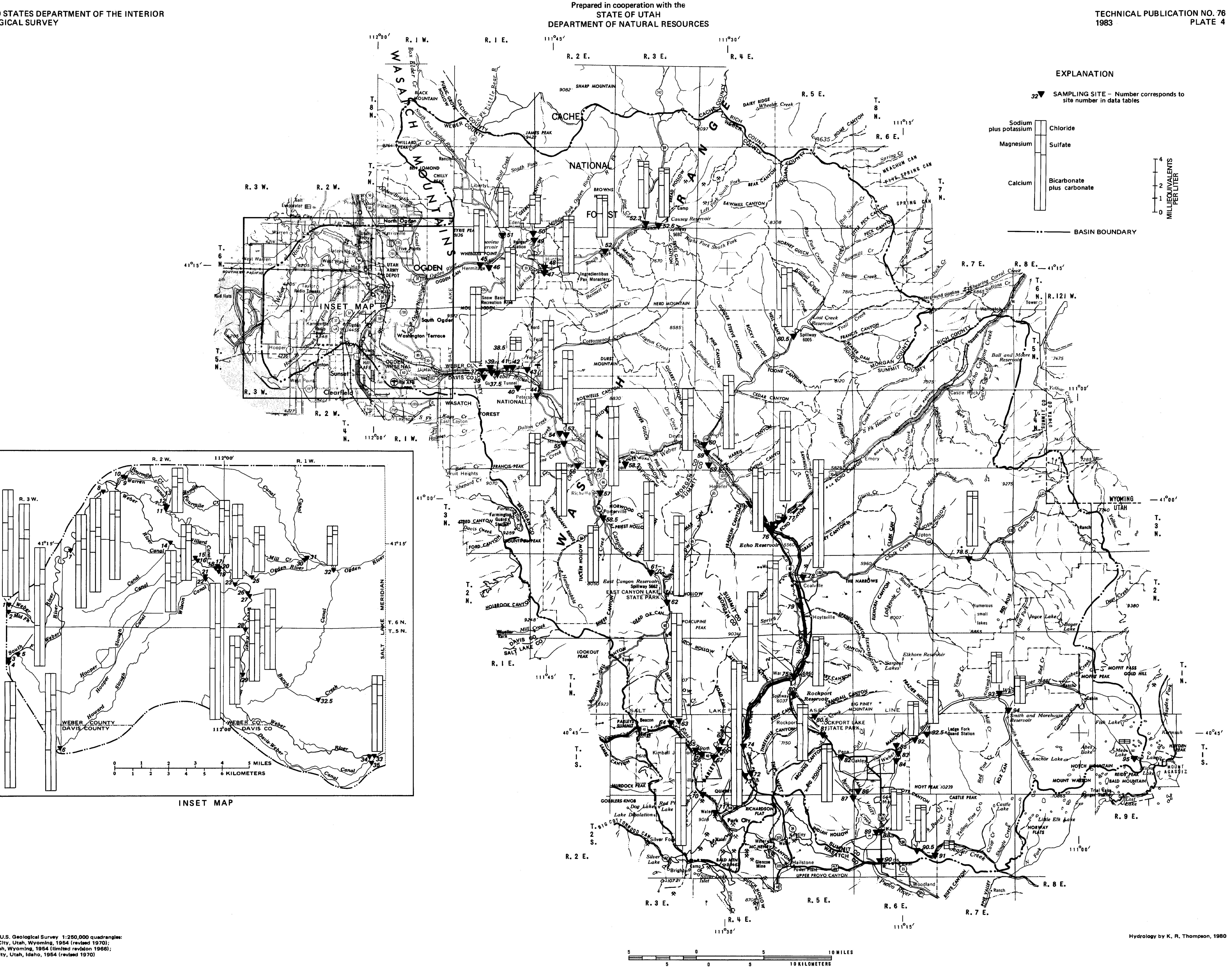
	Qal	Unconsolidated alluvial deposits includi stream-valley alluvium
	QT	Unconsolidated and partly consolidated gravel; some conglomerate and volcani
	Τv	Volcanic rocks
	ТК	Conglomerate including Wasatch Forma Tuff, and Echo Canyon Conglomerate rocks
	K	Sandstone and shale including Kelvin F
	JĒRS	Sandstone
	Jħi	Limestone and shale
	PPE	Sandstone and quartzite
	PzI	Limestone
	p€	Schist, gneiss, and quartzite
-		- CONTACT


Base from U.S. Geological Survey 1:250,000 quadrangles: Sait Lake City, Utah. Wyoming, 1954 (revised 1970); Ogden. Utah. Wyoming, 1954 (ilmited revision 1966); Brigham City, Utah. idaho. 1954 (revised 1970)

GENERALIZED GEOLOGIC MAP OF THE WEBER RIVER BASIN, UTAH.

10 MILES **10 KILOMETERS**

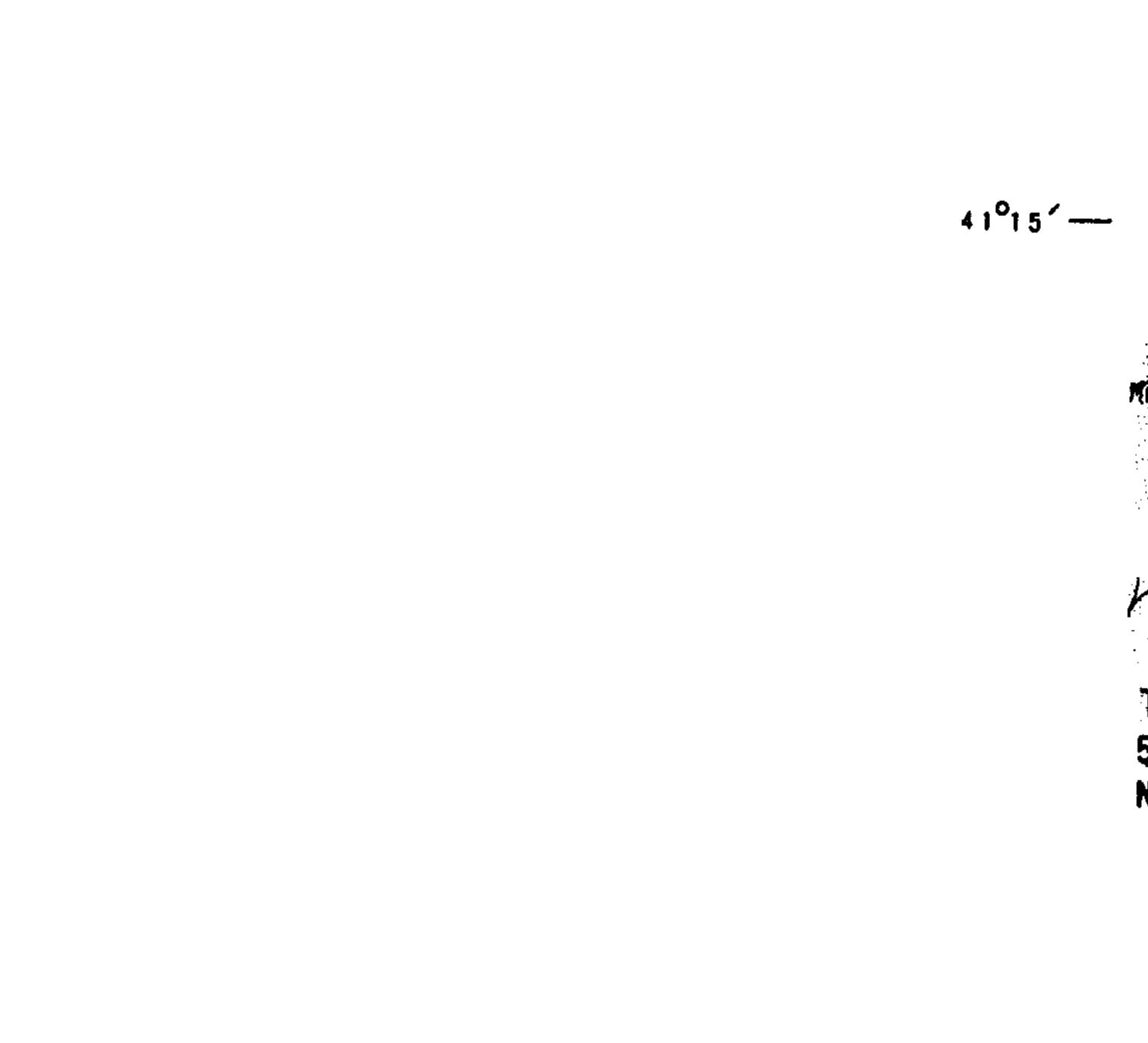
PLATE 2

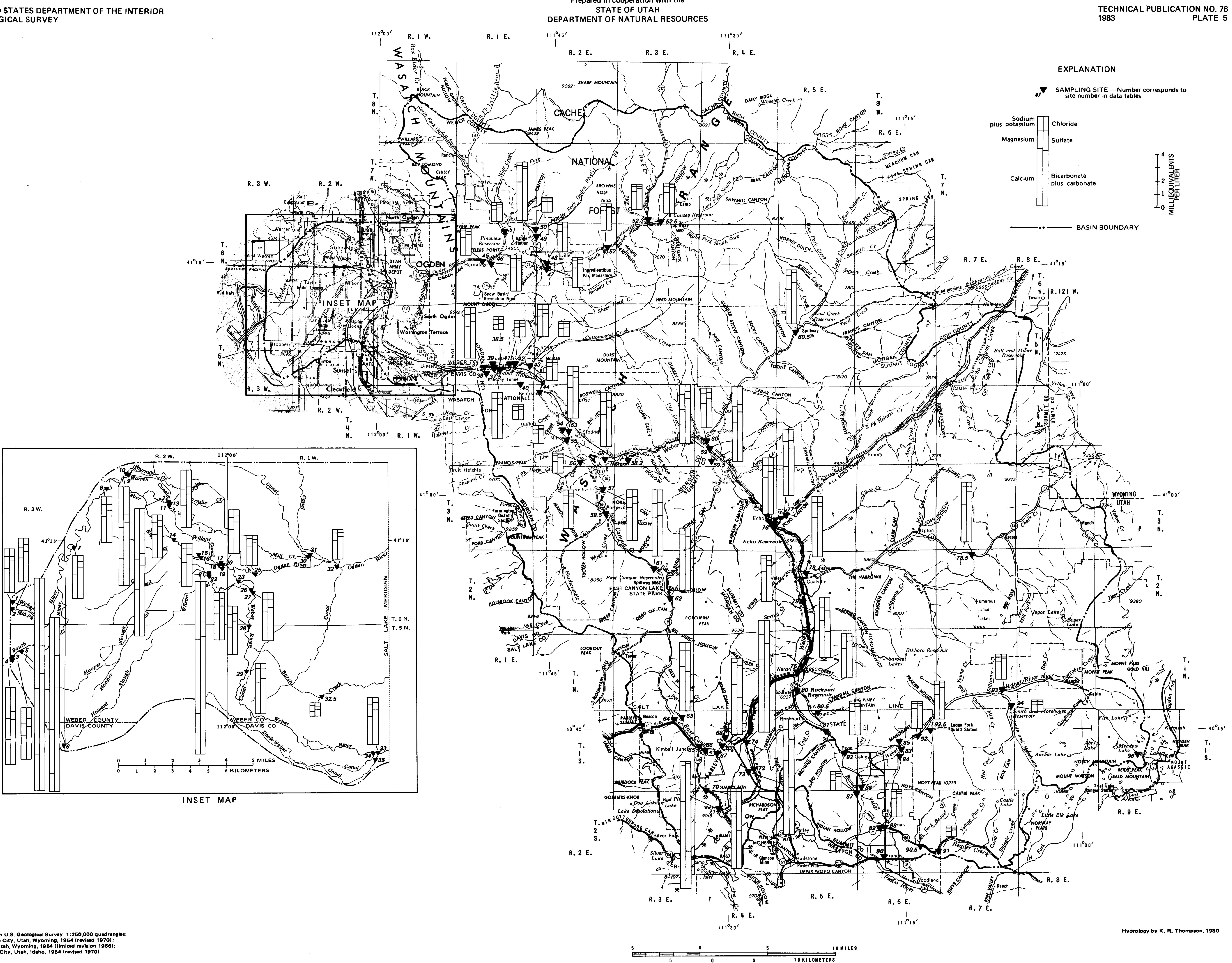

Geology adapted from Stokes (1964) by D. E. Wilberg, 1981

UNITED STATES DEPARTMENT OF THE INTERIOR **GEOLOGICAL SURVEY**

41°15′ — N. - R 🖕

Base from U.S. Geological Survey 1:250,000 quadrangles: Salt Lake City, Utah, Wyoming, 1954 (revised 1970); Ogden, Utah, Wyoming, 1954 (limited revision 1966); Brigham City, Utah, Idaho, 1954 (revised 1970)




Hydrology by K. R. Thompson, 1980

i

UNITED STATES DEPARTMENT OF THE INTERIOR **GEOLOGICAL SURVEY**

and the construction of the construction

Base from U.S. Geological Survey 1:250,000 quadrangles: Salt Lake City, Utah, Wyoming, 1954 (revised 1970); Ogden, Utah, Wyoming, 1954 (limited revision 1966); Brigham City, Utah, Idaho, 1954 (revised 1970)

Prepared in cooperation with the

MAP SHOWING CHEMICAL CHARACTERISTICS OF SURFACE WATER AT SELECTED SITES IN THE WEBER RIVER BASIN, UTAH, DURING SPRING RUNOFF, MAY 12-14, 1980.