STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES

Technical Publication No. 78

BEDROCK AQUIFERS IN THE NORTHERN SAN RAFAEL SWELL AREA, UTAH, WITH SPECIAL EMPHASIS ON THE NAVAJO SANDSTONE

by

J. W. Hood and D. J. Patterson U.S. Geological Survey

Prepared by the United States Geological Survey in cooperation with the Utah Department of Natural Resources and Energy Division of Water Rights .

CONTENTS

Page

Abstract	1
Introduction	2
Purpose and scope	2
General features of the area	2
Acknowledgments	5
Previous and concurrent studies	5
Terminology	6
Well-, spring-, and miscellaneous-site-numbering system	7
Geologic setting	9
Formations and their hydrologic characteristics	9
Navajo Sandstone	10
Structure and other factors that affect hydrology	21
Hydrology	28
Summary statement	28
Precipitation	28
Surface water	28
Ground water	30
Recharge	30
Occurrence and movement	31
Storage	33
Discharge	34
Navajo Sandstone aquifer	34
Other consolidated aquifers	37
Evapotranspiration	37
Chemical quality of ground water	38
Effects of large-scale withdrawals of ground water	39
Well yields and drawdown	39
Effect on flow of the Colorado River	41
Further studies needed	41
Summary and conclusions	42
References cited	44
Geohydrologic data	48
Publications of the Utah Department of Natural Resources,	
Division of Water Rights	118

ILLUSTRATIONS

[Plates are in pocket]

Plate 1		Map showing hydrologic- and geologic-data sites,	
		climatologic data, and streamflow in the northern Sa	an
		Rafael Swell area, Utah.	

- 2. Geologic map of the northern San Rafael Swell area, Utah.
- 3. Map showing thickness of the Navajo Sandstone in the northern San Rafael Swell area, Utah.
- 4. Map showing structure contours on the top of the Navajo Sandstone in the Northern San Rafael Swell area, Utah.

Page

Plate	5.	Map showing the approximate potentiometric surface for the Navajo Sandstone aquifer in the northern San Rafael Swell area, Utah.	
	6.	Map showing the generalized depth to the Navajo Sandstone in the northern San Rafael Swell area, Utah.	
Figure	1.	Map showing location and extent of the northern San Rafael Swell area	3
	2.	Photographs showing erosional features in the San Rafael Swell	4
	3.	Diagram showing well- and spring-numbering system used in Utah	8
	4.	Histograms showing grain-size distribution in three samples of the Navajo Sandstone from test hole NSRT-2, (D-19-12)30bba-1	11
	5.	Photomicrographs of sandstone specimens	12
Figure	s 6-8	3. Photographs showing:	
		6. Fracturing at folds and near faults	15
		7. Exposures of the Navajo Sandstone and other formations	16
		8. Upper contact of the Navajo Sandstone	18
	9.	Graphs showing parts of gamma-ray and drilling-time logs and drill-cutting description for test hole NSRT-1, (D-20-10)6bdd-1	19
	10.	Graphs showing percentage of soil moisture in shallow core holes in the Navajo and Coconino Sandstone in the northern San Rafael Swell area	22
	11.	Photographs showing dips of formations	25
	12.	Photographic view downward to bottom of Black Dragon Canyon	26
	13.	Graphs showing water levels in observation wells	35
	14.	Graph showing water level in shallow core hole (D-20-13)15daa-1	36

TABLES

Page

Table	1.	Codes used in identifying aquifers or geologic units in tables 9, 10, 11, and 14	49
	2.	Description of geologic units known to underlie parts of the northern San Rafael Swell area	50
	3.	Results of laboratory analyses of rock samples from outcrops, test-well drill cuttings, and shallow core holes	56
	4.	Permeability and porosity of outcrop and core samples	60
	5.	Summary of short aquifer tests	64
	6.	Summary of hydrologic estimates	65
	7.	Stream gains or losses, in acre-feet, across San Rafael Swell, 1973-79	67
	8.	Monthly mean discharge at streamflow-gaging stations	68
	9.	Records of selected water wells and test holes	7 2
	10.	Records of selected springs	78
	11.	Records of selected petroleum-test wells and other test holes	82
	12.	Selected lithologic logs of wells and test holes	99
	13.	Descriptions of rock samples analyzed for hydrologic properties and grain-size distribution, and of sampling sites	105
	14.	Selected chemical analyses of water samples from water wells, springs, petroleum-test wells, and other test holes	112

CONVERSION FACTORS

Most values in this report are given in inch-pound units followed by metric units. The conversion factors are shown to four significant figures. In the text, however, the metric equivalents are shown only to the number of significant figures consistent with the accuracy of the value in inch-pound units.

Inch-pound			Metric	
Unit	Abbreviation		Unit Abbr	reviation
(Multiply)		(by)	(to obtain)	
Acre		0.4047 0.004047	Square hectometer Square kilometer	hm ² km ²
Acre-foot	acre-ft	0.001233 1233	Cubic hectometer Cubic meter	hm ³ m ³
Acre-foot per year	acre-ft/yr	0.001233	Cubic hectometer per year	hm ³ /yr
Cubic foot per second	ft ³ /s	0.02832	Cubic meter per second	m ³ /s
Foot	ft	0.3048	Meter	m
Foot per day	ft/d	0.3048	Meter per day	m/d
Foot per mile	ft/mi	0.1894	Meter per kilometer	m/km
Foot squared per day	ft ² /d	0.09290	Meter squared per day	m ² /d
Gallon per day per foot	(gal/d)/ft	12.42	Liter per day per meter	(L/d)/m
Gallon per minute	gal/min	0.06309	Liter per second	L/s
Inch	in.	25.40	Millimeter	mm
		2.540	Centimeter	cm
Inch per hour	in./hr	25.40	Millimeter per hour	mm/hr
Mile	mi	1.609	Kilometer	km _
Pound per square inch	lb/in ²	0.07031	Kilogram per square centimeter	k/cm ²
Square mile	mi ²	2.590	Square kilometer	km ²

Chemical concentration and water temperature are given only in metric units. Chemical concentration is given in milligrams per liter (mg/L) or micrograms per liter (μ g/L). Milligrams per liter is a unit expressing the concentration of chemical constituents in solution as weight (milligrams) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. For concentrations less than 7,000 milligrams per liter, the numerical value is about the same as for concentrations in the inch-pound unit, parts per million (ppm).

Water temperature is given in degrees Celsius (^oC), which can be converted to degrees Fahrenheit (^oF) by the following equation: ${}^{o}F=1.8({}^{o}C)+32$.

Altitudes in this report are referenced to "National Geodetic Vertical Datum of 1929 (NGVD of 1929)." The NGVD of 1929 is a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Mean Sea Level."

BEDROCK AQUIFERS IN THE NORTHERN SAN RAFAEL SWELL AREA,

UTAH, WITH SPECIAL EMPHASIS ON THE NAVAJO SANDSTONE

By

J. W. Hood and D. J. Patterson

ABSTRACT

The northern San Rafael Swell area in southeastern Utah includes about 2,880 square miles (7,460 square kilometers) and ranges in altitude from about 3,290 to 7,921 feet (1,195 to 2,414 meters). Precipitation, the main source of water in the area, ranges from slightly less than 6 inches (152 millimeters) to slightly more than 12 inches (305 millimeters).

Rocks that underlie the area range from Precambrian to Holocene in age. The thickness of sedimentary rocks ranges from 4,083 feet (1,244 meters) to about 30,000 feet (9,140 meters). The Entrada, Navajo, Wingate, and Coconino Sandstones and rocks of Mississippian age are considered major aquifers because of their large areal extent or thickness. Their water-yielding ability is affected mainly by faulting and folding which locally enhance ground-water circulation by fracturing, or impede circulation by offsetting the more permeable beds. Water in these aquifers ranges from fresh to briny.

The total hydrologic system in the northern San Rafael Swell area has an estimated average annual inflow and outflow of about 1.3 million acre-feet (1,600 cubic hectometers), of which about 1.15 million acre-feet (1,420 cubic hectometers) is derived from precipitation on the area. An estimated 99 percent of the water available to the area is consumed by evapotranspiration.

The estimated gross average annual ground-water recharge is 10,000 acrefeet (12 cubic hectometers) or less, of which 3,000 acre-feet (4 cubic hectometers) recharges the Navajo Sandstone. Recoverable water stored in the Navajo, Wingate, and Coconino Sandstones is estimated to be 160 million acrefeet (197,300 cubic hectometers), of which 42 million acre-feet (51,800 cubic hectometers) is in the Navajo alone.

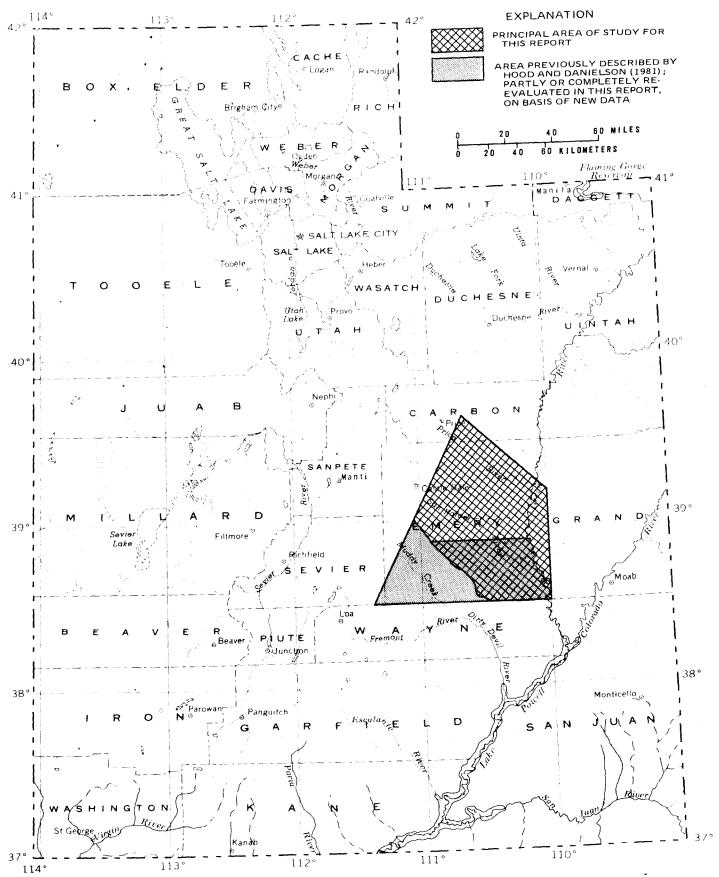
Large, long-term withdrawals from the Navajo Sandstone are marginally feasible, but only west of the San Rafael Swell, and if the wells are widely spaced. Withdrawal of 20,000 acre-feet (25 cubic hectometers) per year for 30 years probably would reduce the amount of ground water in storage by about 1.4 percent. Withdrawals of this magnitude would have a negligible effect on the flow of the Colorado River.

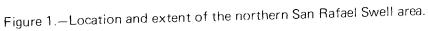
INTRODUCTION

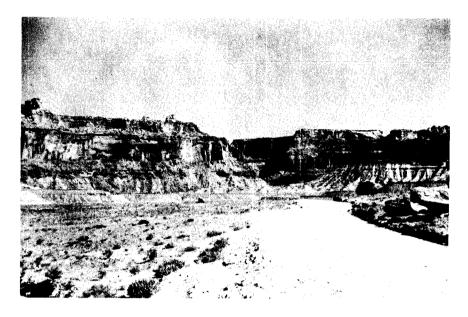
Purpose and scope

This report presents the results of a study of bedrock aquifers in the northern San Rafael Swell area, Utah (fig. 1), with special emphasis on the Navajo Sandstone of Triassic(?) and Jurassic age. The study was made by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights. Fieldwork was done mainly during March 1979-July 1980, with supplemental testing and observations during August-December 1980.

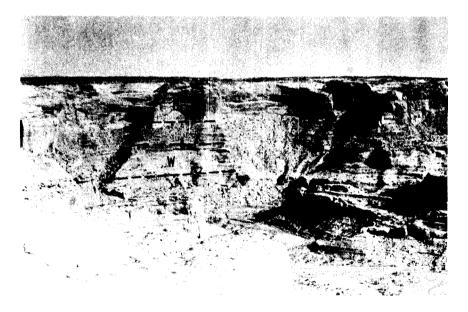
The principal objectives of this study were to determine: (1) Well yields of the bedrock formations, (2) the capability of formations to yield, over the long term, water chemically suitable for presently (1980) known uses, and (3) effects of withdrawals from wells on the surface-water supply in the Colorado River Basin.


For the investigation, an area of 5,500 square miles $(14,245 \text{ km}^2)$ was initially considered. From this area, the approximate 3,640 square miles $(9,430 \text{ km}^2)$ shown on plate 1 was selected for further work. This latter area includes about 1,570 square miles $(4,070 \text{ km}^2)$ previously described by Hood and Danielson (1979b); re-evaluation consisted partly of revising the data base for about 710 square miles $(1,970 \text{ km}^2)$ in the southwestern part of the area shown on plate 1 for inclusion in a digital-computer model of the ground-water system. Most data collection and system evaluation was done in the remaining 2,880 square miles $(7,460 \text{ km}^2)$ of the area shown on plate 1.


Fieldwork included the collection of data on wells, springs, and the chemical quality of ground water, short-term aquifer testing, test drilling, and infiltration studies of the sandstone aquifers. Office work included digital-computer modeling of the Navajo Sandstone aquifer. Data used for the analysis given in this report are listed in tables 3, 4, 8, and 9-14.


General Features of the Area

The northern San Rafael Swell area is in parts of Carbon, Emery, and Grand Counties. It comprises approximately the northern two-thirds of the Swell and adjacent areas that extend from Castle Valley on the west to the Green River on the east, and from the vicinity of Wellington on the north to the drainage divide between the San Rafael River and Muddy Creek drainage basins on the south.


Altitudes in the area range from 3,920 feet (1,195 m) where the Wayne-Emery County line meets the Green River to 7,921 feet (2,414 m) at San Rafael Knob, near the center of the Swell (pl. 1). The Swell is a major geologic fold, or elongate dome, with a major axis about 70 miles (113 km) long, that trends northward and a minor axis about 30 miles (48 km) long. The Swell is mainly an area of barren rock that has been deeply dissected by streams that cross and are incised transversely into the folded rocks. Erosion has removed the upper rocks in the center of the Swell; an inward-facing cliff delineates the Jurassic sandstone aquifers in the north and south ends of the Swell (fig. 2), and the interior topography is extremely rugged. Throughout the Swell, ragged erosional remnants of rock are common, and deep canyons complicate overland travel.

A: View looking northward from location (D-21-11)4ab, toward mouth of Buckhorn Wesh Canyon. Formations range from Carmel Formation at top of cliff to Chinle Formation at base in mouth of canyon. Foreground is part of rolling internal plain developed on limestone of the Moenkopi Formation.

- B: View, looking southeastward, from top of cliff at location (D-20-11)8dc. Upper smooth surface is a rolling plain developed on limestone in the Carmel Formation. San Rafael River flood plain, below, is fringed with phreatophytes and saline residue.
- Figure 2. Erosional features in the San Rafael Swell. Erosion has removed the Navajo Sandstone (N) and Wingate Sandstone (W) from the inside of the San Rafael Swell, leaving inward-facing, deeply dissected cliffs. Little recharge occurs on the steep surfaces; exposure of the aquifers has allowed them to drain near the dissected parts.

Much of the Swell consists of barren rock, but locally a sparse cover of grass and juniper (Juniperus sp.) exists; the vegetative cover in the northern high part of the Swell is somewhat denser, including a juniper-pinyon (Juniperus sp.-Pinus monophylla[?]) community. (See Vallentine, no date, p. 2-5 and 24-25.)

The areas adjacent to the Swell consist of shale flats and partly dissected terraces to the west, north, and northeast. To the east, the area contains partly dissected pediments and deep canyons near the Green River. This area contains grasslands and salt-desert and black-brush plant communities.

Most of the area is uninhabited or seasonally occupied by ranchers and miners who reside elsewhere. The only population centers are Green River, Wellington, and the small community of Woodside. Cultivated crops are grown mainly around Green River, but there are small, isolated tracts of farmland along the lower Green, Price, and San Rafael Rivers.

Acknowledgments

The writers extend thanks to the well and spring owners, well drillers, and companies who provided hydrologic and geologic data. Special thanks are due to Mr. and Mrs. Lloyd Hatt of Green River, Utah, whose intimate knowledge of the eastern part of the study area aided in locating water sources and access to the area. Officials of the U.S. Department of Energy, Grand Junction, Colo., provided detailed information on deep core holes. The Utah Power & Light Co. gave permission for drilling on their lands along the San Rafael River.

Previous and Concurrent Studies

Published information on the geology of the study area is abundant. The area is in that part of Utah which experienced some of the earliest geological and mineral exploration. (For example, see Lupton, 1912.) The first test well for petroleum in Utah was drilled at Green River. As a result of several periods of petroleum and uranium exploration, there are many published reports on the geology, including brief articles such as that by Lupton (1911), detailed descriptions of formations as given in the guidebooks of the Intermountain Association of Petroleum Geologist (1954, 1956, and 1958), and detailed geologic mapping of Gilluly (1929). Other than the Geologic Map of Utah (Stokes, 1964), the principal sources of discussion and representation of geology in the area are Baker (1946), Gilluly (1929), and Stokes and Cohenour (1956). A report by Jobin (1962) relates hydrologic properties of the formations to the occurrence of uranium.

Published information on water in the study area is less abundant. Reports by Mundorff (1972) and by Mundorff and Thompson (1982) pertain to chemical quality of surface water and fluvial sediment in the Price and San Rafael River basins. Hood and Danielson (1979, 1981) discuss bedrock aquifers in the adjacent lower Dirty Devil River basin area. Lines and Morrissey (1983) discuss the Ferron Sandstone aquifer in Castle Valley which is on the west edge of the present study area. Results of regional hydrologic studies that included all or parts of the northern San Rafael Swell area are given in the following reports: Thomas (1952); Iorns, Hembree, and Oakland (1965); Feltis (1966); Price and Arnow (1974); and Waddell, Contratto, Sumsion, and Butler (1981). Data collected during several of those studies and used in this study are given in the following reports: Iorns, Hembree, Phoenix, and Oakland (1964); Sumsion (1979); and Waddell, Vickers, Upton, and Contratto (1978).

Terminology

The term permeability is used in this report to denote the relative ease with which a water-bearing formation can transmit water. The specific measure of permeability is hydraulic conductivity $(K)^{1}$. The following ranges of measured or estimated hydraulic conductivity are used in this report:

Range	K, in feet per day
Very low	Less than 0.5
Low	0.5 to 5
Moderate	5 to 50
High	50 to 500
Very high	More than 500

The terms used in this report to classify water according to the concentration of dissolved solids are as follows:

C	lassification	Concentration, in milligrams per liter	
Fresh		Less than 1,000	
	Slightly saline	1,000 to 3,000	
Saline	Moderately saline	3,000 to 10,000	
	Very saline	10,000 to 35,000	
Briny		More than 35,000	

¹The hydraulic conductivity (K) of a water-bearing material is the volume of water that will move through a unit cross section of the material in unit time under a unit hydraulic gradient. The units for K are cubic feet per day per square foot $[(ft^3/d)/ft^2]$, which reduces to feet per day (ft/d). The term hydraulic conductivity replaces the term field coefficient of permeability, which was formerly used by the U.S. Geological Survey and which was reported in units of gallons per day per square foot. To convert a value for field coefficient of permeability to the equivalent value of hydraulic conductivity, divide by 7.48; to convert from hydraulic conductivity to coefficient of permeability, multiply by 7.48.

Well-, Spring-, and Miscellaneous-Site-Numbering System

The system of numbering wells and springs in Utah is based on the cadastral land-survey system of the U.S. Government. The number, in addition to designating the well or spring, describes its position in the land net. By the land-survey system, the State is divided into four quadrants by the Salt Lake base line and meridian, and these quadrants are designated by the uppercase letters A, B, C, and D, indicating the northeast, northwest, southwest, and southeast quadrants, respectively. Numbers designating the township and range (in that order) follow the quadrant letter, and all three are enclosed in parentheses. The number after the parentheses indicates the section, and is followed by three letters indicating the quarter section, the quarter-quarter section, and the quarter-quarter-quarter section--generally 10 acres (4 hm^2) ; the letters a, b, c, and d indicate, respectively, the northeast, northwest, southwest, and southeast quarters of each subdivision. The number after the letters is the serial number of the well or spring with the 10-acre (4-hm2) tract; the letter "S" preceding the serial number denotes a spring. If a well or spring cannot be located within a 10-acre $(4-hm^2)$ tract, one or two location letters are used and the serial number is omitted. Thus (D-19-13)12ddd-1 designates the first well constructed or visited in the SELSELSEL sec. 12, T. 19 S., R. 13 E., and (D-23-10)9bbd-S1 designates a spring in the SELNWLNWL sec. 9, T. 23 S., R. 10 E. Other sites referenced in text are numbered in the same manner, but no serial number is used. The numbering system is illustrated in figure 3. In this report, the letter "W" that follows the serial number designates a petroleum-test well that has been left for use as a water well; the suffix letter "S" designates a well that has been plugged back; and the suffix letter "D" designates a well that has been deepened.

Surface-water gaging stations, where continuous records are available, are identified by an eight-digit downstream-order number adopted by the U.S. Geological Survey. (See U.S. Geological Survey, 1977, p. 9.) Thus, the station on the San Rafael River near Green River, Utah, is designated 09328500.

¹Although the basic land unit, the section, is theoretically 1 square mile (2.5 km^2) , many sections are irregular. Such sections are subdivided into 10-acre $(4-\text{hm}^2)$ tracts, generally beginning at the southeast corner, and the surplus or shortage is taken up in the tracts along the north and west sides of the section.

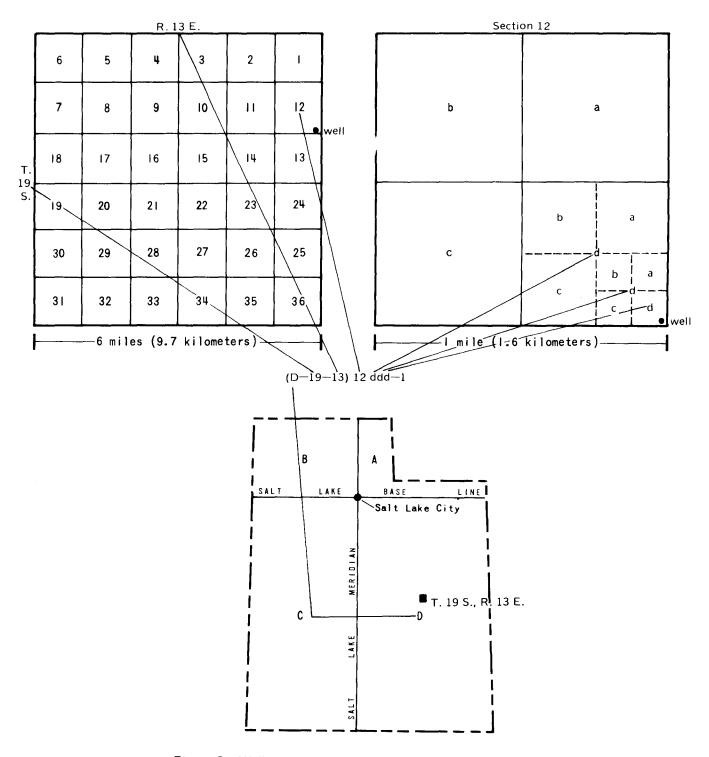


Figure 3.-Well- and spring-numbering system used in Utah.

GEOLOGIC SETTING

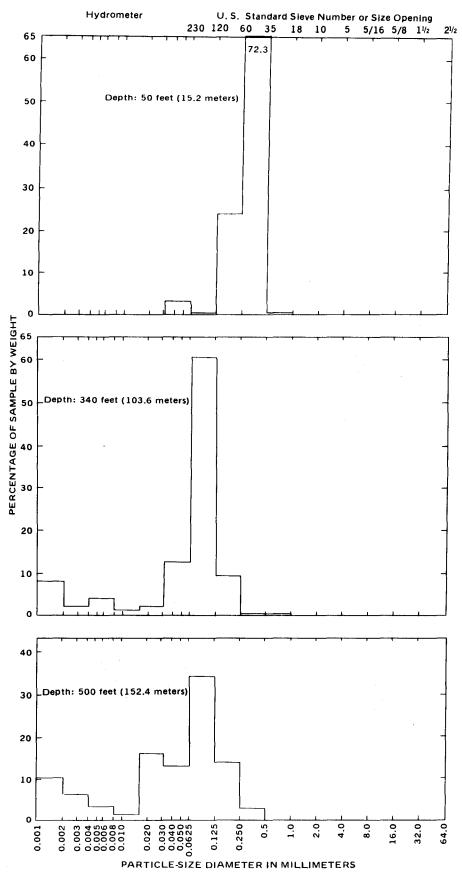
Formations and Their Hydrologic Characteristics

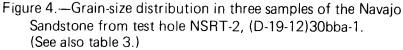
Rocks that underlie the northern San Rafael Swell area range in age from Precambrian to Holocene (pl. 2 and tables 1 and 2). Most of the sedimentary formations have substantial variations in lithology, mainly due to different depositional conditions, and in thickness, due partly to depositional conditions and partly to the events that followed deposition. The complete section of sedimentary rocks has a maximum thickness of about 30,000 feet (9,140 m) and a minimum thickness of about 12,000 feet (3,660 m). The minimum known thickness (where the section is not complete) is 4,083 feet (1,244 m) at well (D-22-12)5abd-1 (table 11).

All the formations in the geologic section contain some water, but much of the section from the practical standpoint of well yields is not considered to contain useful aquifers. Some of the hydrologic, structural, and physical characteristics of the aquifers are readily measurable or visible in outcrops. Other characteristics of both the exposed and unexposed formation can be evaluated only from well drilling, aquifer testing at wells, chemical analysis of water from wells and springs, and laboratory testing of rock samples from formations that are known to transmit water. A brief evaluation of each formation is given in table 2 and selected supplementary geologic data are given in table 11. Data from outcrop and core samples are given in tables 3 and 4, and the samples and sampling sites are described in table 13.

Of the geologic units listed in table 2, five are considered to be major aquifers because of their large areal extent or thickness or their potential for locally large yields to individual wells. These units are the Entrada, Navajo, and Wingate Sandstones, the Coconino Sandstone, including its lateral facies equivalents in the Cutler Formation, and rocks of Mississippian age. Several other geologic units also are aquifers, but they are restricted in potential development owing to their thinness, distribution of permeable zones, or chemical quality of water. They include older alluvium, the Salt Wash Sandstone Member of the Morrison Formation, the Curtis Sandstone, the Carmel Formation, and the Moss Back Member of the Chinle Formation.

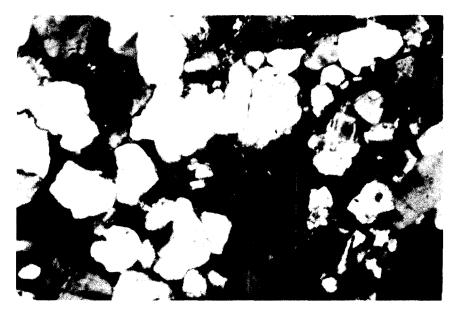
The Carmel Formation has a special importance to the ground-water hydrology of the northern San Rafael Swell area. First, it is widely exposed in the area, both east and west of the Swell, and can receive recharge directly. Second, it overlies the Navajo Sandstone, and locally can supply water to or receive water from the Navajo. Third, the formation contains large amounts of evaporites (mainly gypsum, but also salt near the west edge of the area) which contribute to the deterioration of the chemical quality of both ground and surface waters in the area. The Carmel Formation is a good aquifer, locally, in the region, yielding several cubic feet per second of water to individual wells and springs (Hood and Danielson, 1979, table 11; 1981, table 7). However, most discharges from wells and springs in the Carmel Formation range from seepage to about 30 gallons per minute (2 L/s).


Navajo Sandstone


Navajo Sandstone was selected as the principal subject of study in this report because the sandstone, regionally, is the best aquifer of the three thick sandstone aquifers described. Of the three, the Navajo is the shallowest, apparently the most permeable, and contains the freshest water.

The Navajo Sandstone, for the most part, is a very fine to fine-grained quartzose sandstone (tables 3 and 13) that coarsens to medium grained at the top (figs. 4 and 5, table 3). In figure 4, the histograms for depths of 340 and 500 feet (104 and 152 m) are representative of most of the formation, but samples from test NSRT-2 show that the formation generally is coarser and better sorted near the top. Sample NSRT-2-100 (table 3) has the grain-size bimodality described by Hood and Danielson (1979, p. 13).

Colors in the Navajo Sandstone range from light red or orange through light brown and pale tan to gray and pure white; the color depends on the amount of iron as grain coating remaining after leaching by circulating ground water. Colors in the northern and northeastern parts of the San Rafael Swell tend toward shades of brown indicating somewhat lower permeability. On the whole, the Navajo tends to be more uniformly colored than such formations as the Entrada Sandstone in which only the most permeable beds or fracture zones (fig. 6) have colors that indicate leaching.


The Navajo Sandstone in the northern San Rafael Swell area ranges from loose, soft and friable to hard and well indurated. The degree of hardness depends on the type of exposure or lack of exposure to surface effects, length of time exposed, and the grain size; moisture content also seems to determine hardness where the sandstone is not saturated. In cliffs (fig. 7) where the sandstone is drained, as well as in some nearly horizontal exposed surfaces, the sandstone is very hard. At the site of rock sample UTSR-24, the sandstone is too hard to disaggregate for sieve analysis; yet at the site of UTSR-24, Engineering Research Associates (1953) reported that during tunneling operations, the sandstone was soft 6 to 30 feet (2 to 9 m) from the outer In the soft sandstone, the available pore space was 50 percent surface. saturated; the casehardened zone contained much less moisture and was dry at the surface. In drilling test holes into the sandstone aquifer, the drill penetrates the upper part rapidly; the penetration rate decreases with depth, presumably because of the smaller grain size. Where the sandstone is strongly shattered by faulting or folding, as at sampling site UTSR-16 (table 13), it is very loose, friable, and well-leached; this is because of mechanical disruption of the grain bonds.

C: Sample UTSR-20 near bottom of Navajo Sandstone



D: Sample UTSR-11 near middle of Wingate Sandstone

Figure 5.—Photomicrographs of sandstone specimens. All photos taken with polarized light at approximate magnification x 140. (See table 13 for description of samples.)—Continued

A: Sample UTSR-27-4 near top of Navajo Sandstone

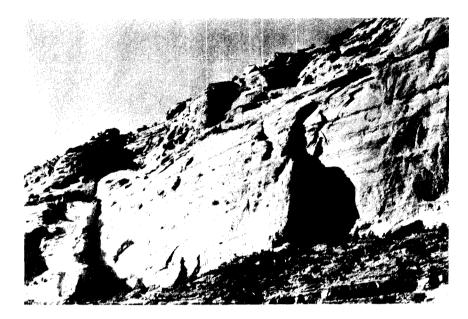
B: Sample UTSR-8 near middle of Navajo Sandstone

Figure 5.--Photomicrographs of sandstone specimens. All photos taken with polarized light at approximate magnification x 140. (See table 13 for description of samples.)



E. Sample UTSR 13A-5 near top of Coconino Sandstone.

Figure 5.—Photomicrographs of sandstone specimens. All photos taken with polarized light at approximate magnification x 140. (See table 13 for description of samples.)—Continued

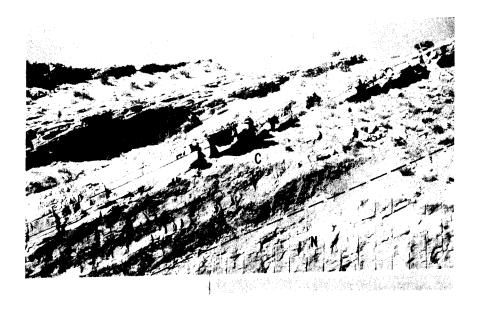


A: Fracture zone (arrow) in Navajo Sandstone at about location (D-22-13)12aba on Highway I-70. The fracture dips slightly eastward and contains some leached, loose white sand.

B: View, looking eastward, of thrust fault (arrow) in the Entrada Sandstone at site of spring (D-17-12)23aba-S1. Most of cliff is red, but along the fault, the rock has been bleached or leached by circulation of water.

Figure 6.—Fracturing at folds and near faults promotes recharge, discharge and interformational leakage of water.

A: View, looking southward from location (D-25-11)2cdd, of Navajo Sandstone cliff in wall of Temple Wash Canyon. Cliff weathers through spalling of large vertical slabs. Old surfaces are case-hardened, reportedly to depths of 6 to 30 feet, giving the impression that the sandstone is very hard.


- B: View of Black Dragon Canyon, looking northeastward from location (D-21-13)34cad. Coconino Sandstone (C) underlies Kaibab Limestone (K) and, beyond, the Moenkopi Formation (M). Fracturing, relatively gentle slopes, and lithology contribute to a strongly weathered, hackly outcrop of the Coconino Sandstone.
 - Figure 7.—Exposures of the Navajo Sandstone and other formations. Mode of exposure, in part, controls susceptibility to recharge and surficial character of sandstone aquifers. Steep or vertical slopes cannot be recharged.

The top of the Navajo Sandstone in the northern San Rafael Swell area generally is sharply defined and easy to identify in outcrops (fig. 8) and while drilling a well. In most areas, the base of the Carmel Formation consists of dense gray to black limestone, a thin bed of sandstone, and a bed of red siltstone that lies on the Navajo. The top of the Navajo is indicated by the appearance of cuttings from the red siltstone and a subsequent and abrupt increase in the drill-penetration rate (fig. 9). Cuttings from the sandstone--generally loose sand--are at first masked by cuttings from above or they are carried away in the drilling fluid, but the change in penetration rate is quite marked and can be seen if it is expected. As shown in figure 9, the top of the sandstone as picked from drilling time can be confirmed by geophysical logging, particularly when using the gamma-ray log. The natural radiation of the sandstone is relatively low and constant, whereas, the overlying beds of the Carmel Formation have relatively high radiation peaks. The configuration of the gamma-ray log shown in figure 9 is characteristic of that for the formational contact in all the study area.

The base of the Navajo Sandstone is more difficult to identify than the top. The contact with the underlying Kayenta Formation reportedly is gradational, but at least locally, the lowermost Navajo can contain some locally derived debris reworked from the Kayenta. Because of this difficulty in identifying the contact, data reported from some of the wells in table 11 probably are somewhat in error. For the purpose of this report, the base of the Navajo is picked as the bottom of a continuous sandstone section where the underlying siltstone is more than a few inches thick. Except in an area of bleached rock (Hawley and others, 1968) near the middle of the Swell, the color of the siltstone generally is maroon or dark red to brick red.

The thickness of the Navajo Sandstone in the northern San Rafael Swell area ranges from less than 200 feet (60 m) at the northeast edge of the study area to about 750 feet (230 m) at the southwest corner (pl. 3). The thickening is not uniform. Because the top of the Navajo is sharply defined and fairly uniform, the variation of thickness probably is due to variations in the position of the Navajo-Kayenta contact. The lines showing equal thickness on plate 3 were plotted from individual well data; where the top or bottom of the Navajo was not reported in the well log, the contact was estimated from the thickness of the overlying and underlying formations. The resultant map shows a consistent variation in thickness of the Navajo, despite the probable erroneous reporting of its base in some well logs.

The variations in thickness of the Navajo Sandstone indicate that the formation probably was deposited on an uneven surface of the Kayenta Formation. The data indicate that this surface was a sequence of ridges and valleys trending southwestward in the direction the Navajo thickens. Data also indicate that the Navajo was deposited as dune sand on land (Stokes and Holmes, 1954), in shallow water (Freeman and Visher, 1975), or most probably a combination of both.

A: Contact between Carmel Formation (C) and Navajo Sandstone (N) in south wall of road cut on Highway I-70, at location (D-22-13)12aac, on east side of San Rafael Swell.

B: View, looking northward from an overlook on Highway I-70, at location (D-22-9)33bba, on west side of San Rafael Swell.

Figure 8.—The upper contact of the Navajo Sandstone is easy to identify in outcrops. As in A, above, limestone, sandstone, and a basal red siltstone of the Carmel Formation (C) overlies soft massive sandstone of the Navajo Sandstone (N). An exception occurs in the vicinity of area shown in photograph B, where limestone of the Carmel Formation lies directly on the Navajo Sandstone.

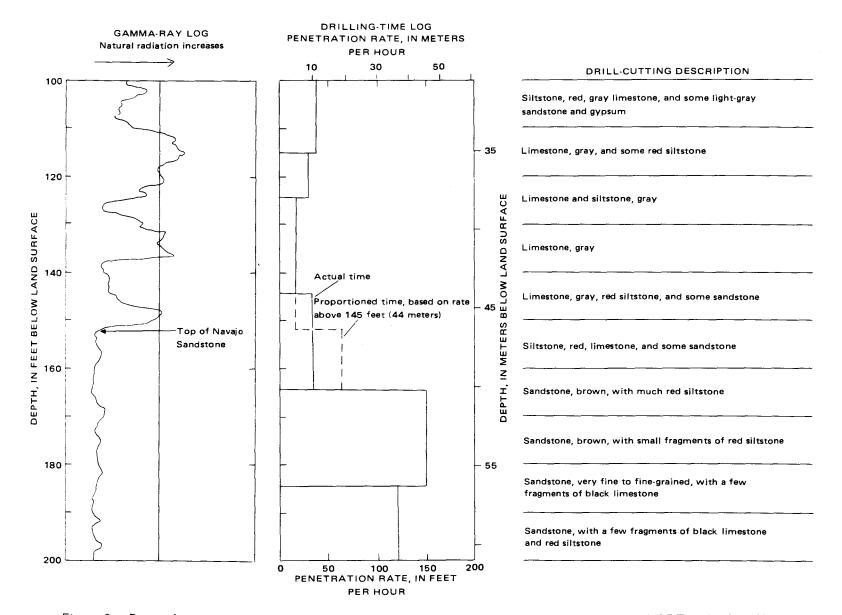


Figure 9.—Parts of gamma-ray and drilling-time logs and drill-cutting description for test hole NSRT-1, (D-20-10)6bdd-1.

The permeability of the Navajo Sandstone in the northern San Rafael Swell area ranges from very low to moderate, but locally it may be high. Measured K for outcrop and core samples range from 0.0037 to 5.1 feet per day (0.001 to 1.6 m/d). (See table 4.) Transmissivities¹ derived from low-discharge, short-term aquifer tests (table 5) at the only wells in the area available for testing ranged from 27 to 642 feet squared per day (2.5 to 60.1 m²/d). Values of K calculated from these values for <u>T</u> and thickness of the sandstone at the respective wells were in the range for K cited above; this supports the conclusions of Johnson and Greenkorn (1960) that there can be quantitative agreement of formation coefficients derived from core analyses and discharging well tests.

The storage coefficient² (S) of the Navajo Sandstone could not be determined using the available data in the northern San Rafael Swell area. Because of the regional hydrologic similarity of the formation, it is assumed that the generalized value of 0.001 for S used by Hood and Danielson (1979, p. 32) also applies to the Navajo in the northern San Rafael Swell area.

Hood and Danielson (1979, p. 34) also estimated the specific yield³ of the Navajo Sandstone to be between 5 and 10 percent. This range is about the same as that measured in the bottoms of shallow core holes where soil moisture was measured with a neutron probe (fig. 10). In the bottoms of the core holes, the sandstone is drained but is least affected by near-surface evaporation or recharge. The (Boyles Law) porosity of the Navajo ranged from 3.6 to 26.8 percent (table 4); the average is 17.7 percent, and 50 percent of the average is about 9 percent; which indicates that the range also agrees with the report by Engineering Research Associates (1953) that the sandstone was 50 percent saturated.

¹<u>Transmissivity</u> (T) is the rate at which water is transmitted through a unit width of the aquifer under a unit hydraulic gradient. The units for T are cubic feet per day per foot $(ft^3/d)/ft$, which reduces to feet squared per day (ft^2/d) . The term transmissivity replaces the term coefficient of transmissibility, which was formerly used by the U.S. Geological Survey and which was reported units of gallons per day per foot. To convert a value for coefficient of transmissibility to the equivalent value of transmissivity, divide by 7.48; to convert from transmissivity to coefficient of transmissibility, multiply by 7.48.

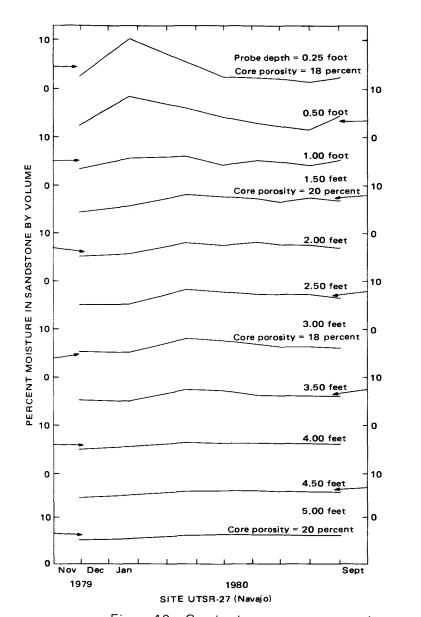
²The storage coefficient (S) of an aquifer is the volume of water it releases from or takes into storage per unit surface area of the aquifer per unit change in head. S is a dimensionless number. Under confined conditions, S is typically small, generally between 0.00001 and 0.001. Under unconfined conditions, S is much larger typically from 0.05 to 0.30.

³Specific yield of a rock or soil is the ratio of the volume of water it will yield by gravity after being saturated, to the volume of the rock or soil.

Structure and Other Factors That Affect Hydrology

Faulting and folding are the principal recognizable factors that alter the permeability of consolidated rocks in the northern San Rafael Swell area. Secondary factors include the removal of gypsum and limestone by solution.

The principal structural feature that distorts the rocks is the large anticlinal fold that comprises the San Rafael Swell. The Swell developed mainly as a result of horizontal compression from the west (Kelley, 1955, fig. 10). The axis of the Swell is gently arced, being convex to the east (pl. 4). The fold is asymmetric; rock along the east flank (fig. 11) dips most steeply; the Navajo Sandstone attains a maximum dip of about 85° in T. 23 S., R. 13 E. In that area, the Moenkopi Formation and probably older sedimentary rocks are overturned (Hawley and others, 1968, pl. 2) and may be thrust-faulted at depth. The dip of the Navajo decreases both northward and southward. Dips westward from the Swell are gentler. Associated with the larger fold are several lesser structures such as the Woodside Dome at the northeast side of the Swell and the anticline that underlies the town of Green River (pl. 4).


The effect of the folding of the Navajo Sandstone and other aquifers is twofold, fracturing and jointing of the competent beds (fig. 12) by flexing and shattering of those beds by associated faulting. Both of these effects can create greater permeability or reduce the original permeability. Any residual open fractures greatly enhance permeability. Craft and Hawkins (1959, p. 283) state that the permeability of an open fracture only 0.001 inch (0.0254 mm) wide is 54,000 millidarcies $(\text{md})^{1}$, or 132 feet per day (40 m/d), about 26 times greater than the maximum hydraulic conductivity of the Navajo given in table 3. Many observed joints in the Navajo Sandstone, however, were filled with impermeable material. Near (D-21-9)15dda, the site of rock sample UTSR-29, a vertical fracture in the Navajo was about 6 inches (15 cm) wide and completely filled with coarsely crystalline gypsum. Near (D-20-13)15daa, a vertical fracture about 0.5 inch (1.3 cm) wide was completely filled with iron oxide.

The most significant find with regard to fracture filling was at (D-22-13)35bdc, the site of rock sample UTSR-8 (table 13) and test hole NSRT-5. There several large, high-angle open fractures are superimposed on a dense network of thin silica-filled joints that parallel the strike of the formation. (See description of sample UTSR-8, table 13.) From this occurrence, it can be inferred that the flexing of the Navajo Sandstone proceeded in stages, and that fully refilling the fractures has led to a decrease in sandstone permeability.

¹Permeability determinations by oil-industry service companies are reported in millidarcies (or 0.001 Darcy). The Darcy has the dimensions of 0.987×10^{-8} square centimeters (at 20° C). For comparision with other results in this report, values in millidarcies were converted as follows:

hydraulic conductivity (at 60° F) = 2.439 x millidarcies/1,000

	SITE	LOCATION	REMARKS
	UTSR-27	(D-20-12)3cab-1	On highland in San Rafael Swell. Water level far below zone measured
Navajo Sandstone	UTSR-19A	(D-23-13)27bcc-1	On south bank of Straight Wash. Bottom may be in capillary fringe
l	UTSR-22	(D-24-16)15dbb-1	At north edge of dry wash on bare sand- stone. Water level far below zone measured
Coconino Sandstone	UTSR-13A	(D-21-11)25ddd-2	On east side of dry wash on bare sand- stone. Water level estimated to be far below zone measured
ĺ	UTSR-23	(D-23-11)27bca-1	On weathered slope east of county road and southwest of old concrete founda- tion. Water level far below zone measured, but some moisture is perched on hard limestone (?) layer at 4.5 feet

Number given in feet is probe depth for individual curve. Value for core porosity positioned with relation to probe depth. For additional data on these sites, see tables 2, 3, and 13

Figure 10.—Graphs showing percentage of soil moisture in shallow core holes in the Navajo and Coconino Sandstones in the northern San Rafael Swell area, Utah. (From measurements after method of J. R. Peterson, U. S. Geological Survey written commun., 1977.)

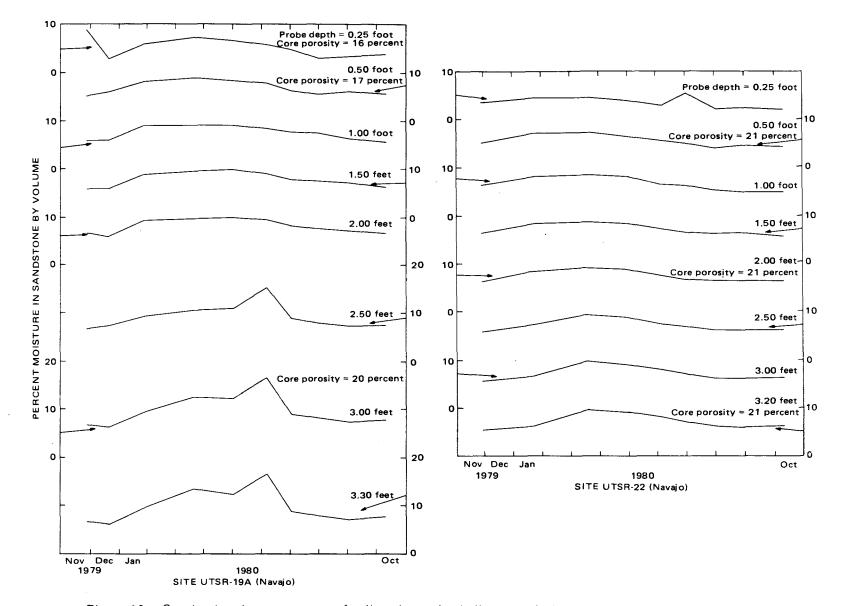


Figure 10.—Graphs showing percentage of soil moisture in shallow core holes in the Navajo and Coconino Sandstones in the northern San Rafael Swell area, Utah. (From measurements after method of J. R. Peterson, U. S. Geological Survey written commun., 1977.)—Continued

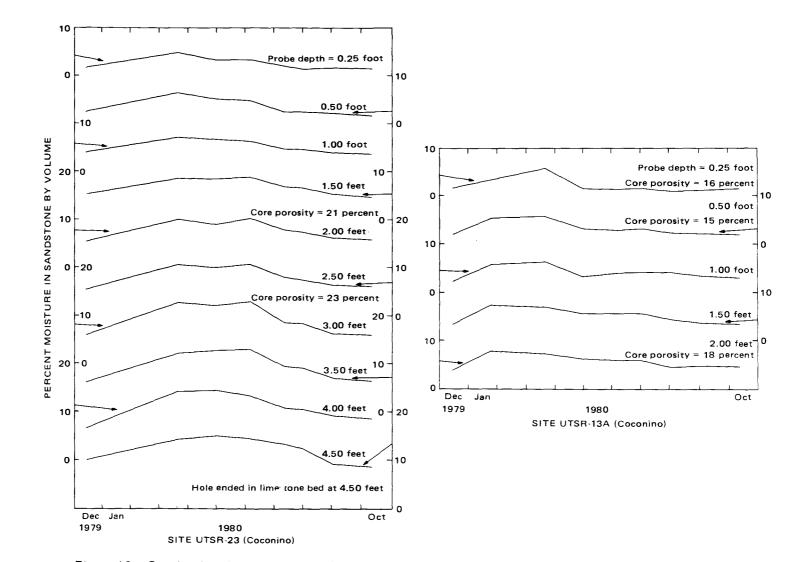


Figure 10.—Graphs showing percentage of soil moisture in shallow core holes in the Navajo and Coconino Sandstones in the northern San Rafael Swell area, Utah. (From measurements after method of J. R. Peterson, U. S. Geological Survey written commun., 1977.)—Continued

A: View, looking southward along east side of San Rafael Swell from location (D-22-14)7bb, showing steep dip of Navajo Sandstone (N) and flatirons of overlying Carmel Formation (C). Dip increases southward to nearly vertical.

- B: View, looking eastward from location (D-21-9)15abd, into Coal Wash on west side of the swell. Carmel Formation (C) and Navajo Sandstone (N) dip about 4[°] toward viewer. Dry wash is typical of most drainage channels in the swell. The sandstone here probably is only partly saturated and can receive recharge during infrequent runoff.
 - Figure 11.—Dips of formations. The San Rafael Swell is asymmetric, with steep dips on the east side and gentler dips to the west. Structural distortion on the east side results in greater recharge per unit area, but steep dips reduce the area of intake.

Figure 12.—View downward to bottom of Black Dragon Canyon, from location (D-21-13)34cad, showing potholes (arrows) in strongly jointed, weathered Coconino Sandstone. Susceptibility of the sandstone to recharge (and similarly, the Navajo Sandstone) is diminished by the accumulation of silt and mud in the potholes and in joints. The pools of water may persist for days or weeks after rain or snowmelt.

Faulting in the study area takes two basic forms, nearly vertical faults with virtually straight traces and low-angle thrust faults such as in T. 15 S., R. 11 E., near Wellington (pl. 2). Commonly, faulting is thought to result in decreased transmissivity by moving permeable beds against less permeable beds; this condition may occur at some faults in the area. However, much faulting in the area is the result of adjustment to the horizontal stress that created the Swell; as such, some of the vertical faults are tension faults that may be open enough to allow appreciable leakage of water and petroleum (Lupton, 1912, p. 117-120; Rigby and Bauer, 1972). Even thrust faults that appear largely intraformational, such as depicted by Peterson (1954, fig. 2), and in figure 6B create paths for movement of water within the formation. Permeability is lower in rocks in which porosity has decreased (Bredehoeft, 1964, fig. 1). Porosity and permeability data in table 4 show that the loading of core samples to simulate increased overburden pressure results in a 6-percent decrease in porosity, but a 20-percent or more decrease in permeability, with a sevenfold increase in pressure. Thus, the permeability of the Navajo Sandstone in the Book Cliffs, beneath 7,000 to 9,000 feet (2,130 to 2,740 m) of overburden, is significantly lower than the permeability of the sandstone where it crops out in the Swell. In like manner, the persistence of fractures is reduced with depth of burial (Nelson and Handin, 1977).

A given rock is more permeable to saline water than to fresh water. (For example, see Frick, 1962, table 23-5.) Thus, the saline water that commonly is associated with deeply buried formations partly offsets the effect of deep burial on the permeability. Moreover, the difference in permeability between a confined aquifer and the confining bed is somewhat reduced where the aquifer carries saline water; this probably occurs in the northern San Rafael Swell area.

Solution of rock materials also has significant effect on the permeability of certain geologic formations. Solution of gypsum results in partial collapse of the beds in the Carmel Formation and overlying formations and creep of the beds, as at (D-20-10)6bdd-1, the site of test hole NSRT-1. Solution of limestone and dolomite leads to cavernous, permeable zones in formations such as the Mississippian rocks; those rocks, where tested for petroleum, yielded much water to many of the petroleum-test wells (table 11).

In some instances large amounts of mill fiber or other materials have to be placed in wells during drilling to plug solution cavities and maintain circulation of the drilling fluid. An extreme example is well (D-23-11)22ccc-1W which was drilled to a depth of 2,285 feet (696 m) in 1936. The driller's record shows that significantly more plugging material was put into the hole than was drilled out of it; the hole was 2,270 feet (692 m) deep when measured in 1979 during the study.

Cavernous zones in limestone mainly are due to solution of the limestone by circulating recharge water that is laden with carbon dioxide from nearsurface sources such as decaying organic material in soils. Active solution from that source probably does not reach depths of more than a few hundred The sinkhole in (D-22-12)10bbb (pl. 1) is being actively stoped in feet. limestone and siltstone of the base of the Moenkopi Formation; the formation overlies the Kaibab Limestone, and solution of limestone in both formations is due to solution by recharge water. Limestone solution does occur at relatively great depths, and the rate of solution is accelerated if the pH of the water is lowered by the presence of hydrogen sulfide and carbon dioxide. These two gases mainly are the products of sulfate reduction associated with hydrocarbon oxidation; in solution they produce weak acids. In the San Rafael Swell, hydrogen sulfide seems most prevalent in the Moenkopi Formation, but carbon dioxide is present in several formations from rocks of Mississippian age upward to the Curtis Formation (tables 9 and 11); several test wells produced carbon dioxide at rates of several million cubic feet per day. This continuous supply of the gas when migrating through limestone of the several formations aids in self-accelerating development of cavernous zones. Locally, the process probably leads to subsidence and collapse features such as that illustrated by Hawley, Robeck, and Dyer (1968, fig. 7).

HYDROLOGY

Summary Statement

Water available to the northern San Rafael Swell area is derived from precipitation on the area and surface-water inflow in the Price and San Rafael Rivers. The volume of ground water in storage is many times greater than the estimated average annual recharge. Discharge from the area mainly is by evapotranspiration, but also by surface-water outflow in the Green River and by ground-water outflow. The gross amounts of inflow and outflow are listed in table 6.

Precipitation

Most of the northern San Rafael Swell area is arid because of the area's position with respect to adjacent higher lands and because of its relatively low relief. Average annual precipitation (pl. 1) ranges from slightly less than 6 inches (150 mm) to slightly more than 12 inches (300 mm). Average monthly precipitation (pl. 1) is least in winter and greatest in summer and fall. Precipitation in winter is less because winter storms move downslope from the west where they have released most of their moisture in high mountains. In summer, the prevailing flow of air is from the south, and upslope flow of air toward the western mountains and the Book Cliffs, together with erratically distributed thunderstorms, increases the probability of precipitation. Nearly all precipitation is consumed within the area.

The average annual (1931-60) volume of precipitation on the study area is estimated to be 1.15 million acre-feet (1,420 hm³), as determined from planimetry between lines of equal precipitation on plate 1. The average for the 2,880-square-mile $(7,460-\text{km}^2)$ area is 7.4 inches (188 mm).

Surface Water

The northern San Rafael Swell area is drained by the Green River and two of its tributaries, the Price and San Rafael Rivers (pl. 1). Both tributaries head in mountains west and north of the study area. The Green River, upstream from gaging station 09315000 at Green River, Utah, has a drainage area of 44,850 square miles (116,200 km²). The Price River, upstream from gaging station 09314500 at Woodside, has a drainage area of 1,540 square miles (3,990 km²), and the San Rafael River, upstream from gaging station 09328500 near Green River, has a drainage area of 1,628 square miles (4,217 km²). The combined average annual discharge at the two tributary gaging stations is 177,400 acre-feet (220 hm³), or 3.9 percent of the 4,568,000 acre-feet (5,630 hm⁵) at Green River. (See U.S. Geological Survey, 1978, for periods of Most other streams in the study area are ephemeral; however, some record.) may have perennial flow for short distances from springs such as Cottonwood Wash downstream from spring (D-20-13)15dad-S1. Monthly mean discharge at seven gaging stations is illustrated on plate 1 and listed in table 8. Detailed records and statistical data are given by the U.S. Geological Survey (1954, 1964, 1970, 1973, 1971-79). Additional discussion of drainage area, discharge at miscellaneous gaging sites, and effects of geology on surfacewater quality is given by Mundorff (1972) and Mundorff and Thompson (1982).

The Green River at Green River, although it includes the discharge of the Price River, derives nearly all its water from northeastern Utah and adjacent parts of Wyoming and Colorado. Thus, flow of the Green River is little affected by hydrologic changes in the northern San Rafael Swell area. The river contributes little to ground water in the study area, except where water from the river is distributed by canal for irrigation on alluvium near the town of Green River. The Green River is the discharge area for much of the surface-water and residual ground-water outflow from the northern San Rafael Swell area.

The Price and San Rafael Rivers derive most of their flows from freshwater sources in mountains west and north of the Swell. During much of the year, their flows are entirely diverted for irrigation of long-established farmlands extending from Price southwestward through Castle Valley. As a result, their flows through the Swell consist mainly of irrigation-return flow that is slightly to moderately saline. As early as 1924, during his fieldwork, Gilluly (1929, p. 76) noted that

"the water of both San Rafael and Muddy Rivers is sometimes so concentrated that even stock will not drink it, but this happens only during the hottest and driest periods."

The degradation of surface-water quality results not only from upstream irrigation, but also the flow of water over rocks of Late Cretaceous age and the effects of evapotranspiration along the stream channels (Thomas, 1952, p. 24).

The losses from evapotranspiration, though not quantified, must be large especially during the hot part of the year. The canyon of the San Rafael River, near the east side of the Swell is 800 feet (245 m) deep; air temperatures there often exceed $100^{\circ}F$ ($38^{\circ}C$) or more on sunny summer afternoons. High air temperatures together with low relative humidity cause high rates of evaporation, especially at low stages of the streams. Likewise, discharge from phreatophytic growth at stream edges and on flood plains (fig. 2B) even in deep canyons probably induces recharge to the alluvium from the rivers, thus further depleting the flow and increasing the salinity.

On the whole, there is little net gain to the streams that transect the San Rafael Swell except during infrequent heavy thunderstorms and rare years of thick snow cover in the Swell. There is little inflow of ground water even though the Price and San Rafael Rivers cut into several of the aquifers listed in table 2 and shown on plate 2. Conversely, the rivers seem to lose water at times (table 7), even during the cold months of winter as indicated in table 8. The average midwinter gain across the Swell for either of the main streams is less than 2 cubic feet per second ($0.06 \text{ m}^3/\text{s}$). The indicated losses cannot be explained without extensive seepage studies. It seems improbable that the midwinter decreases are due to irrigation diversions or instream evaporation between the stations, nor can it be probable that the streams lose water to the aquifers they transect.

Ground Water

Ground water in the northern San Rafael Swell area is derived from precipitation on the area and from consequent flow in upland tributaries to the Price and San Rafael Rivers, mainly during winter. Much of the ground water is discharged locally within the area. Water can move from one aquifer to another; however, residual recharge water moves mainly to the principal drainage channels which are the most deeply incised into the aquifers. A small amount of ground water flows out of the area and into the lower Dirty Devil River basin, and a part ultimately reaches the Green River.

Recharge

Ground-water recharge in the study area is from precipitation on the area; this includes seepage from upland tributary flow resulting from the precipitation. No ground-water inflow is inferred to occur in the post-Paleozoic rocks. The principal streams, the Price and San Rafael Rivers, are ground-water discharge points, rather than sources of recharge, other than to stream-channel alluvium.

The gross annual volume of recharge from precipitation in the northern San Rafael Swell area is estimated to be about 10,000 acre-feet (12 hm^3) . This is only about 1 percent of the total annual volume of precipitation on The estimate was made by comparing the potential for infiltration the area. of precipitation in the northern San Rafael Swell area with that in the adjacent lower Dirty Devil River basin (Hood and Danielson, 1981). The potential in the lower Dirty Devil River basin, where an estimated 2 percent of the annual precipitation goes to ground-water recharge, is greater than in the northern San Rafael Swell area. Where precipitation is greatest, the most recharge occurs in the unconsolidated rocks, but unlike the lower Dirty Devil River area, outcrops of such (pl. 2) are small and widely scattered in the northern San Rafael Swell area. The most permeable of the bedrock aquifers permit very low rates of recharge and the volume of recharge depends on surface area exposed. More water infiltrates the Navajo Sandstone than the Wingate Sandstone because the latter is exposed mainly in vertical cliffs that in most parts of the study area are capped with remnants of the Kayenta Formation which has a lower permeability.

Recharge to the bedrock aquifers occurs during prolonged wet surface conditions, which limits recharge mainly to periods of winter precipitation and snowmelt, when evaporation from the surface is at a minimum. Vertical hydraulic conductivities of the three major sandstone aquifers range from 0.0095 to 1.5 feet per day (0.0029 to 0.5 m/d) (table 4); this is 0.005 to 0.75 inch per hour (0.13 to 19 mm/hr). Short-term storms, such as summer thunderstorms, contribute little to recharge. For example, an intense storm may drop more than 1 inch (25 mm) of rain in 15 minutes, only to have most run off because of the low permeability of the bedrock. The chance for infiltration is lessened by the steep slopes common to much of the bedrock area that cause rapid runoff. Subsequent to such short storms, the water that does penetrate the bedrock returns to the surface due to capillary action and the water is evaporated. Changes in moisture as a percentage by volume of the rock for November 1979-October 1980, measured in three holes in the Navajo Sandstone and two in the Coconino Sandstone are shown in figure 10. In general, the percentage of moisture content begins increasing in the shallowest part of each hole during late fall, reaches a peak during midwinter, and then decreases until about August. For each successively deeper level, the peaking of moisture content occurs later than that at the surface, thus indicating a wave of moisture draining downward. In the deepest parts of the holes, least affected by surface conditions, the range of moisture change is about 1 to 4 percent. Note the abrupt temporary rise at site UTSR-22 where a summer storm added moisture to the shallowest zone; the moisture did not penetrate deeper than about 0.25 foot (7.6 cm).

The Navajo Sandstone probably receives more of the ground-water recharge than any other bedrock aquifer in the study area. The estimated direct recharge to the sandstone aquifer in the study area is 3,000 acre-feet (3.7 hm^3) per year or an average rate of 4.1 cubic feet per second $(0.12 \text{ m}^3/\text{s})$. This figure does not include possible recharge by interformational leakage; it does include recharge directly from precipitation on the sandstone outcrop throughout the study area and recharge from flow in upland drainage channels (pl. 1). The figure of 3,000 acre-feet (3.7 hm^3) is based on the amount of water needed--3.7 cubic feet per second $(0.10 \text{ m}^3/\text{s})$ or 2,680 acre-feet (3.3 hm^3) per year--as input to the digital-computer model to achieve best fit for the sandstone aquifer system.

The estimated annual amount of recharge to the Navajo Sandstone, 3,000 acre-feet (3.7 hm^3) compares favorably with the observed change (fig. 10) in moisture content. The addition of moisture, as a percentage by volume, can be visualized as a depth of water; in a cubic foot of the sandstone, the 1 to 4 percent added moisture cited above would amount to a depth of 0.01 to 0.04 foot (3.0 to 12.2 mm) of water. If the estimated annual recharge, 3,000 acrefeet (3.7 hm³), is divided by the area of outcrop of the Navajo Sandstone, about 93,000 acres (37,637 hm²), the result is 0.03 foot, or 0.36 inch (9 mm) --within the range of moisture change described above.

Occurrence and Movement

Ground water in the northern San Rafael Swell area occurs under confined, perched, and unconfined conditions; each of these conditions occurs in several areas. Most water in the unconsolidated deposits is unconfined. In several areas, one or more of the major sandstone aquifers are partly or completely drained. Water in the consolidated rocks is unconfined in and near outcrops around the perimeter of the Swell and where the rocks are dissected by canyons near the Green River. Downgradient from outcrop areas, the water level intersects the bottoms of overlying confining beds, and beyond, the water becomes confined.

Confined conditions mainly occur off the flanks of the Swell where the major aquifers are buried. Locally in these areas confining artesian pressures are great enough to raise water levels in wells higher than the land surface. For example, the water level in the Navajo Sandstone at test hole (D-23-14)25bca-1 (table 9) was 105 feet (32 m) higher than the land surface.

The condition is representative of a broad area from the east side of the Swell to the Green River. More deeply buried aquifers probably have greater pressure, as at well (D-23-16)15dca-1 (table 11).

Water in several aquifers differs in occurrence at any given site due to differences in recharge and permeability. For example, the Navajo Sandstone is only partly saturated near the Green River because of its higher permeability relative to the Carmel Formation. In the same general area, water in the overlying Carmel Formation and Entrada Sandstone is perched. These formations yield water to springs such as (D-24-16)27cbb-S1 (table 10).

Perched conditions also occur in other formations in the study area. On Cedar Mountain, for example, recharge to the Salt Wash Sandstone Member of the Morrison Formation occurs during the spring and discharge to springs and seeps on the east face of the mountain occurs during early summer; this probably explains why well (D-17-11)27ccd-1 was dry (table 9). Other examples of perched conditions are at spring (D-20-9)35ccd-S1 (table 10), well (D-19-13)21cbd-1 (table 9), and well (D-22-11)23bdc-1 (table 11).

Ground water moves downgradient from recharge areas to discharge areas along paths of greatest transmissivity. The direction of movement generally is depicted by maps of the potentiometric surface. For most of the formations listed in table 2, there are insufficient data to construct potentiometric-surface or ground-water level maps. The study area, however, is part of the regional-study area described by Hanshaw and Hill (1969, p. 267-280) who used petroleum-test data to show the gross features of the potentiometric surfaces in Paleozoic aquifers. The maps they constructed (Hanshaw and Hill, 1969, figs. 2 and 6-8) indicate that ground water in the Paleozoic rocks west of the Green River moves from areas north and northwest of the San Rafael Swell southward past the Swell.

Of the younger aquifers, a potentiometric-surface map is provided only for the Navajo Sandstone as shown on plate 5 of this report. It can be assumed that the potentiometric surface for the Wingate Sandstone is similar because the two formations share common areas of general outcrop and similar lithology and structural distortion.

The potentiometric surface for the Navajo Sandstone (pl. 5) shows that ground water moves from the outcrop area of the sandstone, around the Swell, away from the Swell. On the west side of the Swell, ground water moves from the area of maximum precipitation around San Rafael Knob (pl. 1) westward and thence both southward into the lower Dirty Devil River basin area and northnortheastward. In moving northeastward, the ground water is augmented by a little recharge along the Swell; a part of the water is discharged to the San Rafael River. Most water in the sandstone at the north end of the Swell moves around a high, dry area of the sandstone and thence southeastward toward the Green River. On the east side of the Swell, a ground-water divide exists near the surface divide southeast of Temple Mountain. In this southeastern area, water in the sandstone moves northeastward toward the confluence of the Green and San Rafael Rivers. Some water is intercepted by discharge points near the faults that intersect Cottonwood Springs, (D-24-14)32adb-S1 (table 10). In the highlands near Keg Knoll, a very small amount of recharge moves through the lower part of the westward-dipping sandstone (pl. 5) and thence northward toward the San Rafael River.

The potentiometric contours on plate 5 are based both on the sparse control shown and on the results of digital-computer modeling; contours are fitted to the existing data, but the direction and spacing of the contours are guided by the modeling results. A basic assumption that affects the direction of contours in the northern part of the study area is that no water enters the area from the north and northwest. This assumption is based on the relatively great depth of burial (pl. 6) and, therefore, the greatly reduced permeability of the sandstone, and the relative lack of outcrops of the Navajo Sandstone (Stokes, 1964; logs and other data in Hood, Mundorff, and Price, 1975) in those directions.

Fragmentary water-level data, indicated by both wells and springs, for aquifers younger than the Navajo Sandstone show that water movement in them is largely from their local outcrops to the nearest lower drainage that is cut into them. However, where the younger aquifers are deeply buried, the direction of movement probably is much the same as for the Navajo Sandstone.

Storage

Estimates of ground-water storage are made only for the Navajo and Wingate Sandstones and for the Coconino Sandstone (incuding its lateral facies equivalents). The estimate for the Navajo Sandstone probably has the best accuracy owing to the greater effort spent on data acquisition for that formation. Estimates are based on data in tables 2, 4, and 11, and on plate 3. The estimates for all three aquifers are as follows:

Aquifer	Average thickness (feet)	Area (square) miles)	Estimated effective porosity (percent)	Volume of ground water in transient storage (millions of acre-feet)	Assumed specific yield (percent)	Recoverable water in transient storage, assuming complete drainage (millions of acre-feet)
Navajo Sandstone	¹ 412	¹ 2,300	² 17.7	³ 94	² 9	42
Wingate Sandstone	400	2,350	20	⁴ 100	5	27
Coconino Sandstone Totals (rounded)	700	2,880	20	⁴ 232 440	8	<u>93</u> 160

¹Based on planimetry of area containing full thickness of the formation.

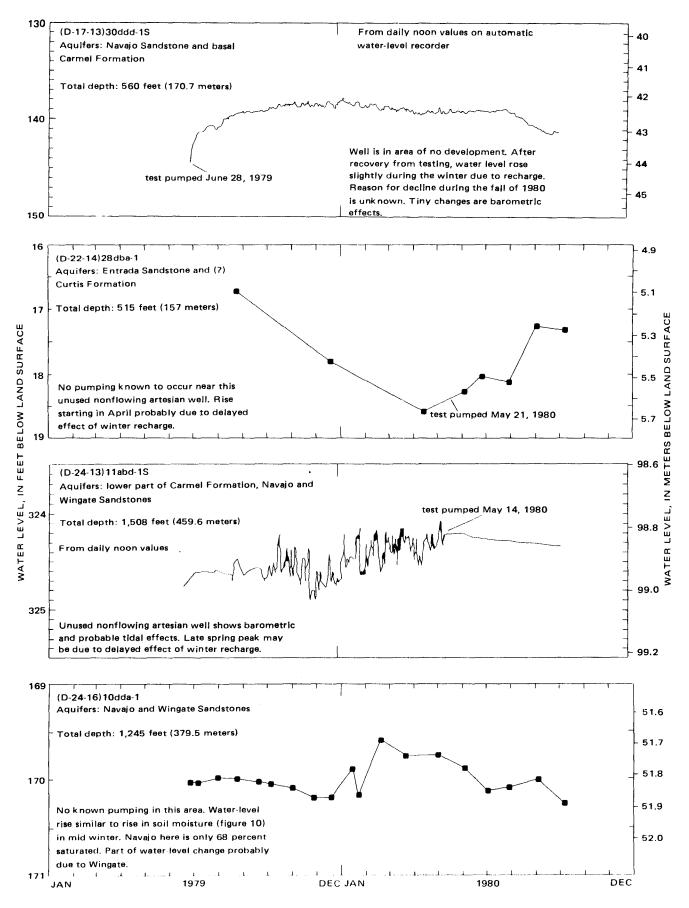
²See page 20.

³An estimated 87 percent of the sandstone is saturated.

⁴An estimated 90 percent of the sandstone is saturated.

The three sandstone aquifers, thus, contain about 160 million acre-feet $(197,300 \text{ hm}^3)$ of water that could be recovered if the aquifers could be completely drained. This figure is an upper limit to development of the aquifers because complete drainage could never be achieved.

The volume of water stored in other aquifers in the study area cannot be estimated from the available data. It is probable that the total volume does not exceed that stored in the Navajo, Wingate, and Coconino Sandstones.


The ground-water system in the northern San Rafael Swell area is almost unaffected by development. There may be some interformational movement of ground water through uncased wells such as (D-25-14)26dba-1 (table 9), but this does not change the total volume of water stored in the bedrock. Wells completed in bedrock aquifers yield small quantities of water for a few widely scattered stock and mine-supply systems; several of these wells yield water from the Navajo Sandstone. They include such low-yield stock wells, as well (D-24-15)6caa-1S (table 9), that have been left flowing for years. Total annual withdrawal from such wells, however, is small. For example, withdrawal from the entire ground-water system in the bedrock aquifer system probably did not exceed 200 acre-feet (0.25 hm^3) during 1980. For practical purposes, therefore, the withdrawal did not change the volume of ground water in storage.

Water-level changes in wells in the study area are due to small natural changes in storage. Fluctuations of water levels in six observation wells in the northern San Rafael Swell area during parts of 1979 and 1980 are shown in figure 13, together with brief explanations of well conditions and the causes of fluctuations. (See also figure 14 for fluctuation of water level in a natural discharge area.)

Discharge

Annual ground-water discharge in the northern San Rafael Swell area equals the estimated ground-water recharge for that area--10,000 acre-feet (12 hm³), or less. The discharge consists of discharge to streams, outflow in bedrock aquifers, evapotranspiration, and the small amount of well discharge noted in the section on storage. None of the means of discharge can be precisely quantified for all the aquifers, but evapotranspiration probably is the largest.

<u>Navajo Sandstone aquifer.</u>--Discharge from the Navajo Sandstone occurs principally to the surface in the San Rafael River where the river has incised the sandstone on both the west and east sides of the Swell; lesser amounts of discharge occur in the channels of the lower San Rafael and Green Rivers, near their confluence. Discharge to the rivers is estimated to be 2,000 acre-feet (2.5 hm^3) annually or 67 percent of the estimated annual recharge to the sandstone. An estimated 300 acre-feet (0.4 hm^3) per year moves through the sandstone from the west side of the Swell southward into the drainage area of the lower Dirty Devil River. An additional estimated 300 acre-feet (0.4 hm^3) moves through the sandstone east-southeastward out of the northeast side of the study area (pl. 4). The remaining 400 acre-feet (0.5 hm^3) is discharged through springs and seeps and direct evaporation. Much of the spring flow and seepage is consumed by evapotranspiration near the point of discharge.

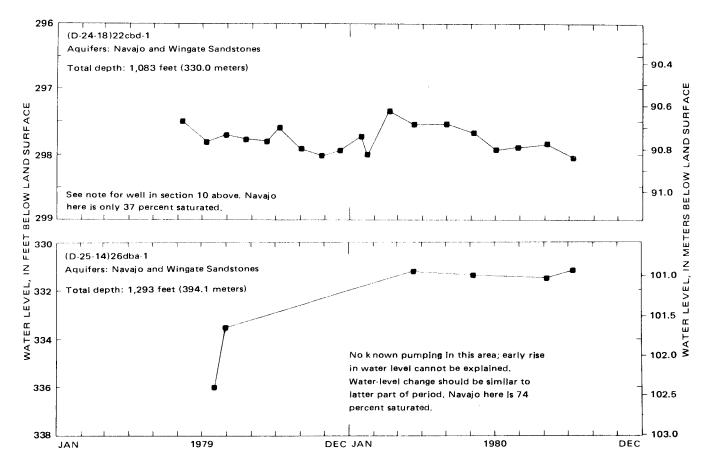


Figure 13.—Water levels in observation wells.—Continued

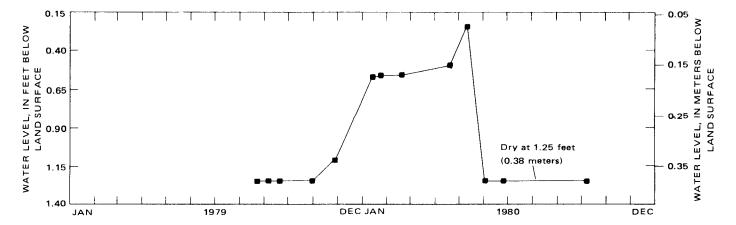


Figure 14.—Water level in shallow core hole (D-20-13)15daa-1. Core hole is on left (north) bank of Cottonwood Wash where the wash cuts through the Navajo Sandstone on east side of the San Rafael Swell. Sandstone is almost saturated most of the year and discharges water by evaporation. During late fall and winter, evaporation almost ceases and water level rises nearly to land surface.

Other consolidated aquifers.--Discharge of ground water from the other consolidated rocks could not be calculated for lack of data. However, some of the rocks, both younger and older than the Navajo Sandstone, discharge mainly in the study area, particularly where those rocks are strongly dissected; where they are deeply buried, they also transmit small quantities of water toward the Dirty Devil River basin and the Green River. For example, see well (D-23-16)15dca-1 (table 11), which shows a ground-water level higher than the nearby Green River.

Evapotranspiration.--The amount of ground water discharged by evapotranspiration was not calculated both because the absolute amount probably is small and because the maximum gross evapotranspiration occurs where a mixture of surface water and an unknown percentage of ground water is discharged.

Both field inspection and false-color satellite imagery show that the only dense vegetation in the study area is in irrigated areas near Green River, in Castle Valley, west of the San Rafael Swell, and in small tracts along the Price and San Rafael Rivers. Other than near the irrigated tracts, phreatophytic vegetation grows only as a fringe at stream edge and on the lowest terrace where flood inundation occurs during infrequent floods. At these locations the phreatophytes obtain most of their water from streamflow and stream-channel underflow.

Elsewhere, widely scattered moist areas and small springs, mostly intermittent, are marked by small patches of phreatophytes, such as Temple Spring (D-25-13)6aca-S1 or (D-17-12)23aba-S1 (table 10). Small damp areas are found throughout the study area, some in deep inaccessible canyon country such as that shown in figure 2B. The springs shown on plate 1 are only those found in the field or shown on available topographic maps; the springs shown probably amount to less than half the actual number.

Direct evaporation of water from consolidated aquifers occurs at some locations in the study area. In Eagle Canyon, at spring (D-22-9)8aca-S1 (table 10), wet sandstone in the canyon wall has a thick coating of white mineral residue that indicates evaporation. Likewise, water evaporates directly from the Navajo Sandstone in Cottonwood Canyon in the vicinity of spring (D-20-13)15dad-S1 (table 10). Shallow core hole UTSR-21, (D-20-13)15daa-1, was drilled nearby on a shelf of sandstone about 3 feet (1 m) The cliff next to the site was damp several feet above above the streambed. the shelf and was covered with mineral efflorescence. When the hole was drilled in the summer of 1979, the core was almost saturated yet, the adjacent streambed was dry; the head of streamflow was downstream. Later in the water year, as the head of streamflow (5 to 10 gal/min, or 0.3 to 0.6 L/s) again migrated upstream, water entered the core hole. By May 1980, the water level in the hole was near the surface of the shelf above the streambed. (See fig. 14.) This general condition occurs at several areas around the Swell.

Chemical Quality of Ground Water

The chemical quality of ground water in the northern San Rafael Swell area ranges from fresh to briny. Chemical analyses of water samples from formations that range from Mississippian to Holocene in age are listed in table 14. Supplemental data for the southern part of the area shown on plate 1 are in Hood and Danielson (1981, table 13). Brief descriptions of the chemical characteristics of water from the formations are in table 2.

The dissolved-solids concentration of ground water is controlled by a number of factors, including the depth of burial of the aquifer, the distance of the water source from the recharge area, the permeability of the rocks, and the amount of easily dissolved minerals in the rocks. Thus, springs or wells such as (D-22-14)6bbc-S1 and (D-19-13)21cbd-1 yield water with low dissolved-solids concentrations. This is because they discharge from shallow rocks in or near recharge areas that have been leached and contain mostly minerals of low solubility; conversely, some petroleum-test wells such as (D-15-10)26aaa-1 and (D-22-16)2bba-1, that penetrate deeply buried aquifers, produce brine or very saline water because of slow circulation over long distances from recharge areas, or because the formation contains much easily dissolved mineral such as halite (rock salt).

The Navajo Sandstone contains mostly water that ranges from fresh to moderately saline. Very saline water was obtained from one well that was converted from a petroleum-test hole; the water is of the sodium sulfate type (not characteristic of the Navajo) and may represent leakage into the well from another formation.

Most water in the Navajo Sandstone is fresh to moderately saline. The freshest water in the Navajo is of the calcium magnesium bicarbonate type. Locally magnesium is the predominant cation. Most samples from the sandstone, however, were mixed waters of the calcium magnesium sulfate chloride type, which indicates that water of the calcium bicarbonate type in the Navajo is mixed with water of the calcium sulfate chloride type from interformational leakage. In such areas as the San Rafael Desert, east of the Swell, such leakage must come from below the Navajo, because of the relatively high artesian pressures there. Around the flanks of the Swell, however, the source of calcium sulfate is gypsum in the overlying Carmel Formation; water in the Carmel leaks down into the Navajo.

Analyses for two water samples (table 14) are moderately saline water of the calcium bicarbonate and calcium magnesium bicarbonate chloride types. At the dissolved-solids concentrations found in samples from wells (D-15-11)12cda-1 and (D-18-14)9dca-1, bicarbonate as the dominant anion is due to the occurrence of carbon dioxide under pressure in the formation. (See tables 9 and 11.)

The analyses in table 14 indicate that the Navajo Sandstone contains water useful for stock and irrigation and, in parts of the area, for domestic purposes within a few miles of the aquifer outcrop both east and west of the Swell and in most of the San Rafael Desert, south of Green River.

EFFECTS OF LARGE-SCALE WITHDRAWAL OF GROUND WATER

Potential annual water requirements in the northern San Rafael Swell area, over the currently (1980) granted water rights, range from perhaps 5,000 acre-feet (6.2 hm^3) for small industry or coal-fired power generation plants to as much as 200,000 acre-feet (250 hm^3) for a proposed nuclear powerplant near Green River. For the latter amount, it is expected that ground water would be used conjunctively with a part of Utah's allocation of water in the Upper Colorado River Basin.

Well Yields and Drawdown

This study shows that aquifers, the Navajo Sandstone in particular, can supply 5,000 to 20,000 acre-feet (6.6 to 25 hm^3) of ground water for periods of 30 years, or more. However, the aquifers alone cannot supply 200,000 acrefeet (250 hm^3) per year.

The potential yield to wells in the Navajo is dependent on the hydraulic conductivity and thickness of the sandstone, and on well diameter. The effect of hydraulic conductivity and thickness, for an assumed storage coefficient of 0.001, are shown in the following table:

	Assumed		Assumed			Drav	vdown, i	n feet, at o	distance o	f
Aquifer thickness (feet)	hydraulic conductivity (ft/d)	Trans- missivity (ft²/d)	well discharge (gal/min)	Years of pumping	1 foot	10 feet	100 feet	1,000 feet	10,000 feet	50,000 feet
200	0.2	40	450	10	3,370	2,580	1,790	995	232	0
				20	3,490	2,700	1,900	1,110	338	7
				30	3,560	2,770	1,980	1,180	403	19
				40	3,610	2,820	2,030	1,230	450	34
	1.0	200	450	10	729	571	413	252	97	10
				20	753	595	437	278	121	23
				30	767	609	451	292	134	32
				40	777	619	460	302	144	40
500	.2	100	900	10	2,820	2,190	1,560	923	299	10
				20	2,920	2,280	1,650	1,020	389	39
				30	2,970	2,340	1,710	1,070	443	66
				40	3,010	2,380	1,750	1,110	482	90
	1.0	500	900	10	609	482	355	228	102	22
				20	6 28	501	374	248	121	37
				30	639	512	386	259	132	47
				40	647	520	394	267	140	54

The table shows that it is unrealistic to expect large sustained well yields where the aquifer is thin, as northeast of the San Rafael Swell (pl. 3); it is also unrealistic to expect large yields where the hydraulic conductivity is low, as is the case where the formation is deeply buried. Digital-computer modeling of the aquifer shows that increasing the well diameter from 10 to 18 inches (25 to 46 cm) will decrease long-term drawdown in the pumped well by about 10 percent.

The simplistic calculations given in the table above do not take into account the effects of discharge points along rivers, boundaries such as the outcrop of the Navajo Sandstone around the San Rafael Swell, or variations in \underline{T} due to both changes in \underline{K} and the varying thickness of the sandstone. For this reason, the Navajo was modeled.

The model representing 4,640 square miles (12,020 km^2) was constructed using the methods of Trescott, Pinder, and Larson (1976). Simplifying assumptions included the use of uniform values for storage coefficient and specific yield and the restriction of the model to those parts of the aquifers where the Navajo Sandstone is fully saturated or nearly so. It also was assumed that the Navajo does not leak to or receive leakage from the bounding formations. Hydraulic conductivity was estimated from the permeability rock specimens, aquifer tests, and reported data from petroleum tests, and it was graduated across the area modeled according to the depth of burial of the Several sets of assumed values were tested, and the effects of aquifer. discharging wells and well diameter were tested for assumed periods of as much as 30 vears. Few data are available and time for model development was limited, but the model is considered to be a reasonable representation of the hydrologic system. The model could not be calibrated because of a lack of water-level data both areally and with time. However, the model was useful in guiding the analysis of the aquifer by other methods, and it was useful as a general guide to delimit the rates and significant areas of recharge and discharge and to evaluate the general effect of well discharge on the stream system.

The modeling of the sandstone aquifer shows that: (1) A well northeast of the San Rafael Swell in the study area will have drawdown about 1,000 feet (305 m) when pumped continuously at 1 cubic foot per second (449 gal/min, or 0.28 m³/s) up to 30 years; (2) a well west of the Swell could be pumped at 2 cubic feet per second (900 gal/min or 0.6 m^3 /s), but large drawdown would occur after a year or more of continuous pumping; (3) to achieve a given yield multiwell arrays with well spacings of 1 mile (1.6 km) or more are preferable (despite locally high artesian pressures, the relatively low <u>T</u> of the Navajo Sandstone restricts the spread of the cone of depression due to pumping); (4) pumping near the San Rafael River would reverse discharge of the sandstone aquifer to the river only if the sandstone were completely dewatered at its outcrop on the river; and (5) the discharge to the Green River, which is less than 1 cubic foot per second ($0.02832 \text{ m}^3/\text{s}$) would be little affected by 30 years of pumping at about 2 cubic feet per second ($0.05664 \text{ m}^3/\text{s}$), if the withdrawal is made more than 10 miles (16 km) from the river. The effects of pumping on the rates of interformational leakage cannot be assessed using the available data, although it recognized some leakage must occur. Whatever amount occurs as a result of lowering water levels in the Navajo Sandstone would offset a part of the amount removed from storage in the sandstone. The most important effect would be a degradation of ground-water quality in the sandstone aquifer; some leakage occurs naturally, as can be seen from the chemical characteristics of samples from the Navajo. Enhanced leakage would increase the naturally occurring degradation. Likewise, induced saline-water infiltration from the San Rafael River would degrade the chemical quality of water in the aquifer.

From the foregoing discussion, it is apparent that large-scale development of the Navajo Sandstone in the study area is only marginally feasible; the feasibility should be based on the cost of widely spaced, relatively low-yield wells and the attendant gathering and storage system. Moreover, the natural discharge from the sandstone aquifer would be little affected by pumping unless a large number of wells were installed close to the discharge areas--again, marginally feasible. Thus for example, nearly all the annual withdrawal of 20,000 acre-feet (25 hm³) per year would come from storage. It should be noted that a withdrawal of 20,000 acre-feet (740 hm³) or about 1.4 percent of the ground water stored in the Navajo Sandstone in the study area.

Effect on Flow of the Colorado River

The effects of pumping ground water in the northern San Rafael Swell area would have a negligible effect on the flow of the Green River, a principal tributary of the Colorado River. Because of the small exposure of the Navajo Sandstone to the river, direct diversion from the river, by infiltration into the outcrop probably would be less than 1 cubic foot per second $(0.028 \text{ m}^3/\text{s})$. The principal effect would be diversion of water from the tributaries which discharge to the Green River. Even if pumping diverted all the estimated natural ground-water recharge of 10,000 acre-feet (12 hm³) and induced an equal amount, the resultant diversion would amount to 25 cubic feet per second $(0.71 \text{ m}^3/\text{s})$ or less than 0.5 percent of the average flow of the Green River at Green River, Utah (U.S. Geological Survey, 1979, p. 241). Because the Green River is tributary to the Colorado River, the effect on the Colorado River would be even less.

FURTHER STUDIES NEEDED

In 1980, the amount of ground-water data available on the Navajo Sandstone in the study area was small. Even less information was available on the other principal aquifers. Prior to any firm planning for future largescale ground-water development, the following studies are considered necessary for evaluating feasibility or planning the operation of well fields.

1. The flow system in the Navajo Sandstone and other aquifers needs to be better defined throughout the area, including more information on the potentiometric surface and hydraulic properties of both the sandstone and its confining beds.

- 2. Pressure relations among the several aquifers need to be defined, because of the potential for increased or induced interformational movement of water.
- 3. From the data aquired under items 1 and 2, a reliable calibrated digitalcomputed model of the Navajo Sandstone and associated aquifers needs to be constructed for predictive purposes.
- 4. The chemical quality of available ground water areally and with depth needs to be better known, particularly in the northern half of the study area.

SUMMARY AND CONCLUSIONS

Rocks that underlie the northern San Rafael Swell area range in age from Precambrian to Holocene. All the geologic units contain some water, but only five are considered to be major aquifers--the Entrada, Navajo, and Wingate Sandstones, the Coconino Sandstone including its equivalents in the Cutler Formation, and rocks of Mississippian age. Several other lithologic units-older alluvium, the Salt Wash Sandstone Member of the Morrison Formation, the Curtis Formation, the Carmel Formation, and the Moss Back Member of the Chinle Formation--are at least locally important.

The circulation of water in the consolidated aquifers is affected by faulting and folding which locally enhance water movement by fracturing, or impede the movement by offsetting permeable beds or sealing zones with rock of lower permeability. At least locally, fracturing also enhances interformational leakage. Other factors affecting circulation are the reduction of porosity due to depth of burial, the salinity of the circulating water, and the solution of carbonate rocks and evaporites.

The total hydrologic system in the northern San Rafael Swell area has an estimated average annual inflow and outflow of about 1.3 million acre-feet $(1,600 \text{ hm}^3)$, of which about 1.15 million acre-feet $(1,420 \text{ hm}^3)$ is derived from precipitation on the area and the remainder is inflow in the Price and San Rafael Rivers. An estimated 99 percent of the water is consumed by evapotranspiration and most of the remaining 1 percent leaves the area as surface flow.

The estimated long-term average annual ground-water recharge is 10,000 acre-feet (12 hm^3), or less; at least 30 percent of this amount recharges the consolidated rocks. At least 20 percent of the water is discharged to the streams and the remainder is consumed by evapotranspiration or moves out of the area as ground-water outflow.

The total amount of ground water in storage cannot be calculated. However, the Navajo, Wingate, and Coconino Sandstones contain an estimated 160 million acre-feet (197,300 hm^3) of recoverable fresh to moderately saline water. The estimated average annual recharge to and discharge from the Navajo Sandstone in the northern San Rafael Swell area is about 3,000 acre-feet (3.7 $\rm hm^3$). This is only 0.007 percent of the recoverable water in the sandstone aquifer.

On the basis of available data and a digital-model approximation, calculations show that an annual withdrawal of 20,000 acre-feet (25 hm^3) for 30 years would reduce the amount of recoverable water stored in the Navajo Sandstone by about 1.4 percent.

Although most wells inventoried during this study yield small quantities of water, yields of more than 1,000 gallons per minute (63 L/s) to individual wells are possible locally in the area. Large yields would be accompanied by large drawdowns--1,000 feet (305 m) or more--in and near well fields after several years of pumping.

Well yields from the Wingate and Coconino Sandstones probably could be equal to those from the Navajo Sandstone because the average saturated thicknesses of those formations are greater; the largest yields from all formations would be expected in fractured areas and those yields also would be accompanied by large drawdowns--especially if the aquifer is confined. The pumping effects in other aquifers in the area cannot be evaluated.

Ground water in much of the northern San Rafael Swell area is saline. Most unconsolidated deposits contain saline water because of evapotranspiration in uplands and saline streamflow, except in the Green River bottoms. Most consolidated rocks contain freshwater only near their outcrop areas. Known occurrences of freshwater in the Navajo Sandstone include not only outcrop areas both east and west of the Swell, but also at depth in a broad area extending from the east-central edge of the Swell to the Green River. In most areas, water in the Navajo shows some degradation by mixing with more saline water from other formations through interformational leakage.

Information obtained during this study indicates that:

- Bedrock aquifers (the thick sandstone aquifers in particular) in the northern San Rafael Swell area can yield additional fresh to slightly saline water--perhaps as much as 5,000 acre-feet (6 hm³) per year--with relatively little effect on the ground-water system.
- 2. Large withdrawals (as much as 20,000 acre-ft or 25 hm³ per year from the bedrock aquifers, the Navajo Sandstone in particular) are feasible; however, this is possible only where the formations are thickest (as along the west side of the San Rafael Swell), and if widely spaced wells are used. Such large withdrawals require many wells because of the low permeability of the sandstone. The chemical quality of water probably would be degraded.
- 3. Large withdrawals would have some side effects, including reduction of artesian pressure at the few existing wells, cessation of some spring flow, and a small effect on the flow of the San Rafael River. However, the effect on the flow of the Colorado River would be very small.

- Baars, D. L., 1962, Permian system of the Colorado Plateau: American Association of Petroleum Geologists Bulletin, v. 46, no. 2, p. 149-218.
- Baker, A. A., 1946, Geology of the Green River Desert-Cataract Canyon region, Emery, Wayne, and Garfield Counties, Utah: U.S. Geological Survey Bulletin 951.
- Bredehoeft, J. D., 1964, Variation of permeability in the Tensleep Sandstone in the Bighorn Basin, Wyoming, as interpreted from core analyses and geophysical logs: U.S. Geological Survey Professional Paper 501-D, p. D166-D170.
- Cooper, J. C., 1955, Cambrian, Devonian, and Mississippian rocks of the Four Corners area: Four Corners Geological Society Guidebook, First Field Conference, p. 59-65.
- Craft, B. C., and Hawkins, M. F., 1959, Applied petroleum reservoir engineering: Englewood Cliffs, N. J., Prentice-Hall.
- Engineering Research Associates, 1953, Underground explosion test program---Sandstone: Technical report no. 5, and Geology, Buckhorn Wash, Utah, v. 7, appendix A: Prepared in cooperation with Armour Research Foundation, Rensselaer Polytechnic Institute, and U.S. Bureau of Mines for the U.S. Army, Corps of Engineers, Sacramento District. Limited printing.
- Feltis, R. D., 1966, Water from bedrock in the Colorado Plateau of Utah: Utah State Engineer Technical Publication 15.
- Freeman, W. E., and Visher, G. S., 1975, Stratigraphic analysis of the Navajo Sandstone: Journal of Sedimentary Petrology, v. 45, no. 3, p. 651-668.
- Frick, T. C., [ed], 1962, Petroleum Engineering Handbook: New York, McGraw-Hill.
- Gilluly, James, 1929, Geology and oil and gas prospects of parts of the San Rafael Swell, Utah: U.S. Geological Survey Bulletin 806, p. 69-130.
- Gilluly, James, and Reeside, J. B., 1928, Sedimentary rocks of the San Rafael Swell and some adjacent areas in Utah: U.S. Geological Survey Professional Paper 150-D.
- Hanshaw, B. B., and Hill, G. A., 1969, Geochemistry and hydrodynamics of the Paradox Basin region, Utah, Colorado, and New Mexico: Chemical Geology, no. 4, 1969, p. 263-294, Amsterdam, Elsevier Publishing Co.
- Hawley, C. C., Robeck, R. C., and Dyer, H. B., 1968, Geology, altered rocks and ore deposits of the San Rafael Swell, Emery County, Utah: U.S. Geological Survey Bulletin 1239.
- Hess, F. L., 1911, A sulphur deposit in the San Rafael Canyon, Utah: U.S. Geological Survey Bulletin 530, p. 347-349.

- Hood, J. W., and Danielson, T. W., 1979, Aquifer tests of the Navajo Sandstone near Caineville, Utah: Utah Department of Natural Resources Technical Publication 66.
- 1981, Bedrock aquifers in the lower Dirty Devil River basin area, Utah, with special emphasis on the Navajo Sandstone: Utah Department of Natural Resources Technical Publication 68.
- Hood, J. W., Mundorff, J. C., and Price, Don, 1975, Selected hydrologic data, Uinta Basin, Utah and Colorado: U.S. Geological Survey open-file report (duplicated as Utah Basic-Data Release 26), Salt Lake City.
- Hood, J. W., and Waddell, K. M., 1968, Hydrologic reconnaissance of Skull Valley, Tooele County, Utah: Utah State Engineer Technical Publication 18.
- Intermountain Association of Petroleum Geologists, 1954, Guidebook to the geology of the High Plateaus, central and south-central Utah: Fifth Annual Field Conference, Salt Lake City, Utah.
- _____1956, Guidebook to geology and economic deposits of east central Utah: Seventh Annual Field Conference, Salt Lake City.
- _____1958, Guidebook to the geology of the Paradox Basin: Ninth Annual Field Conference, Salt Lake City.
- Iorns, W. V., Hembree, C. H., and Oakland, G. L., 1965, Water resources of the Upper Colorado River Basin--Technical report: U.S. Geological Survey Professional Paper 441.
- Iorns, W. V., Hembree, C. H., Phoenix, D. A., and Oakland, G. L., 1964, Water resources of the Upper Colorado River Basin--Basic data: U.S. Geological Survey Professional Paper 442.
- Jobin, D. A., 1962, Relation of the transmissive character of the sedimentary rocks of the Colorado Plateau to the distribution of uranium deposits: U.S. Geological Survey Bulletin 1124.
- Johnson, C. R., and Greenkorn, R. A., 1960, Comparison of core analysis and drawdown results from a water-bearing upper Pennsylvanian sandstone of central Oklahoma abs. : Geological Society of America Bulletin, v. 71, no. 12, p. 1898.
- Katz, D. L., [ed.], 1959, Handbook of natural gas engineering: New York, McGraw-Hill.
- Kelley, V. C., 1955, Monoclines of the Colorado Plateau: Geological Society of America Bulletin, v. 66, no. 7, p. 789-803.
- Lines, G. C., and Morrissey, D. J., 1983, Hydrology of the Ferron Sandstone aquifer and the effects of proposed surface-coal mining in Castle Valley, Utah: U.S. Geological Survey Water-Supply Paper 2195.

- Lupton, C. T., 1911, Gypsum along the west flank of the San Rafael Swell, Utah: U.S. Geological Survey Bulletin 530, p. 221-231.
- 1912, Oil and gas near Green River, Grand County, Utah, *in* Contributions to economic geology, Part II, 1912: U.S. Geological Survey Bulletin 541, p. 115-133.
- Mundorff, J. C., 1972, Reconnaissance of chemical quality and fluvial sediment in the Price River basin, Utah: Utah Department of Natural Resources Technical Publication 39.
- Mundorff, J. C., and Thompson, K. R., 1982, Reconnaissance of the quality of surface water in the San Rafael River basin, Utah: Utah Department of Natural Resources Technical Publication 72.
- Nelson, R. A., and Handin, John, 1977, Experimental study of fracture permeability in porous rock: American Association of Petroleum Geologists Bulletin, v. 61, no. 2., p. 227-236.
- Peterson, V. E., 1954, The Mounds and Farnham area of the northern San Rafael Swell, in Intermountain Association of Petroleum Geologists Guidebook to the geology of the High Plateaus, central and south-central Utah: Fifth Annual Field Conference, Salt Lake City.
- Price, Don, and Arnow, Ted, 1974, Summary appraisals of the Nation's groundwater resources--Upper Colorado Region: U.S. Geological Survey Professional Paper 813-C.
- Rigby, J. K., and Bauer, J. F., 1972, Geology of the Crystal Geyser Springs: Brigham Young University, Department of Geology.
- Rocky Mountain Association of Geologists, 1972, Geologic atlas of the Rocky Mountain Region: Rocky Mountain Association of Geologists, Denver.
- Stewart, J. H., Poole, F. G., and Wilson, R. F., 1972, Stratigraphy and origin of the Chinle Formation and related Upper Triassic strata in the Colorado Plateau region: U.S. Geological Survey Professional Paper 690.
- Stokes, W. L., [ed.], 1964, Geologic map of Utah: University of Utah, scale 1:250,000.
- Stokes, W. L., and Cohenour, R. E., 1956, Geologic atlas of Utah; Emery County: Utah Geological and Mineralogical Survey Bulletin 52.
- Stokes, W. L., and Holmes, C. W., 1954, Jurassic rocks of south-central Utah, *in* Intermountain Association of Petroleum Geologists Guidebook to the geology of the High Plateaus, central and south-central Utah: Fifth Annual Field Conference, Salt Lake City.
- Sumsion, C. T., 1979, Selected coal-related ground-water data, Wasatch Plateau-Book Cliffs area, Utah: U.S. Geological Survey Open-File Report 79-915 (duplicated as Utah Hydrologic-Data Report No. 32).

- Thomas, H. E., 1952, Hydrologic reconnaissance of the Green River in Utah and Colorado: U.S. Geological Survey Circular 129.
- Trescott, P. C., Pinder, G. F., and Larson, S. P., 1976, Finite-difference model for aquifer simulation in two dimensions with results of numerical experiments: U.S. Geological Survey Techniques of Water-Resources Investigations Series, Chapter C1.
- U.S. Geological Survey, 1954, Compilation of records of surface waters of the United States through 1950, Part 9, Colorado River Basin: U.S. Geological Survey Water-Supply Paper 1313.
- 1964, Compilation of records of surface waters of the United States, October 1950 to September 1960, Part 9, Colorado River Basin: U.S. Geological Survey Water-Supply Paper 1733.
- _____1970, Surface-water supply of the United States, 1961-65, Part 9, Colorado River Basin, Volume 2: U.S. Geological Survey Water-Supply Paper 1925.
- 1973, Surface-water supply of the United States, 1966-70, Part 9, Colorado River Basin, Volume 2: U.S. Geological Survey Water-Supply Paper 2125.
- _____1971-79, Water-resources data for Utah: Water Resources Division. Published annually.
- U.S. Weather Bureau [1963], Normal annual and May-September precipitation (1931-60) for the State of Utah: Map of Utah, scale 1:500,000.
- Vallentine, J. E., (no date), Important Utah range grasses: Utah State University Extension Circular 281.
- Waddell, K. M., Contratto, P. K., Sumsion, C. T., and Butler, J. R., 1981, Hydrologic reconnaissance of the Wasatch Plateau-Book Cliffs coal-fields area, Utah: U.S. Geological Survey Water-Supply Paper 2068.
- Waddell, K. M., Vickers, H. L., Upton, R. T., and Contratto, P. K., 1978, Selected hydrologic data, Wasatch Plateau-Book Cliffs coal-fields area, Utah: U.S. Geological Survey Open-File Report 78-121 (duplicated as Utah Basic-Data Release 31).
- Weeks, E. P., 1978, Field determination of vertical permeability to air in the unsaturated zone: U.S. Geological Survey Professional Paper 1051.
- Wengerd, S. A., and Matheny, M. L., 1958, Pennsylvanian system of Four Corners Region: American Association of Petroleum Geologists Bulletin, v. 42, no. 9, p. 2048-2106.
- Wengerd, S. A., and Strickland, J. W., 1954, Pennsylvanian stratigraphy of the Paradox Salt Basin, Four Corners Region, Colorado and Utah: American Association of Petroleum Geologists Bulletin, v. 38, no. 10, p. 2157-2199.

GEOHYDROLOGIC DATA

Table 1.—Codes used in identifying aquifers or geologic units in tables 9, 10, 11, and 14[See also table 2.]

110PTOD	Pediment, terrace or other deposits of Quaternary age	230MNKP	Moenkopi Formation	320PSLV	Undivided rocks of Pennsylvanian age
		231CCRK	Church Rock Member of		· · ·
111ALVM	Alluvium of Holocene age		Chinle Formation	321HKTL	Honaker Trail (upper member of Hermosa Formation)
112ALVM	Alluvium of Pleistocene age	231CHNL	Chinle Formation	324HRMS	Hermosa Formation
200MNCS	Mancos Shale	231KYNT	Kayenta Formation		
200MSZC	Undivided rocks of Mesozoic age	231MBCK	Moss Back Member of Chinle Formation	324PRDX	Paradox Member of Hermosa Formation
	490		- officiation	330DSBT	Deseret Limestone
2100607	Dakota Sandstone	231SRMP	Moss Back Member of Chinle	00020111	
2100101		2010100	Formation where originally	330MDSN	Madison Limestone
2178668	Buckhorn Conglomerate		identified as the "Shinarump	3301012314	Madison Emiestone
ZIIDORN	Member of Cedar Mountain		Conglomerate''	330MSSP	Undivided rocks of
	Formation		Congromerate	550101501	Mississippian age
		231WNGT	Wingate Sandstone		wississippian age
217CD8M	Cedar Mountain Formation	20111101		3308 DU	Redwall Limestone
LIIODIIII		237SNBD	Sinbad Limestone Member of	00011011	
220GLNC	Glen Canyon Group, undivided	20701100	Moenkopi Formation	331HMBG	Humbug Formation
		300PLZC	Undivided rocks of Paleozoic	340DVNN	Undivided rocks of
220JRSC	Undivided rocks of Jurassic age		age		Devonian age
		310CCNN	Coconino Sandstone	341ELBR	Elbert Formation
220NVJO	Navajo Sandstone				
		310CTLR	Cutler Formation	3410URY	Ouray Limestone
221BRSB	Brushy Basin Shale Member				
	of Morrison Formation	310KIBB	Kaibab Limestone	370CMBR	Undivided rocks of
					Cambrian age
221CRML	Carmel Formation	3100GRK	Organ Rock Tongue of Cutler		U U
			Formation	371LYNC	Lynch Dolomite
221CRTS	Curtis Formation				,
		310RICO	Rico Formation	374BWMN	Bowman Limestone
221ENRD	Entrada Sandstone				
		310WTRM	White Rim Sandstone	374HRMN	Hartmann Limestone
221MRSN	Morrison Formation		Member of Cutler Formation		
				374OPHR	Ophir Shale
221SLWS	Salt Wash Sandstone	319ELPC	Elephant Canyon Formation		
	Member of Morrison			374TNTC	Tintic Quartzite
	Formation	320MNGC	Manning Canyon Shale		
				400PCMB	Undivided rocks of
221SMVL	Summerville Formation	320MOLS	Molas Formation		Precambrian age

Note: Many of the formation identifications given in various tables, the petroleum-test wells in particular, are those of reporting companies; most reported identifications were not checked, or corrected, except where obvious errors had been made.

Table 2.--Description of geologic units known to underlie parts of the northern San Rafael Swell area

[See table 1 for codes used in identifying aquifers or geologic units in tables 9, 10, 11, and 14. Abbreviations: ft, feet; ft³/s, cubic feet per second; gal/min, gallons per minute.] Character of material and hydrologic characteristics: See text for description of data-site numbering system. Locations of sites are shown on plate 1. Hydrologic characteristics: Ranges of permeability and salinity are given on page . Interpretations of chemical quality of water are based on analyses given in table 14, or for some aquifers, are inferred from the lithology or from geophysical logs. Ranges of permeability are partly based on hydraulic conductivity as given in table 4.

Erathem Svstem))) , , ,	Series		Geologic unit	Character of material	Hydrologic characteristics
Cenozoic Duaternary	Quaternary Holocene			Younger alluvium, gravel surfaces, and covering deposits of dune sand or other windblown deposits	Surficial deposits of clay, silt, sand, and gravel. Local areas of talus or colluvium too small to map. Along stream valleys, younger allu- vium is well sorted, but generally is less than 20 ft thick. Gravel surfaces may be the upper parts of terrace deposits or the covering of pediments. Dune sand is a well- sorted veneer, as much as 20 ft thick, and it occurs mainly in the San Rafael Desert. Covering deposits otherwise include substantial amounts. of clay and silt. In stream valleys, deposits presently are (1980) being incised.	Very low to high (?) permeability. In most areas these deposits are above the water table; in stream valleys they are part of the deposits that yield water to shallow wells; they are less permeable than the underlying older alluvium and more permeable than most consolidated rocks. Gravel surfaces and dune sand gen- erally are above the water table, but loc- ally may yield small amounts of water to springs, and both are good recharge media. In some areas, water from these deposits may be fresh, however, they generally yield saline water because they receive recharge from saline streamflow, they contain detritus from saline consolidated rocks, or because of evapotranspiration in areas where the water table is shallow. For example, see records of wells (D-20-16)17bab-1 and (D-21-16)9aac-1.
		Pleistocene		Older alluvium and older terrace deposits and pediment cover	Silt, sand, gravel and boulders. Crops out in river valley south of the town of Green River and under- lies the channels of the Price and San Rafael Rivers. Underlies gravel surfaces, such as those along the Book Cliffs. Thickness, 10 to 100 ft.	Low to high permeability. In deeply incised drainages, is in direct contact with streams. In extensive deposits, as near Green River, well yields might be several hundred gallons per minute. In some areas, water in the deposits is fresh. In most places, however, it generally is saline, partly because of saline water discharge from underlying bedrock and partly because of recharge from saline streamflow.
Mesozoic and Cenozoic Cretaceous and Tertiary	reta	and Paleocene		Tertiary and Upper Cretaceous rocks, undivided	Mostly black to gray, silty to fissile shale and very fine to fine-grained sandstone. Full section is several thousand feet thick, but only a residual section is present around the west and northeast flanks of the San Rafael Swell.	Shale has very low permeability and is a confining bed for both the interbedded sandstone and underlying formations. Upward leakage through the shale probably is nil. The sandstone, especially in the lower units, is a freshwater aquifer west of the Swell (see Waddell and others, 1978, 1981). Water in this section in some areas is characteristically saline and of the sodium bicarbonate type. Debris from erosion of the shale degrades the chemical quality of water in alluvium containing the debris.
		snoa	in	Shale member of the Cedar Mountain Formation	Nodular shale. Thickness ranges from less than 100 to about 600 ft.	Very low (?) permeability. Little known regarding the permeability or chemical quality of water.
Mesozoic Cretaceous		Lower Cretaceous	Cedar Mountain Formation	Buckhorn Conglomerate Member of the Cedar Mountain Formation	Conglomeratic sandstone and (?) shale. Discontinuous; thickness, O to 125 ft.	Very low to low (?) permeability. Probable source of springs such as (D-16-12)16cbd-S1. Yields range from seepage to an estimated 30 gal/min of fresh to slightly saline water, mainly of the sodium bicarbonate type. Where deeply buried, formation probably yields water of greater salinity.
Jurassic		upper Jurassic	Morrison Formation	Brushy Basin Shale Member	Variegated, bentonitic shale, with minor sandstone, conglomerate, and limestone. Thickness, generally 200 to 400 ft.	Very low permeability. Retards ground- water circulation; but near outcrop areas yields small quantities of fresh to moder- ately saline water to springs such as (D-19-9)lacd-S1. Debris from shale adds to sediment load carried by streams and reduces the permeability of the bottoms of alluvial channels.

System	Series		Geologic unit	Character of material	Hydrologic characteristics
Jurassic	Upper Jurassic	Morrison Formation	Salt Wash Sandstone Member	Conglomeratic, crossbedded sandstone with minor shale. Thickness about 130 to more than 500 ft; seems to thicken southwestward toward the central western side of study area.	Very low to low (?) permeability. Little known about formation, but may contain saline water in most places; exceptions are near outcrops, especially in Cedar Mountain area.
			Summerville Formation	Red-brown, even-bedded, thin-bedded mudstone, siltstone, and sandstone. Local, small channel sandstone inclusions increase (?) southward. Thin beds and network of gypsum veinlets are common. Very uniform lithology in most of the area. Thickens westward from about 100 to 700 ft.	Very low permeability. Supplies water to few seeps such as (D-19-9)26cab-S1 which yields a moderately saline water of the sodium sulfate type.
assic			Curtis Formation	Greenish-gray and brown fine- to coarse-grained glauconitic marine sandstone and siltstone with minor greenish-gray and red shale, and local thin lenses of conglomerate. Forms prominent marker between the darker Summerville Formation and Entrada Sandstone. Thickness, 31 to 223 ft; thins southward, though variable locally.	Very (?) low permeability. Most water is saline. Well (D-22-14)28ddd-1 yielded a moderately saline water in which bicar- bonate was the dominant anion and which was charged with carbon dioxide. Spring water at (D-19-13)13bbd-S1 was very saline and of the sodium sulfate type.
Juras	e Jurassic	Rafael Group	Entrada Sandstone	Mainly light reddish-brown to tan massive crossbedded sandstone and reddish-brown siltstone that thicken southwestward where the formation is more clayey and massive. In north- eastern part of area, formation con- tains some lenses and beds of fine- to medium-grained sandstone (sample UTSR-28) that weathers to a golden yellow. Total thickness, about 200 to more than 700 ft.	Very low to moderate permeability. Clayey facies not known to be an aquifer. Water may be fresh in and near sources of fresh water recharge to the outcrop; chemical quality probably deteriorates with distanc from outcrop and depth of burial. Fresh water probably of the sodium bicarbonate type. Saline water probably has sulfate a the dominant anion, except circumstances like that at well (D-22-14)28dba-1 which yielded a moderately saline water of the calcium bicarbonate type heavily charged with carbon dioxide.
	Middle Jurassi	San Ra	Carmel Formation	In general, formation consists of a basal red shale and a sandstone bed, overlain by a lower part of dense limestone and an upper part of shale with some sandstone and beds of massive gypsum. Near the Green River, the formation is about 100 ft thick and is quite sandy; the shale, gypsum, and limestone content increase westward. At the west side of the study area, the thickness is nearly 700 ft and is more than 1,000 ft west of the area. Salt occurs in the formation (Gilluly and Reeside, 1928, p. 74; Hood and Danielson, 1981, table 10; U.S. Department of Energy, oral commun., 1979); these occurrences are an eastward exten- sion of the massive salt beds west of the project area (Stokes and Cohenour, 1956, p. 27). This salt is one source of the saline water found in the region. The formation underlies much of the upper dip slopes in the western San Rafael Swell, where considerable slumping of bedded gypsum, in the area south and east of Cedar Mountain, lime- stone in the lower Carmel caps and protects the Navajo Sandstone from erosion.	Very low to locally high (?) permeability. Formation in undisturbed state probably ha very low permeability, but where the rocks have been fractured or exhumed, water percolating from the surface or leaking from below, under artesian pressure, has dissolved limestone and gypsum and has developed cavernous zones and slumping which accelerates the solution process. Hood and Danielson (1979, table 1) indicate yields of 2 ft ³ /s from fractured parts of the formation. In the study area, few large yields were found. Sand- stone in test hole NSR T-6 yielded an estimated 100 gal/min at 205 ft; spring (D-23-8)30bdb-S1, in the bottom of Kimball Draw canyon discharged an estimated 10 gal/min. Most other sites yielded 5 gal/min or less. The basal siltstone (including thin limestone laminae such as sample UTSR-25) impedes ground-water move- ment between the Carmel and the underlying Navajo. The condition leads to perched water occurrences in the Carmel where the underlying Navajo may be only partly saturated as at well (D-19-10)15bac-1 and springs (D-24-16)27cbb-S1 and (D-25-13) foaca-S1; the springs are representative of numerous sites in and near the San Rafael Desert. Elsewhere, the basal beds are fractured and leak, as at spring (D-21-14) Saab-S1, the water of which probably is derived from the Navajo. Water in the Carmel ranges from fresh to slightly

Table 2.--Description of geologic units known to underlie parts of the northern San Rafael Swell area--Continued

...

System	Series		Geologic unit	Character of material	Hydrologic characteristics
Jurassic	Mide	San Raf	Carmel Formation Continued		saline of mixed type, such as that from spring (D-21-14)5aab-S1, to slightly to moderately saline water of the calcium sulfate type, such as that from spring (D-22-9)8aca-S1. Near the section of rock, the water may range from slightly saline to briny water of the sodium chloride type. In most areas, sulfate is the dominant anion.
Triassic(?) and Turassic	Upper Triassic(?)	DTCCDTDDTDMONDID	Navajo Sandstonę	Gray, buff, and locally red sand- stone; thickly and intricately crossbedded. See text.	Very low to moderate permeability. Very low permeability where undisturbed. Erratically distributed fracturing locally enhances or decreases permeability. See text. The sandstone yields fresh to moderately saline water of mixed type. Locally produces commercial carbon dioxide. See text.
Triassic(?)	c (2)		Kayenta Formation	Irregularly bedded grayish-pink and maroon shale, siltstone, and fine- to coarse-grained sandstone, in part conglomeratic, with minor beds of limestone. Contact with overlying Navajo is transitional in some areas. In some areas reported thickness of Kayenta differs significantly from well to well, indicating possible erosion surface on top of the for- mation. Thickness, 50 (7) to 350 ft, increasing from north to southwest. Shaliness decreases southeastward.	Very low to low (?) permeability. Samples UTSR-14 and 14A indicate that siltstone in the formation is 1,000 to 2,000 times less permeable than sandstone in adjacent beds; the sandstone is about as permeable as that in the Navajo. Although the formation probably acts as a confining bed between the Navajo and Wingate Sandstones, because of lower relative permeability, the forma- tion can leak water from one sandstone to the other, especially where the Kayenta is fractured or artesian pressure is present in the underlying Wingate. The siltstone beds create perched water areas in the base of the otherwise drained Navajo or in the top of the Kayenta, as indicated by test wells, (D-19-12)9dbc-1 and (D-19-12)30bba-1 and Keg Spring, (D-26-16)1cda-S1. Water from Keg Spring reportedly is fresh; elsc- where, water in the formation may be saline or similar in quality to that in the Navajo and Wingate Sandstones.
Triassic	Triassic	Glen Can	Wingate Sandstone	Reddish-brown to buff, very fine to medium-grained crossbedded sandstone. Calcareous, at least in outcrop; poorly to well indurated; contains several interbedded layers of silt- stone in vicinity of sample UTSR-11. Almost as uniform in lithology as the Navajo, but contains more fine- grained constituents. Most outcrops are in vertical cliffs that have a cap of remnant Kayenta Formation and are strongly jointed. Thickness, 100 to 220 ft on west, and increasing to 500 to 600 ft on east side of study area.	Very low to moderate (?) permeability. Grain-size, porosity, and permeability analyses indicate that the sandstone has about the same K as the lower and middle parts of the Navajo, but overall permeabil- ity probably is somewhat lower because of the included siltstone beds. Low to mod- erate permeability can be inferred for the sandstone where it is strongly jointed or fractured. Yields small quantities of fresh to slightly saline water to springs such as (D-23-10)9bbd-S1, which yields less than 1 gal/min. Well yields are inferred to be smaller than those estimated for the Navajo (see text). Near recharge areas, water in the Wingate is of the calcium magnesium bicarbonate type. In slightly to moderately saline water, the dominant anion is sulfate. Where deeply buried, water in the Wingate probably is more saline than in the Navajo under similar conditions.
Tria	Upper T	Formation	Chinle Formation (Upper part)	Regionally contains seven members, mostly of fluvial and lacustrine origin; not all members present at any given locality. (See Stewart, Poole, and Wilson, 1972) Mudstone, siltstone, sandstone, and some conglomerate in various shades of purple, red, and brown. Total thickness ranges from about 200 to almost 700 ft, increasing southward.	Chinle as a whole has very low to low (?) permeability. Most of formation is too fine grained to accept much recharge. Conversely, it enhances surface runoff and contributes much sediment to surface water. Yields small amounts of water to seeps. Well (D-24-9)5bcb-1 has a large drawdown (table 9) when pumping an estimated 10 gal/min of slightly saline water in which sulfate is the dominant ion. Two petroleum-test wells respec-
		Chinle	Moss Back Member	Yellowish-gray, fine- to medium- grained, lenticular, conglomeratic sandstone; minor mudstone seams, limestone conglomerate, and coaly material. This is the member identified in early petroleum-test wells as the "Shinarump Conglom- erate" which is absent in the northern and central San Rafael Swell.	tively yielded moderately saline water of the sodium bicarbonate type and very saline water in which chloride is the dominant anion.

Table 2.--Description of geologic units known to underlie parts of the northern San Rafael Swell area--Continued

Erathem System	Series		Geologic unit	Character of material	Hydrologic characteristics
Mesozoic Triassic	Middle(2) Triassic	1	Moenkopi Formation (Upper part)	Reddish-brown, ripple-marked, even- bedded, fissile mudstone and silt- stone, and fine-grained sandstone, with thin layers and veins of gypsum. Locally petroliferous. In part of study color changes from red to gray, probably as a result of reduction associated with carbo- naceous materials. Thickness, 200 to 775 (?) ft.	Moenkopi, as a whole, has very low to low (?) permeability. In and near out- crops, particularly in the higher parts of the Swell, the formation yields small amounts of fresh to slightly saline water of the magnesium calcium sulfate type. Spring discharge points probably are related to fracturing. Largest yield found is at Sulfur Spring, one of a group of springs in the canyon of the San Rafael River (Hess, 1911). This spring dis- charges an estimated 200 gal/min of a moderately saline water of the calcium sulfate bicarbonate type; the water from the group contains a large amount of hydrogen sulfide and probably carbon dioxide. Water from well (D-23-10)12ddd-1 contains a measurable amount of hydrogen sulfide. Records of petroleum-test wells show that the formation, where deeply buried, contains moderately saline to briny water of mixed types.
Meso	Triassic	Moenkopi	Sinbad Limestone Member	Yellowish-gray and tan, thin- to medium-bedded, oolitic dolomite and limestone, with minute amounts of siltstone and sandstone. Forms prominent benches where exposed in the central part of the Swell. Average thickness about 100 ft.	Core samples of the Sinbad Limestone Member indicates generally very low permeability for most areas; however, where the lime- stone is at the surface or has been strongly fractured, ground-water circula- tion probably has developed local cavernous zones. Samples from petroleum-test wells indicate the deeply buried limestone contains saline to briny water.
	Lower Tr		Moenkopi Formation (Lower part)	Light reddish-brown, yellowish-gray and green or bluish-gray, even- bedded siltstone and sandstone containing gypsum veinlets; chert- pebble conglomerate at base. Thickness, 20 (?) to 140 ft. Total thickness of the Moenkopi Formation is 360 to 1,100 ft or more, increasing from east to west.	See discussion of Moenkopi, as a whole, under section on upper part, above.
			Kaibab Limestone	Light-gray to brown, cherty, silty limestone; some dolomite; white, calcareous siltstone; thin beds of white, crossbedded, fine-grained sandstone. Caps terraces and edges of cliffs of the Coconino Sandstone in the east-central part of the Swell. Average thickness in the Swell is about 100 ft. Thickens southwestward from 0 ft near the northeastern side of the Swell.	Core samples generally indicate very low permeability for most areas, where undis- turbed. Where the limestone is at or near surface or has been fractured, ground-water circulation probably has developed local cavernous zones. The sinkhole which is stoped up into the Moenkopi Formation in (D-22-12)10 (pl. 1) probably is due to solution of the underlying Kaibab. Water in the limestone may be fresh near outcrops in the Swell; where the formation is deeply buried, as in petroleum-test well (D-18-14) 30ccb-1, the water is briny and of the sodium chloride type.
Paleozoic Permian	Lower Permian	Coconing Sandstone in most of study area	Coconino Sandstone	In much of study area, sandstone of Permian age is called the Coconino Sandstone (Stokes, 1964); near the east flank of the Swell, the Coconino interfingers with members of the Cutler Formation. The Coconino consists of light-gray to buff, friable to very hard, very fine to medium-grained, thickly crossbedded sandstone, with some grit and lime- stone (?) near base. Upper contact, where exhumed, weathers to a hackly, rough surface that has bright red iron-rich patches. Thickness aver- ages about 700 ft.	Very low to low (?) permeability. Surface and shallow core samples indicate that the upper part of the Coconino has permeability and porosity in the same range as samples in the Navajo. Where deeply buried, unleached and unfractured, permeability may be lower. Wells (D-22-11)23bdc-1 and (D-23-11)22ccc-15 indicate the sandstone is partly to fully drained in the highest part of the Swell. J. A. Rice (petroleum geol- ogist, written commun; Jan. 9, 1917), on the basis of 15 shallow test holes west of Temple Mountain found "abundant" water at depths of 12 to 350 ft; water level trended roughly parallel to land surface. Water in the Coconine near outcrops probably is fresh to slightly saline and of mixed types, as in well (D-23-9)2ccb-1. Water from petroleum tests is moderately saline to briny and of the sodium chloride type.

System	Series			Geolog	de unit	Character of material	Hydrologic characteristics	
		study area	southeast	White Rim S Member of Formation	Sandstone the Cutler	See discussion of Coconino Sandstone. White, gray, and buff, fine- to medium-grained arkosic (?) sandstone.	See discussion of Coconino Sandstone. Petroleum-test wells in this unit south of study area generally yielded slightly to moderately saline water.	
	ián	of	to east and	Organ Rock Member of Formation	Tongue or the Cutler	Reddish-brown siltstone and thin- bedded, fine-grained sandstone.	Very low (?) permeability. Characteristics not known.	
Permian	Lower Permian			Cedar Mesa Member of Formation	Sandstone the Cutler	Yellowish-gray, reddish-orange, and reddish-brown, friable, fine- to coarse-grained arkosic (?) sandstone, with minor beds of red sandy shale and gray cherty limestone.	See discussion of Coconino Sandstone. No water samples, but water probably saline.	
		Coconino Sano	Cutler Formation			This unit is not exposed in study area, but underlies the eastern part of the area; the lithology changes radically both to the northwest and the southeast. Thickness, about 1,000 ft.		
	Wolfcampian		For	nant Canyon Rico nation (of Formation 's, 1962)		Elephant Canyon is mainly (?) lime- stone and present mainly in and near the Swell. Interfingers (?) with Rico or decreases in thickness as Rico thickens. Rico Formation consists of sandstone, cherty lime- stone, siltstone, and shale. Thickens southeastward from about	Characteristics unknown. Permeability probably very low; water probably saline.	
Tonari e	d Upper		٠ ٨	Upper membe	er of Hermosa	300 to about 800 ft at east edge of study area.	Very low (?) permeability. Water samples	
	Middle and U	west	erd and Mathen	gerd and Mathen	(includes Formation and Mathen	Honaker Trail of Wengerd iy, 1958)	bedded arkosic (?) sandstone, silt- stone, and shale. Thickens south- eastward. A small exposure of this (?) unit is mapped by Stokes (1964) in Straight Wash, near the central east edge of the Swell.	from the Hermosa are mainly from the Paradox Member (see below). Those reporte for other members are very saline to briny and are of the sodium chloride type.
	ennsylvanian	rh(?) Formation to north	(Hermosa Group of Wengerd and Matheny 1958) to southeast	Paradox Mem Hermosa Fo	nber of the rmation	Salt, gypsum, anhydrite, black shale, sandstone, and limestone. Occurs east of the Swell and wedges out westward; thickens southeastward; absent in the Swell.	Very low to moderate (?) permeability. Ver low permeability, except where fracturing has allowed circulating ground water to dissolve salt, gypsum, and limestone. Nea the fault system south of the town of Gree River a petroleum-test well flowed 20 to 146 gal/min while being drilled in the Paradox. Water samples were very saline t briny and of the sodium chloride, sodium chloride sulfate, and calcium sodium chloride type.	
Pennsylvanian	Middle Per	rrh (Hermosa Formation (F	Lower membe Trail Memb	er (Pinkerton per of nd Strickland	Mainly dark-gray limestone, dolomite, and shale. Total thickness of Hermosa Formation or its equivalents ranges from less than 2,000 ft north and west of the Swell to a minimum of about 200 (?) ft in the Swell and thickens south- eastward to more than 5,000 ft near the Green River.	Characteristics not known. Permeability probably very low; water probably briny.	
	Lower Pennsylvanian		L i	Molas Forma	tion	Variegated claystone, and shale, siltstone, and conglomerate; includes limestone and chert regolith in karst surface in upper 10 to 100 ft of underlying Mississippian rocks. Present only (?) where Mississippian was exposed at surface during deposition of Manning Canyon (?) Shale in northwestern part of area. Thickness, 20 to about 500 ft.	Characteristics not known. Permeability probably very low; but probably confines water of unknown quality in Mississippian rocks.	

Table 2Description o	f geolog	ic units	known	to	underlie	parts	of	the	northern	San	Rafael	Swell	areaCont	inued

Erathem	Series	Geologic unit	Character of material	Hydrologic characteristics
Mississippian	and Pennsylvanian	Manning Canyon (?) Shale	Black to gray (?) marine shale, silt- stone, claystone, and (?) limestone. Present only (?) in northwestern part of study area.	Characteristics not known. Permeability probably very low; but probably confines water of unknown quality in Mississippian rocks.
Mississippian	Lower Mississippian Upper Redwall Limestone equivalent Mames used by various petroleum	Humbug Formation Redwall Limestone "Leadville Limestone" Deseret Limestone or Group"	 Mainly limestone and dolomite. Both upper surface and some zones internally are locally (?) cavernous. W. D. Quigley (written commun., August 30, 1969) described a reeflike zone within the upper 100 ft of the formation, that had a 2-ft open cavity, at (D-20-14)33baa-1. Note: the study area is in an area of transition among the lithologies and momenclature used for the Colorado Plateau, Basin and Range and Wasatch Plateau areas. See Cooper (1955, p. 63, 65) and Rocky Mountain Assoc. Geologists (1972) for discussion of formation names, lithologies, and extent of geologic units. Total thickness of Mississippian rocks range from 0 (?) to about 1,800 ft. They are removed or perhaps faulted out at well (D-24-9)14dda-1. 	Very low to high permeability. Cores from petroleum tests show that undisturbed carbonate section has very low permeability. Where faulted, fractured, or dissolved by ground water, the permeability is high. In the test described by Quigley, the bit dropped about 2 ft on entering the cavernous zone and the circulation of drilling fluid was lost abruptly. Many of the petroleum-test wells that were drilled to test these rocks yielded relatively large amounts of water; one or more of the wells flowed when tested. Most water samples from petroleum- test wells were very saline to briny and of the sodium chloride or sodium magnesium chloride type. However, in well (D-23-10) 28dbb-1, where the Mississippian is relatively shallow, the water recovered was slightly to moderately saline and of mixed types, indicating probable local recharge from downward leakage through the over- lying rocks.
Cambrian and	Lower, Middle, Upper Cambrian, Upper Devonian	Undivided sedimentary rocks. [Includes Elbert Formation, Ouray Limestone, Lynch Dolomite, Bowman and Hartmann Limestones, Ophir Shale, and Tintic Quartzite]	Includes quartzite or quartzitic sandstone, sandstone, siltstone, conglomerate, shale, limestone, and dolomite. Thickness about 2,000 to 3,200 ft.	Characteristics not known. Permeability probably very low.
		Undivided rocks of Precambrian age	Granitic and metamorphic rocks. Depths and altitudes vary widely; depths 10,840 ft in well (D-17-10) 1dbb-1, and 4,083 ft in well (D-22-12)5abd-1.	Characteristics not known. Permeability probably very low.

[See table 13 for sample descriptions. Abbreviations:

.

Location: See description of well- and spring-numbering system. Median size: Median = d_{50} = diameter of 50 percentile. Sorting coefficient: Geometric quartile deviation, $\sqrt{Q_3}/Q_1$, taken from cumulative curves representing frequency data of sediments. $Q_3 = 25$ -perceqt quartile, $Q_1 = 75$ -percent quartile. Skewness: $(Q_1 \times Q_3)/(median)^2$. Kurtosis: $(Q_3 - Q_1)/2$ (Pg₀ - P₁₀) taken from cumulative curves. Pg₀ = 90 percentile, P₁₀ = 10 percentile. Uniformity coefficient: Uniformity coefficient sorting index = d_{60}/d_{10} . Carbonate content: Calcium carbonate equivalent by carbon dioxide absorption method.

			Grain size (millimeters) in percent by weight										
							Sand						
Location	Sample No.	Clay <0.004	Silt 0.004-0.0625		Very fine 0.0625-0.125	Fine 0.125-0.25	Medium 0.25-0.50	Coarse 0.5-1.0	Very coarse 1.0-2.0				
									Entrada				
(D-23-13)24add-1	UTSR-28	-	6.1	-	5.7	40.0	44.2	3.2	0.0				
									Navajo				
(D-18-12)25aac-1 (D-19-10)13dbd-1 (D-19-11)17bba-1	UTSR-4 UTSR-5 UTSR-26	- -	2.2 2.2 5.2	-	16.3 27.4 34.2	47.9 69.4 52.5	31.6 1.0 7.8	2.0 .0 .3	0.0 .0 .0				
20bca-1 l (D-19-12)30bba-1 2	UTSR-24 NSRT-2-50 NSRT-2-100 NSRT-2-140 NSRT-2-140 NSRT-2-180 NSRT-2-210 NSRT-2-220 NSRT-2-220 NSRT-2-300 NSRT-2-340 NSRT-2-380 NSRT-2-420 NSRT-2-450	8.0 11.9 7.0 8.0 10.0 7.0 6.0 12.0	2.8 6.4 - - 6.9 8.8 - - -	10.9 14.6 20.0 22.8 25.4 19.6 24.3 22.6 27.4	- - - - - - - - - - - - - -	24.1 37.0 18.2 19.9 41.9 26.0 41.4 29.5 17.7 9.3 28.4 17.0 17.4	72.3 26.3 35.3 17.9 9.5 4.2 8.5 6.9 3.1 .3 1.0 .9 1.1	- .2 1.2 .3 2.4 .3 .1 .5 .3 .1 .3 .0 .0	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
(D-20-12)3dab-1	NSRT-2-500 UTSR-27-2 UTSR-27-6 UTSR-27-9 UTSR-27-13	16.0 - -	- .7 1.3 1.5 1.9	32.9	34.3 4.8 17.7 6.7 15.9	13.9 17.8 28.0 37.6 27.6	2.7 74.4 51.6 53.2 49.5	.2 2.3 1.4 1.0	.0 .0 .0				
(D-20-13)15cad-1 15daa-1	UTSR-20 UTSR-21-2 UTSR-21-4	-	7.9 2.5 2.6	-	44.7 18.3 10.4	37.6 73.5 77.9	49.5 9.8 5.7 9.0	5.1 .0 .0 .1	.0 .0 .0				
(D-21-9)15add-1 15dda-1 (D-22-13)12aab-1 12aba-1 12abb-1	UTSR-30 UTSR-29 UTSR-3 UTSR-2 UTSR-1	5.4 9.6	6.2 3.5 9.7	1.0 34.7	44.8 44.5 18.5 30.2 49.3	39.0 51.0 41.7 59.7 6.2	9.0 1.0 33.2 .3 .2	1.0 .0 .2 .1 .0	.0 .0 .0 .0				
		-	-	-	-	-	-		-				
12abb-2 35bdc-1 (D-23-9)3bda-1 3bdb-1 (D-23-13)27bcc-1 28add-1 (D-24-12)35bcd-1 35bcd-2 35cbd-2 (D-24-14)32aac-1 (D-24-16)12bcb-1 15dbb-1	UTSR-1A UTSR-8 UTSR-16 UTSR-19A-2 UTSR-19A-2 UTSR-19A-6 UTSR-19 TQUT-5 TQUT-5 TQUT-4 NS-7A UTSR-18 UTSR-7 UTSR-7 UTSR-22-2 UTSR-22-9	7.4	12.7 2.4 6.9 1.1 4.4 7.0 4.5 4.0 7.2 3.4 4.0 4.6	11.5	26.0 22.2 51.8 19.3 59.1 30.3 32.1 80.0 17.0 68.8 10.2 31.3 42.8 41.4	43.4 63.8 40.2 38.0 19.8 59.2 42.7 .5 43.0 24.0 41.8 60.9 46.1 39.8	17.9 11.6 1.1 41.5 3.3 6.1 17.6 15.0 .0 42.5 3.8 6.3 8.4	.0 .0 .1 .1 .0 .6 .0 .2 .0 2.1 .0 .2 .3	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0				
									Kayenta				
(D-22-10)33bca-1 33bca-2	UTSR-14 UTSR-14A	19.4	6.4 -	26.6	16.6 52.9	71.8 4.0	5.2 .0	0.0	0.0				
			2 2		20 1	(7.2	00.5	a -	Wingate				
(D-19-11)33bbd-1 (D-22-13)1dcd-1 35bcc-1 (D-23-10)9bbd-2	UTSR-6 UTSR-11 UTSR-9 UTSR-17	9.0 6.9 12.3	3.3 - -	8.1 33.5 6.5	28.6 65.0 47.0 69.4	47.9 18.8 12.4 13.8	20.2 .1 .1 1.0	0.0 .0 .0	0.0 .0 .0				

outcrops, test-well drill cuttings, and shallow core holes mm, millimeters; gm/cm^3 , grams per cubic centimeter.]

•

Median size	Sorting	Skewness	W	Uniformity	Dry unit weight	Specific gravity of solids	Carbonate content (percent)
size (mm)	coefficient		Kurtosis	coefficient	(gm	(gm/cm ³)	
Sandstone	<u></u>				<u></u>		<u></u>
0.239	1.51	0.971	0.285	2.80	2.01	2.73	-
Sandstone							
0.197	1.48	1.07	0.248	2.62	2.26	2.62	2.4
.153	1.33 1.46	.932 .903	.280 .305	2.22 2.38	2.24 2.28	2.65	.00 .67
.310	1.30	.953	.266	2,26	2.31	2.64	.00
.164	1.66	.966	.258	2,90	_	-	-
.144 .102	2.05	1.08	.290	26.4 41.2	-	2.67 2.68	-
.129	1.52	1.00	.299	2.30	-	2.00	-
.0871 .126	2.37	.486	.279	36.4	-	2.69	-
.0949	1.52	.473	.299	2.33	-	2.65	-
.0804	1.82	.645	.220	19.2	-	2.64	-
.0790 .0869	1.47	.816 .779	.235	22.1 17.1	-	2.66	-
.0825	1.56	.781	.205	11.7	-	2.66 2.67	-
.0744 .0639	2.39 2.32	.399	.267	43.9	-	2.65	-
.321	1.26	.510 1.00	.249 .238	39.1 2.36	1.91	2.64 2.66	-
.260	1.58	.780	.306	3.39	2.17	2.65	.00
.264 .267	1.47	.893 .797	.310	2.33 3.45	2.04 2.14	2.64 2.64	.00 .00
.120	1,52	1.07	.291	2.22	2.05	2.65	.25
.165 .174	1.27 1.25	1.00	.249 .268	2.18 1.86	2.10	2.66	.00 .00
.123	1.51	1.06	.294	2.21	-	2.65	2.3
.128 .190	1.44	.955 1.04	.306 .257	2.13	1	2.66	.17
.141	1.45	.845	.308	3.13 2.51	2.21 2.55	2.69 2.65	1.5 .17
.0677	1.55	.845	.248	13.1	2.45	2.74	35.8 370.7
-	-	-	-	-	-	-	370.7 348.8
-	-	-	-	-	-	-	4 39
.150 .165	1.60 1.31	.864 1.00	.240	3.21	2.15	2.68	.40
.111	1.44	1.06	.288	1.96	1.93	2.66	1.8
.214 .0913	1.56	.975 1.00	.287	2.98 4.01	2.20	2.67	.00
.150	1.41	.897	.299	2.37	2.09	2.68	. 33
.149 .0927	1.56 1.24	.927 1.00	.236	2.63 1.54	2.13	2.66	2.7
.197	1.52	1.04	.262	2.93	2.16	2.67	.00
.0962 .229	1.29 1.51	1.00	.199 .283	1.65	-	2.66	.00
.148	1.40	.895	.300	2.75 2.32	2.32	2.68	.92
.130	1.48	.974	.303	2.21	2.04	2.65	.50
.122	1.53	1.02	.294	2.38	2.10	2.65	.00
Format Lon							
0.162 .0685	1.27 1.55	1.00 .802	0.238	2.46 81.5	2.00 2.20	2.68 2.65	2.3
Sandstone				-			
0.162	1.48	0.934	0.227	2,55	2.16	2 69	0.50
.0897	1.31	1.00	.162	4.16	2.12	2.68 2.65	1.6
.0719 .0880	1.57	.850 1.00	.227	10.5 15.0	2.26 1.89	2.66	9.6
	1.20	1.00	.143	13.0	1.07	2.69	3.6

-

,

.

		Grain size (millimeters) in percent by weight							
							Sand		
Location	Sample No.	Clay <0.004	Silt 0.004-0.0625		Very fine 0.0625-0.125	Fine 0.125-0.25	Medium 0.25-0.50	Coarse 0.5-1.0	Very coarse 1.0-2.0
								Moss Ba	ack Sandstone
(D-22-13)35bcc-2	UTSR-10	-	1.7	-	11.2	63.4	23.7	0.0	0.0
									Coconino
(D-21-11)25ddd-1	UTSR-13	-	1.3	-	15.6	60.9	20.3	1.9	0.0
25ddd-2	UTSR-13A-1	-	3.1	-	14.7	48.2	27.1	6.9	.0
	UTSR-13A-3	-	1.5	-	10.1	52.2	31.1	5.1	.0
	UTSR-13A-5 5	-	1.3	-	22.7	70.1	5.9	.0	.0
	UTSR-13A-6 ¹	-	-	-	-	-	-	-	-
(D-23-11)27bca-1	UTSR-23-1	-	-	-					-
	UTSR-23-5	-	2.9	-	21.0	58.8	13.8	3.4	-1
(5.00.10)0.1	UTSR-23-9	-	7.9	-	22.7	53.5	13.7	2.1	.1
(D-23-13)8cbc-1	UTSR-12	-	.5	-	.6	49.6	47.5	1.8	.0

1 2

Sample was too hard to disaggregate for sieve analysis. Last segment of sample number designates depth to bottom of 10-foot sample. All samples from air-rotary drilling in dry formation. tormation.
 Rerun of carbonate content.
 From point count during thin-section analysis by Core Laboratories, Inc. Does not include 8 percent organic material which also is a cementing agent.
 Sieve analysis by Core Laboratories, Inc., converted to units and ranges used by the U.S. Geological Survey.

Median	Sorting			Uniformity	Dry unit weight	Specific gravity of solids	Carbonate content (percent)
size (mm)	coefficient	Skewness	 Kurtosis 	Kurtosis coefficient		(gm/cm ³)	
Member of	the Chinle Formatio	מכ	······································				
0.188	1.31	1.00	0,193	2.00	2.28	2,66	0.08
Sandstone							
0.182 .200 .208 .162	1.33 1.51 1.47 1.28	1.00 1.11 1.11 1.00	0.183 .235 .255 .255	2.22 2.65 2.12 2.19	2.14 1.66 2.26	2.66 2.65 2.64	0.33 1.2 .08 2.3
- .170 .161 .248	- 1.34 1.45 1.43	1.00 .906 1.02	.180 .216 .301	2.42 2.75 2.02	2.02 2.10 2.05	2.66 2.66 2.64	3.6 .17 .17 .00

[Determinations, except as noted, by Core Laboratories, Inc., Dallas, Tex.¹ Abbreviations: ft/d. feet per day; lbs/in², pounds per square inch.] Location: See description of well- and spring-numbering system. Sample No.: See table 13 for description of samples and sample sites. Air permeability: See Weeks (1978, p. 3-6) for discussion of relation of air permeability and hydraulic conductivity. See sections on definition of terms and relation of units; a, average of values for two or more samples. Boyle's Law porosity: See Katz (1959, p. 36-40) for discussion. Determination made with helium; a, average of values for two or more samples. Overburden pressure: Simulated in laboratory loading chamber. Calculated porosity: Determined by the U.S. Geological Survey from the ratio of dry unit weight (apparent specific gravity) to the specific gravity of solids (grain density). Permeability ratios: H/V, horizontal to vertical values; A, air; W, water; W/A, water to air values; H, horizontal; V, vertical. vertical.

	No.		arcies)	conductivity	Boyle's Law porosity	Overburder
		Air	Water	(ft/d)	(percent)	pressure (lbs/in ²)
						Entrada
(D-23-13)24add-1	UTSR-28	-	-	-	-	-
						Carmel
(D-19-11)17bba-2	UTSR-25	· –	-	-	-	200
						Navajo
(D-18-12)25aac-1	UTSR-4	-	-	-	-	-
(D-19-10)13dbd-1	UTSR-5	-	-	-	-	-
(D-19-11)17bba-1 20bca-1	UTSR-26 UTSR-24	26	14	0.034	11.5	200 200
20062-1	013K-24	26	12	.029	11.4	500
(D-20-12)3cab-1	UTSR-27-1		-	-	-	200
	UMCD 07 0		-	-	-	500
	UTSR-27-2 UTSR-27-4	1,420	1,030	2.5	19.4	200
	oron L, ,		640	1.6	-	500
	UTSR-27-6		-	-	-	-
	UTSR-27-7	1,920	-	. –	18.5	200
	UTSR-27-9 UTSR-27-12	3,930	2,110	5.1	19.6	200
	UTSR-27-13	-	2,110	-	-	-
(D-20-13)15cad-1	UTSR-20	500	69	.17	20.6	200
15daa-1	UTSR-21-1	-	-	-	-	200
	UTSR-21-2 UTSR-21-3	1,270	200	.49	22.1	200
(D-21-9)15add-1	UTSR-30		200	-47	-	200
15daa-1	UTSR-29	-	-	-	-	-
(D-22-13)12aab-1	UTSR-3	· -	-	-		200
12aba-1	UTSR-2	14 13	4.6 3.6	.011 .0089	14.1 13.8	200 500
12abb-1	UTSR-1	·J.03	<.01	<.00002	6.7	200
		.02	<.01	<.00002	6.7	500
2564- 1	UTSR-1A	500	-		20-7	-
35bdc-1 (D-23-9)3bda-1	UTSR-8 UTSR-16	590 1,150	330 660	.80 1.6	20.7 26.3	200 200
(B-25-7)500a-1	0151-10	-	600	1.5	20.5	500
(D-23-13)27bcc-1	UTSR-19A-1	-	•	-	-	200
	UTSR-19A-2 UTSR-19A-3	175	-	-		-
	UTSR-19A-5	1/3	-	-	17.5	200
	UTSR-19A-7	1,530	560	1.4	21.2	200
28add-1	UTSR-19	-	-	-	-	
(D-24-12)35bcd-1	TQUT-52	-	-	-	-	-
	DAN-15 DAN-18	-	-	-	-	200 200
	DAN-19	-	_	1	-	200
35bcd-2	TQUT-42	-	-	-	-	-
	DAN - 21 DAN - 22	-	·	-	-	200 200
	DAN - 23	-	_	-	-	200
35cbd-2	76UT-39-1 ²	-	-	-	-	-
	76UT-39-22	261	-	.30	-	-
	NS-7A	264 256	-	-	24.3 24.1	200 500
		224	-	_	23.1	1,000
		215	-	-	22.8	1,500
(D-24-16)12bcb-1	UTSR-7	-	-	. –	-	200
15bdd-1	UTSR-22-1 UTSR-22-2	-	-	· -	-	200
	UTSR-22-2	550	190	46	21.4	200
	UTSR-22-9	-	-	-	-	-
						Kayenta
(D-22-10)33bca-1	UTSR-14	1,200	500	1.2	23.4	200
33bca-2	UTSR-14A	1.7	.3	.00073	14.1	200

Permeabi (millidar	cies)	Vertical Hydraulic conductivity	Boyle's Law porosity	Calculated porosity			ity ratio	
Air	Water	(ft/d)	(percent)	(percent)	—l	4/V	<u>н</u>	1/A V
Sandstone								
-	-	-	-	26.4	-	-	-	-
Formation								
0.02	-	-	2.3	-	_	-	-	-
Sandstone								
-	-	-	-	13.7	-	-	-	-
22	3.9	0.0095	-	15.5	-	-	-	- 10
16	8.5	.021	13 11.6	13.3 12.5	1.63	1.65	0.54	0.18
	6.5	.016	-	-	-	1.85	.46	-
1,110	340 290	.83 .71	18	-	-	-	-	.31
	-	-	-	28.6	-	-	-	-
1,930	-	-	20.7	-	.74	-	.73	-
-	-	-	-	18.1	-	-	-	-
975	-	-	17.9	-	.51	-	-	-
3,430	-	-	20.9	23.1	1.15	-	.54	-
-	-	·		18.9	-	-	-	-
340	79	.19	19.2	22.6	-	-	.14	.23
-	-	-	-	21	-	-	-	
325	-	_	20.8	-	3.91	-	.16	-
-	-	-	-	21.1 23.3	-	-	-	-
1,280	460	1.1	19.1	15.6	-	-	-	.36
13	1.5	.0037	14.5	3.8	1.08	3.07	.33	.12
<.01	<.01	<.00002	3.6	10.6	-	-	.28	2
-	-	-	-	19.8	-	-	-	-
-	-	-	-	21.2	-	-	.56	_
860	430	1.0	26.8	27.4	1.34	1.54	.57	.50
42	2.6	.0063	15.8	-	-	-	-	.062
120	-		-	17.6	-	~	-	-
-	-	-	17	22	1.46	-	-	-
285	-	-	19	-	5.37	-	.37	-
-	-	1.5	-	19.9 24.3	-	-	-	-
311	-	-	16.5	- 24.5	· -	-	-	-
983 688	-	-	16.4	-	-	-	-	-
-	-	-	15.9	20.9	-	-	-	-
1,000	- ,	-	12.7	-		-	-	-
946 385	-	-	14.1 14.6	-	-	-	-	-
-	-	1.3	_	25.2	-	-	-	-
220	-	.24	23	24.1 24.8	1.20	1.25	-	-
196	-	-	22.9	-	1.31	-	-	-
-	-	-	-	-	-	-	-	-
43	7.1	.017	14.3	13.4	-	-	-	.17
480 -	275	.67	21.3	- 23	-	-	-	.57
500	-	-	208	23 20.7	1.10	-	.35	-
Formation	-		-	20.7	-	-	-	-
580 1.2	170.3	.41 .00073	24 16.7	25.3	2.07	2.94	.42	.29
••4	•)	.00073	10./	16.9	1.42	1	.18	.25

1	c 1			Horizontal		
Location	Sample No.	Permeab (millida		Hydraulic	Boyle's Law	Overburde
		Air	Water	conductivity (ft/d)	porosity (percent)	pressure (1bs/in ²
						Wingat
(D-19-11)33bbd-1 (D-22-13)1cdd-1	UTSR-6 UTSR-11	- 560	340	0.83	24.8	200
35hcc-1	UTSR-9	-	-	-	-	-
(D-23-10)9bbd-2	UTSR-17	-	-	-	-	-
					Moss Ba	ick Sandstone
(D-22-13)35bcc-2	UTSR-10	-	-	-	-	-
					Sinbad Lime	estone Membe
D-17-12)1bba-13,4	-	-	.0a	.0a	6.7a	-
D-24-13)23cdc-13	1 2	48 16	-	-	20.4 17.3	200 200
	3	.13	_		4.4	200
	1-6	23a	-	-	14.3a	200
	7	6.4	-	-	11.1	200
	8-23 24-28	.46a .076a	-	-	7.4a	200 200
	24-28	.0704	-	-	3.1a 3	200
D-25-13)12bcc-13	1-6	.07a	-	-	4.2a	200
	7	.03	-	-	.8	200
	8-12	.05a	-	-	3.1a	200
	13-15 16-19	.03a 1.08a	-	-	2.4a	200
	20-21	1.08a 1.04a	-	-	5.5a 10.5a	200 200
	22-23	.93a	-	-	10.5a	200
	24-26	.037a	-	-	1.5	200
	27	10	-	-	19.2	200
	28-33 34	.27a 7.1	-	-	7.2	200
	36	-	-	-	8.9 11.2	200 200
						Kaibab
D-24-13)23cdc-13	30-51	.05a	-	-	1.9a	200
	52	2.7	-	-	13.5	200
	53-59	108a	-	-	6.8a	200
	60	2.8	-	-	12	200
	61 62-65	.78 .58a	-	-	10.5 8.5a	200 200
						Coconino
D-21-11)25ddd-1	UTSR-13	-	-	-	-	-
25ddd-2	UTSR-13B-1 UTSR-13B-2	375	190	.46	15.1	200 200
	UTSR-13A-3	-	-		-	200
	UTSR-13A-5	970	650	1.6	18.8	200
D 22 11\275 - 1	UTSR-13A-6	1 200	-	-	-	-
D-23-11)27bca-1	UTSR-23-4 UTSR-23-5	1,390	-	-	21.7	200
	UTSR-23-6	3,080	1,850	4.5	24.6	200
D-23-13)8cbc-1	UTSR-23-9 UTSR-12	· -	· -	-	-	-
					м	ississippian
D-25-13)12bac-1 ³	37-41	.46a	-	-	10.1a	200
	42	2.6	-	-	20.2	200
	43-47	1.2a	-	-	19.4a	200
	48 49	6 7	-	-	21.6	200
	50	5.1	-	-	15.8 20.1	200 200
	51-53	.31a	-	-	12a	200
	54-56 57-58	.53a	-	-	2.63a	200
	59-60	.18a .045a	-	-	8.2a 7.4a	200 200
	61-62 63-67 69-72	.14a	-	-	9.7a	200
	01-02					

In samples submitted by the U.S. Geological Survey, horizontal or vertical 1 1/2-inch plugs were drilled, using water as the coolant and lubricant. Plug samples were leached of salts with methyl alcohol and then thoroughly dried. Air permeability and Boyle's Law (helium) porosity were determined for these dry cores. Selected samples were evacuated and pressure saturated with filtered, degassed Dallas tap water. Specific water permeability was deter-mined using that water. From Hood and Danielson (1981, tables 11 and 12). Data from petroleum-test wells (table 11), filed with the U.S. Geological Survey by the lease operator. Determinations by Rocky Mountain Engineering Co., Denver, Colo. 1

2 3 4

of outcrop and core samples

Permeal (millida	arcies)	Vertical Hydraulic conductivity	raulic Boyle's Law uctivity porosity		Permeability ratios			
Air Water		(ft/d)	(percent)	(percent)	<u> </u>	<u>/V</u>	h	//A \
Sandston	e						<u></u>	
290	150	0.37	23.1	19.4 20	- 1.93	2.27	0.61	0.5
	-	-	-	15 29.7	-	-	-	-
Member of	f Chinle Format	ion						
-	-	-	-	14.3	-	-	-	-
of Moenka	opi Formation							
-	-	-	-	-	-	_`	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	~
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-		-		-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	~
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
Limestone	2							
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
Sandstone	2							
200	130	- .32	-	19.5	-	-	-	-
-	-	- 32	16.2	-	-	-	.51	.6
550	-	-	16.3	37.3	1.76	-	.67	-
-	-	-	-	14.8	-	-	.07	-
430	-	-	21.2	24	3.23	-	-	-
625	-	-	22.1	-	4.95	-	.60	-
-	-	-	-	21.1 22.3	-	-	-	-
rocks								
-	-	-	-	-	-	-	-	-
-	-	-	-	-		-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-		-
-	-	-	-		-	-	-	-
	-	-	-	-	- - - -	-	-	
-	-	-	-	-	-	-	-	-
-	-	-	-	· _	-	-	-	-
-	-	-	-	-	-	_	_	-

Table 5.--Summary of short aquifer tests [See text for definitions of terms and relation of units. Abbreviations: gal/min, gallons per minute; ft, feet; ft²/d, feet squared per day; ft/d, feet per day; hrs, hours.]

Discharge: E, estimated; F, flowed. Value is weighted average where not estimated. Transmissivity from straight-line methods: Each analytical plot contains two or three straight-line segments. Values are listed in order of increasing time since recovery began. Remarks: Temperature and specific conductance measured at well. Temperature is in degrees Celsius (⁰C). Specific conductance is in micromhos per centimeter at 25⁰C (umhos), as determined by conductivity meter.

					Transmi (ft ²			
Well number	Date	Pumping period (hrs)	Discharge (gal/min)	Maximum ob- served draw- down (ft)	From straight- line methods	Esti- mated from specific capacity	Hydraulic con- ductivity (ft/d)	Remarks
(D-17-13) 30ddd-1S	6-28-79	4.00	11.8	1 _{40.4}	61 455 150	67	0.3 2 .7	Petroleum-test well plugged back and left for water well; never used. May have been somewhat cleaned out by test pumping. Water level 1 year later was about 20 ft lower than pre-pumping level. Final temperature, 16.0 $^{\circ}$ C; specific conductance, 11,600 umhos.
(D-20-10)6bdd-1	7-14-80	>12	10 E,F	(2)	642 256	-	2.8	U.S. Geological Survey test hole NSRT-1. Navajo Sandstone isolated with borehole packer set at 142 ft. Artesian-pressure recovery measured for 1.2 hrs. Final temperature, $13.0^{\circ}C$; specific conductance, 968 umhos.
(D-23-14)25bca-1	7-23-80	> 17	14 F	(2)	27 37	-	.1 .2	U.S. Geological Survey test hole NSRT-6A. Navajo Sandstone isolated with borehole packer set at 445 ft. Artesian-pressure recovery measued for 1.73 hrs. Final temperature, 16.5 ⁰ C; specific conductance, 842 umhos.
(D-24-13)11adb-15	5-14-80	3.17	10.2	³ >10	53 17 1	-	.1 .4	Petroleum-test well plugged back and left for water well; never used. Open hole from Entrada Sandstone to Chinle Formation. Final temperature, $17^{\circ}C$; specific conductance, 1,06 d umhos.
(D-24-13) 36dba-1	5-13-80	2.0	13.3	25.9	36 260	100	.2 .09 .6	Unused well. Open hole from Navajo Sandstone to Chinle Formation. Final temperature 15.0 ⁰ C; specific conductance, 2,530 umhos.

Actual measurement. Neglects probable effect of surface inflow that would have made pre-pumping water level abnormally high.
 Initial shut-in head unknown. Water levels affected by drilling procedures; hole flowed for hours prior to test.
 No pumping level measured because of depth to water and size of hole.

Table 6.-Summary of hydrologic estimates

[Abbreviations: acre-ft/yr, acre-feet per year.]

Complete hydrologic system	Long-term average (acre-ft/yr)
Inflow	
Precipitation (p. 28)	1,150,000
Price River; stations 09314250 plus 09314280 (table 7)	68,857
San Rafael River at station 09328000	56,071
Ground-water inflow	none
Total (rounded)	1,300,000
Outflow	
Price River at station 09314500 (table 7)	70,606
San Rafael River at station 09328500	61,251
Estimated yield of ungaged areas (table 7)	3,000
Discharge by wells, probable maximum (p. 34)	200
Ground-water outflow, minimum (from below)	600
Evapotranspiration, gross	¹ <u>1,139,000</u>
Total (rounded)	1,300,000
Ground-water system ²	
Navajo Sandstone ³	
Recharge	
From precipitation (p. 30)	3,000
From ground-water inflow	none
Total	3,000
Discharge (p. 34)	
To San Rafael and Green Rivers	2,000
Ground-water outflow	600
Evapotranspiration	400
Total	3,000
Complete ground-water system	
Recharge (p. 30) ⁴	10,000
	Acre-ft
Storage in three major consolidated aquifers (p. 33)	440,000,000
Recoverable fresh to moderately saline water	^₅ 160,000,000

 ¹ Amount calculated by difference between other individual items of inflow and outflow.
 ² Incomplete budget because of unknowns.
 ³ Rounded amount for each item as used or inferred from steady-state digital model for best fit of potentiometric surface.
 ⁴ Assumed to equal long-term discharge.
 ⁵ Assumes complete drainage of Navajo, Wingate, and Coconino Sandstones.

Table 7.-Stream gains or losses, in acre-feet, across San Rafael Swell, 1973-79

Station				Water y	ear			
	1973	1974	1975	1976	1977	1978	1979	Average
			Pr	ice River				
09314250	106,900	29,900	72,960	30,250	15,740	31,760	87,700	53,601
09314280	21,700	11,830	22,990	14,980	6,010	7,440	21,840	15,256
Subtotal	128,600	41,730	95,950	45,230	21,750	39,200	109,540	68,857
09314500	139,000	39,120	97,550	42,650	22,670	42,950	110,300	70,606
Net gain or (loss)	10,400	(2;610)	1,600	(2,580)	920	3,750	760	1,749
							c	or 2.4 ft ³ /
			San F	Rafael River				
09328000	109,100	41,740	89,940	32,390	12,160	37,770	69,400	56,071
9328100	_	_		32,260	14,430	35,340	70,240	_
For reach	_	_		(130)	2,270	(2,430)	840	
09328500	138,600	36,910	91,580	24,920	15,170	42,530	79,050	61,251
For reach	-	_	_	(7,340)	740	7,190	8,810	
Net gain or (loss)	29,500	(4,830)	1,640	(7,470)	3,010	4,760	9,650	5,180
							-	or 7.2 ft ³ /
				То	tal for gaged	reaches		6,930
				Est	imated yield	of ungaged	area	3,000
				То	tal (rounded)			10,000
							or	13.8 ft ³ /

[See pl. 1 for locations of stations. Abbreviations: ft³/s, cubic feet per second.]

67

Table 8 .-- Monthly mean discharge at streamflow-gaging stations

[Discharge is in cubic feet per second; from files of U.S. Geological Survey, Salt Lake City, Utah.

Asterisk *, no value for month because 1 or more days of record is missing.]

Station 09314250 Price River below Miller Creek, near Wellington

Year	October	November	December	January	February	March	April	May	June	July	August	September
1972	*	*	*	¥	*	*	44.10	43.61	48.53	26.03	33.55	27.57
1973	146.10	38.33	37.68	35.00	43.18	116.19	259.23	676.13	158.33	110.77	94.13	43.00
1974	45.71	30.07	40.03	40.00	40.00	54.39	40.57	62.94	48.43	57.10	17.10	18.20
1975	63.90	42.83	29.68	32.74	46.07	62.39	101.70	171.48	462.77	90.74	47.61	60.70
			25.42	32.55	47.90	45.52	47.70	49.68	44.77	40.52	34.74	50.00
1976	36.61	45.77	29.42	32.77	41.30	-J.J.	11110	49.00	1100	10192	5	20100
4.075	00.40	01 00	16 0	10.00	10 90	16.71	11.22	23.97	8.11	81.53	18.47	9.90
1977	28.13	21.00	16.94	10.00	12.89				42.47	43.29	23.79	12.57
1978	15.44	14.76	9.42	8.39	10.00	46.84	157.60	140.23	82.33	46.13	56.55	25.70
1979	23.00	185.23	24.19	19.13	22.79	271.16	300.97	390.55				
1980	22.71	25.47	21.52	26.71 *	103.34 *	107.97	369.80	811.29 *	595.40 *	71.77	65.74	215.47
1981	791.57	÷	*	*	*	*	•	•	•	-	-	-
	60.40	FO bO	05 (4	05 51	14 00	00 15	110 10	0(2, 22	165 69	62 10	No 60	51.46
Avera	ge 68.12	50.43	25.61	25.56	41.08	90.15	148.10	263.32	165.68	63.10	43.52	51.40
				Station	00018090	Decent (Con Verb	noom Vollin	aton			
				Station	1 09314200	Desert	seep wasn i	near Wellin	Bron			
Veen	October	Novembor	December	January	February	March	April	May	June	July	August	September
Year	Occoper-	November	December	January	rebruary	Mai Cli	NPI 11	riay	oune	July	August	Deptember
	*	*	*	*	*	*	*	21.38	14.49	11.30	11.03	22.11
1972												
1973	47.61	23.77	13.39	7.74	8.05	20.16	27.73	36.10	60.43	40.45 21.65	28.00 11.82	29.53 9.45
1974	27.65	24.87	13.77	8.32	8.00	12.35	16.95	19.19	21.47			
1975	36.06	29.03	10.85	6.13	5.71	27.52	16.30	27.26	53.33	67.16	36.42	50.97
1976	45.84	30.87	13.00	10.45	12.11	16.15	26.73	28.61	16.54	12.87	13.82	20.49
4 0 7 7	4.0.00	45 115	0 hr	0.00	0.01	C 99	1 20	(0)	1 90	20.09	77 h h	2.05
1977	18.03	15.47	9.45	2.00	3.71	5.77	4.38	6.82	1.83	20.98	7.44	2.96
1978	2.76	4.24	3.25	4.14	5.21	22.22	11.08	20.06	24.70	10.62	7.15	7.55
1979	9.20	35.00	7.84	6.85	7.16	169.94	22.30	25.00	23.20	18.29	20.65	13.56
1980	17.55	19.17	13.03	14.06	61.07	30.48	24.23	103.26	40.07	35.16	26.45	67.77
		00.00	10 55	7 1 6	41 00	28.07		20.26	00 kc	26 EQ	18 00	a k a a
Avera	ge 25.59	22.80	10.57	7.46	14.08	38.07	18.71	32.36	28.45	26.50	18.09	24.93
							on Dimon o	at Voodaida				
				31	ation 093	14500 Fri	tee niver a	at Woodside				
Year	October	November	December	January	February	March	April	May	June	July	August	September
				-	-							
1947	67.74	42.57	34.77	18.48	52.07	76.35	79.10	106.06	55.10	35.48	238.29	37.43
1947 1948	67.74 51.68	42.57 37.33	34.77 41.35	18.48	52.07 49.59	76.35 69.00	79.10 74.07	106.06 47.87	55.10 43.07	35.48 42.87	238.29 94.95	37.43 10.22
1948	51.68	37.33	41.35	28.29	49.59	69.00	74.07	47.87	43.07	42.87	94.95	10.22
1 94 8 1 94 9	51.68 31.81	37.33 27.20	41.35 28.48	28.29 28.19	49.59 46.75	69.00 162.84	74.07 225.63	47.87 213.13	43.07 246.33	42.87 211.71	94.95 76.58	10.22 92.63
1 94 8 1 94 9 1 950	51.68 31.81 95.10	37.33 27.20 47.97	41.35 28.48 35.58	28.29 28.19 28.00	49.59 46.75 103.39	69.00 162.84 102.32	74.07 225.63 222.90	47.87 213.13 132.13	43.07 246.33 71.67	42.87 211.71 164.19	94.95 76.58 52.23	10.22 92.63 69.43
1 94 8 1 94 9	51.68 31.81	37.33 27.20	41.35 28.48	28.29 28.19	49.59 46.75	69.00 162.84	74.07 225.63	47.87 213.13	43.07 246.33	42.87 211.71	94.95 76.58	10.22 92.63
1 94 8 1 94 9 1 950 1 951	51.68 31.81 95.10 48.94	37.33 27.20 47.97 51.30	41.35 28.48 35.58 48.16	28.29 28.19 28.00 33.55	49.59 46.75 103.39 51.96	69.00 162.84 102.32 81.71	74.07 225.63 222.90 51.03	47.87 213.13 132.13 84.16	43.07 246.33 71.67 100.40	42.87 211.71 164.19 70.03	94.95 76.58 52.23 314.45	10.22 92.63 69.43 54.67
1 94 8 1 94 9 1 950 1 951 1 952	51.68 31.81 95.10 48.94 90.61	37.33 27.20 47.97 51.30 52.43	41.35 28.48 35.58 48.16 30.06	28.29 28.19 28.00 33.55 31.13	49.59 46.75 103.39 51.96 48.10	69.00 162.84 102.32 81.71	74.07 225.63 222.90 51.03 645.63	47.87 213.13 132.13 84.16 1762.26	43.07 246.33 71.67 100.40 888.37	42.87 211.71 164.19 70.03 145.35	94.95 76.58 52.23 314.45 150.68	10.22 92.63 69.43 54.67 89.90
1 94 8 1 94 9 1 950 1 951 1 952 1 953	51.68 31.81 95.10 48.94 90.61 75.61	37.33 27.20 47.97 51.30 52.43 71.03	41.35 28.48 35.58 48.16 30.06 59.23	28.29 28.19 28.00 33.55 31.13 56.00	49.59 46.75 103.39 51.96 48.10 63.21	69.00 162.84 102.32 81.71 152.00 85.29	74.07 225.63 222.90 51.03 645.63 69.80	47.87 213.13 132.13 84.16 1762.26 75.45	43.07 246.33 71.67 100.40 888.37 85.17	42.87 211.71 164.19 70.03 145.35 101.03	94.95 76.58 52.23 314.45 150.68 175.68	10.22 92.63 69.43 54.67 89.90 55.03
1 94 8 1 94 9 1 950 1 951 1 952 1 953 1 954	51.68 31.81 95.10 48.94 90.61 75.61 87.39	37.33 27.20 47.97 51.30 52.43 71.03 63.30	41.35 28.48 35.58 48.16 30.06 59.23 36.71	28.29 28.19 28.00 33.55 31.13 56.00 40.65	49.59 46.75 103.39 51.96 48.10 63.21 78.46	69.00 162.84 102.32 81.71 152.00 85.29 76.77	74.07 225.63 222.90 51.03 645.63 69.80 59.93	47.87 213.13 132.13 84.16 1762.26 75.45 62.23	43.07 246.33 71.67 100.40 888.37 85.17 52.90	42.87 211.71 164.19 70.03 145.35 101.03 63.97	94.95 76.58 52.23 314.45 150.68 175.68 50.32	10.22 92.63 69.43 54.67 89.90 55.03 199.80
1 94 8 1 94 9 1 950 1 951 1 952 1 953 1 954 1 955	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85
1 94 8 1 94 9 1 950 1 951 1 952 1 953 1 954	51.68 31.81 95.10 48.94 90.61 75.61 87.39	37.33 27.20 47.97 51.30 52.43 71.03 63.30	41.35 28.48 35.58 48.16 30.06 59.23 36.71	28.29 28.19 28.00 33.55 31.13 56.00 40.65	49.59 46.75 103.39 51.96 48.10 63.21 78.46	69.00 162.84 102.32 81.71 152.00 85.29 76.77	74.07 225.63 222.90 51.03 645.63 69.80 59.93	47.87 213.13 132.13 84.16 1762.26 75.45 62.23	43.07 246.33 71.67 100.40 888.37 85.17 52.90	42.87 211.71 164.19 70.03 145.35 101.03 63.97	94.95 76.58 52.23 314.45 150.68 175.68 50.32	10.22 92.63 69.43 54.67 89.90 55.03 199.80
1 94 8 1 94 9 1 950 1 951 1 952 1 953 1 954 1 955 1 956	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33
1 94 8 1 94 9 1 950 1 951 1 952 1 953 1 953 1 955 1 955 1 956 1 957	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60
1 94 8 1 94 9 1 950 1 951 1 952 1 953 1 953 1 955 1 955 1 956 1 957 1 958	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71 78.77	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30
1 94 8 1 94 9 1 950 1 951 1 952 1 953 1 954 1 955 1 956 1 957 1 958 1 959	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46
1 948 1949 1950 1951 1953 1954 1955 1956 1956 1957 1958 1959 1960	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21	94.95 76.58 52.23 314.45 150.68 175.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63 17.56	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60
1 94 8 1 94 9 1 950 1 951 1 952 1 953 1 954 1 955 1 956 1 957 1 958 1 959	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46
1 94 8 1 94 9 1 950 1 951 1 952 1 953 1 955 1 955 1 956 1 957 1 958 1 959 1 960 1 961	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81 1.51	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63 17.56 99.64	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17
1 948 1949 1950 1951 1952 1953 1955 1955 1956 1957 1958 1959 1960 1961 1961	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81 1.51 47.07	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63 17.56 99.64 10.81	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72
1 948 1949 1950 1951 1952 1953 1955 1956 1957 1958 1959 1960 1961 1961	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81 1.51 47.07 25.51	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61	94.95 76.58 52.23 314.45 150.68 175.68 175.68 175.68 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89
1 948 1949 1950 1951 1952 1953 1954 1955 1955 1955 1955 1956 1957 1958 1950 1960 1961 1962 1963 1964	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 22.45	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58 11.32	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81 1.51 47.07 25.51 47.30	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89 31.97
1 948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1961 1962 1963 1964	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 422.45 18.29	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17 25.90	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23 25.71	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81 1.51 47.07 25.51	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61	94.95 76.58 52.23 314.45 150.68 175.68 175.68 175.68 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89
1 948 1949 1950 1951 1952 1953 1954 1955 1955 1955 1955 1956 1957 1958 1950 1960 1961 1962 1963 1964	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 22.45	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58 11.32 39.58	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97 52.57	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00 52.03	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07 162.27	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16 460.87	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81 1.51 47.07 25.51 47.30 308.60	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52 271.48	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84 137.03	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89 31.97 99.67
1 948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1961 1962 1963 1964	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 422.45 18.29	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17 25.90	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23 25.71	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58 11.32 39.58	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97 52.57	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00 52.03	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07 162.27	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16 460.87	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81 1.51 47.07 25.51 47.30 308.60	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52 271.48	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84 137.03	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89 31.97 99.67
1948 1949 1950 1951 1952 1953 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 22.45 18.29 80.26	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17 25.90 90.77	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23 25.71 88.77	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58 11.32 39.58 54.58	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97 52.57	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00 52.03 188.35	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07 162.27 168.83	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16 460.87 88.19 92.52 298.61	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81 1.51 47.07 25.51 47.30 308.60 54.77	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52 271.48 61.84	94.95 76.58 52.23 314.45 150.68 175.68 175.68 175.68 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84 137.03 50.55	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89 31.97 99.67 116.90
1 948 1949 1950 1951 1952 1953 1955 1956 1957 1958 1957 1958 1959 1960 1961 1962 1964 1965 1966 1965	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 22.45 18.29 80.26 38.74	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17 25.90 90.77 34.33	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23 25.71 88.77 100.68	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58 11.32 39.58 54.58 24.84	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97 52.57 59.32 53.36	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00 52.03 188.35 77.74	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07 162.27 168.83 61.03	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16 460.87 88.19 92.52	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81 1.51 47.07 25.51 47.30 308.60 54.77 425.17	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52 271.48 61.84 157.77	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84 137.03 50.55 96.35	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89 31.97 99.67 116.90
1 948 1949 1950 1951 1952 1953 1955 1956 1957 1958 1959 1960 1961 1964 1964 1964 1964 1965 1966 1967 1968 1969	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 22.45 18.29 80.26 38.74 45.35 95.13	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17 25.90 90.77 34.33 38.77 59.90	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23 25.71 88.77 100.68 46.87	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58 11.32 39.58 54.58 24.84 33.00	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97 52.57 59.32 53.36 45.86	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00 52.03 188.35 77.74 71.84	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07 162.27 168.83 61.03 109.47	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16 460.87 88.19 92.52 298.61	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81 1.51 47.07 25.51 47.30 308.60 54.77 425.17 509.53	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52 271.48 61.84 157.77 105.32	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84 137.03 50.55 96.35 295.23	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89 31.97 99.67 116.90 107.90 71.20
1 948 1949 1950 1951 1952 1953 1955 1956 1957 1958 1959 1960 1961 1963 1964 1965 1966 1967 1966 1967 1968 1969 1970	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 22.45 18.29 80.26 38.74 45.35 95.13 78.81	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17 25.90 90.77 34.33 38.77 59.90 63.43	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23 25.71 88.77	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58 11.32 39.58 54.58 24.84 33.00 32.26	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97 52.57 59.32 53.36 45.86 36.00	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00 52.03 188.35 77.74 348.77	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07 168.83 61.03 109.47 534.73	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16 460.87 88.19 92.52 298.61 682.48	$\begin{array}{r} 43.07\\ 246.33\\ 71.67\\ 100.40\\ 888.37\\ 85.17\\ 52.90\\ 33.90\\ 25.57\\ 171.77\\ 221.37\\ 21.90\\ 14.81\\ 1.51\\ 47.07\\ 25.51\\ 47.30\\ 308.60\\ 54.77\\ 425.17\\ 509.53\\ 324.23\\ \end{array}$	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52 271.48 61.84 157.77 105.32 128.10	94.95 76.58 52.23 314.45 150.68 175.68 175.68 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84 137.03 50.55 96.35 295.23 213.97	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89 31.97 99.67 116.90 107.90 71.20 193.57
1 948 1949 1950 1951 1952 1953 1955 1956 1957 1958 1959 1960 1961 1964 1964 1964 1964 1965 1966 1967 1968 1969	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 22.45 18.29 80.26 38.74 45.35 95.13	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17 25.90 90.77 34.33 38.77 59.90	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23 25.71 88.77 100.68 46.87 31.61 41.65	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58 11.32 39.58 54.58 24.84 33.00 32.26 35.39	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97 52.57 53.36 45.86 36.00 645.86 36.00	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00 52.03 188.35 77.74 71.84 348.77 75.65	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07 162.27 168.83 61.03 109.47 534.73 58.93	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16 460.87 88.19 92.52 298.61 6 & 48 78.10	$\begin{array}{r} 43.07\\ 246.33\\ 71.67\\ 100.40\\ 888.37\\ 85.17\\ 52.90\\ 33.90\\ 25.57\\ 171.77\\ 221.37\\ 21.90\\ 14.81\\ 1.51\\ 47.07\\ 25.51\\ 47.30\\ 308.60\\ 54.77\\ 425.17\\ 509.53\\ 324.23\\ 263.60\\ \end{array}$	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52 271.48 61.84 157.77 105.32 128.10 98.74	94.95 76.58 52.23 314.45 150.68 175.68 175.68 175.68 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84 137.03 50.55 96.35 295.23 213.97 100.23	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89 31.97 99.67 116.90 107.90 71.20 103.57 98.67
1 948 1949 1950 1951 1952 1953 1955 1956 1957 1958 1959 1960 1961 1965 1966 1965 1966 1965 1966 1967 1968 1969 1970 1971	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 422.45 18.29 80.26 38.74 45.35 95.13 78.81 58.61	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17 25.90 90.77 34.33 38.77 59.90 63.43 66.47	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23 25.71 88.77 100.68 46.87 31.61 41.65 45.68	$\begin{array}{c} 28.29\\ 28.19\\ 28.00\\ 33.55\\ 31.13\\ 56.00\\ 40.65\\ 20.00\\ 34.26\\ 16.71\\ 50.00\\ 40.23\\ 26.13\\ 10.70\\ 15.16\\ 13.58\\ 11.32\\ 39.58\\ 54.58\\ 24.84\\ 33.00\\ 32.26\\ 35.39\\ 27.58\end{array}$	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97 52.57 53.36 45.86 36.00 645.86 36.00	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00 52.03 188.35 77.74 71.84 348.77 75.65	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07 162.27 168.83 61.03 109.47 534.73 58.93	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16 460.87 88.19 92.52 298.61 6 & 48 78.10	$\begin{array}{r} 43.07\\ 246.33\\ 71.67\\ 100.40\\ 888.37\\ 85.17\\ 52.90\\ 33.90\\ 25.57\\ 171.77\\ 221.37\\ 21.90\\ 14.81\\ 1.51\\ 47.07\\ 25.51\\ 47.30\\ 308.60\\ 54.77\\ 425.17\\ 509.53\\ 324.23\\ 263.60\\ \end{array}$	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52 271.48 61.84 157.77 105.32 128.10 98.74	94.95 76.58 52.23 314.45 150.68 175.68 175.68 175.68 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84 137.03 50.55 96.35 295.23 213.97 100.23	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89 31.97 99.67 116.90 107.90 71.20 103.57 98.67
1 948 1949 1950 1951 1952 1953 1955 1956 1957 1958 1959 1960 1961 1965 1966 1967 1968 1967 1968 1969 1970 1971	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 22.45 18.29 80.26 38.74 45.35 95.13 78.81 58.61 103.52	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17 25.90 90.77 34.33 38.77 59.90 63.43 66.47 80.93	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23 25.71 88.77 100.68 46.87 31.61 41.65 45.68 36.68	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58 24.58 24.84 33.00 32.26 35.39 27.58 34.10	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97 52.57 53.36 45.86 36.00 65.75 55.43	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00 52.03 188.35 77.74 348.77 75.65 84.42	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07 162.27 168.83 61.03 109.47 534.73 58.93 93.87	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16 460.87 88.19 92.52 298.61 6&2.48 78.10 127.23	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 21.37 21.90 14.81 1.51 47.07 25.51 47.30 308.60 54.77 425.17 509.53 324.23 263.60 117.03	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52 271.48 61.84 157.77 105.32 128.10 98.74 57.77	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84 137.03 50.55 96.35 295.23 213.97 100.23 84.13	$10.22 \\ 92.63 \\ 69.43 \\ 54.67 \\ 89.90 \\ 55.03 \\ 199.80 \\ 15.85 \\ 8.33 \\ 82.60 \\ 109.30 \\ 71.46 \\ 40.60 \\ 457.17 \\ 250.72 \\ 199.89 \\ 31.97 \\ 99.67 \\ 116.90 \\ 107.90 \\ 71.20 \\ 193.57 \\ 98.67 \\ 53.50 \\ \end{cases}$
1 948 1949 1950 1951 1952 1953 1955 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1965 1965 1966 1967 1968 1967 1970 1971	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 22.45 18.29 80.26 38.74 45.35 95.13 78.81 58.61 103.52 365.06	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17 23.90 90.77 34.33 38.77 59.90 63.43 66.47 80.93 67.80	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23 25.71 88.77 100.68 84.67 31.61 41.65 45.68 36.68 48.55	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58 11.32 39.58 54.58 24.84 33.00 32.26 35.39 27.58 34.10 40.00	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97 52.57 53.36 45.86 36.00 65.75 55.43 36.21	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00 52.03 188.35 77.74 71.84 348.77 75.65 84.42 125.16	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07 162.27 168.83 61.03 109.47 534.73 58.93 93.87 66.33	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16 460.87 88.19 92.52 298.61 6&2.48 78.10 127.23 64.68	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81 1.51 47.07 25.51 47.07 25.51 47.07 25.51 47.30 308.60 54.77 425.17 509.53 324.23 263.60 117.03 73.73	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52 271.48 61.84 157.77 105.32 128.10 98.74 57.77 40.87	94.95 76.58 52.23 314.45 150.68 175.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84 137.03 50.55 96.35 295.23 213.97 100.23 84.13 46.84	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89 31.97 99.67 116.90 107.90 71.20 193.57 98.67 53.50 42.63
1 948 1949 1950 1951 1952 1953 1955 1956 1957 1958 1955 1956 1960 1961 1962 1963 1964 1965 1966 1967 1968 1967 1968 1967 1968 1967 1971	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.4 80.26 38.74 45.35 95.13 78.81 58.61 103.52 365.06 69.90	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17 25.90 90.77 34.33 38.77 59.90 63.43 66.47 80.93 67.80 54.03	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23 25.71 88.77 100.68 46.87 31.61 41.65 45.68 36.68 48.55 61.74	$\begin{array}{c} 28.29\\ 28.19\\ 28.00\\ 33.55\\ 31.13\\ 56.00\\ 40.65\\ 20.00\\ 34.26\\ 16.71\\ 50.00\\ 40.23\\ 26.13\\ 10.70\\ 15.16\\ 13.58\\ 11.32\\ 39.58\\ 54.58\\ 24.84\\ 33.00\\ 32.26\\ 35.39\\ 27.58\\ 34.10\\ 40.00\\ 60.61\\ \end{array}$	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97 52.57 59.32 53.36 45.86 36.00 65.75 55.43 36.21 50.43 60.64	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00 52.03 188.35 77.74 71.84 348.77 75.65 84.42 125.16 173.87 60.74	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07 168.83 61.03 109.47 534.73 58.93 93.87 66.33 259.57	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16 460.87 88.19 92.52 298.61 6&2.48 78.10 127.23 64.68 735.29	$\begin{array}{c} 43.07\\ 246.33\\ 71.67\\ 100.40\\ 888.37\\ 85.17\\ 85.90\\ 33.90\\ 25.57\\ 171.77\\ 221.37\\ 21.90\\ 14.81\\ 1.51\\ 47.07\\ 25.51\\ 47.30\\ 308.60\\ 54.77\\ 425.17\\ 509.53\\ 324.23\\ 263.60\\ 117.03\\ 73.73\\ 226.37\\ \end{array}$	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52 271.48 61.84 157.77 105.32 128.10 98.74 57.77 40.87 164.55 58.48	94.95 76.58 52.23 314.45 150.68 175.68 50.32 78.45 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84 137.03 50.55 96.35 295.23 213.97 100.23 84.13 46.84 93.48 18.84	10.22 92.63 69.43 54.67 89.90 55.03 199.80 15.85 8.33 82.60 109.30 71.46 40.60 457.17 250.72 199.89 31.97 99.67 116.90 107.90 71.20 193.57 98.67 53.50 42.63 60.37 16.23
1 948 1949 1950 1951 1952 1953 1955 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1965 1965 1966 1967 1968 1967 1970 1971	51.68 31.81 95.10 48.94 90.61 75.61 87.39 133.55 22.13 19.35 97.58 46.32 33.10 190.15 18.52 95.84 22.45 18.29 80.26 38.74 45.35 95.13 78.81 58.61 103.52 365.06	37.33 27.20 47.97 51.30 52.43 71.03 63.30 48.60 28.03 18.63 337.00 44.30 32.83 23.80 26.23 27.97 23.17 23.90 90.77 34.33 38.77 59.90 63.43 66.47 80.93 67.80	41.35 28.48 35.58 48.16 30.06 59.23 36.71 24.19 43.97 14.00 51.03 48.45 26.23 19.57 21.49 23.36 15.23 25.71 88.77 100.68 84.67 31.61 41.65 45.68 36.68 48.55	28.29 28.19 28.00 33.55 31.13 56.00 40.65 20.00 34.26 16.71 50.00 40.23 26.13 10.70 15.16 13.58 11.32 39.58 54.58 24.84 33.00 32.26 35.39 27.58 34.10 40.00	49.59 46.75 103.39 51.96 48.10 63.21 78.46 23.04 38.83 41.00 81.93 45.39 30.00 22.57 134.61 45.68 17.97 53.36 45.86 30.00 65.75 55.43 36.21 50.43	69.00 162.84 102.32 81.71 152.00 85.29 76.77 173.74 56.84 43.61 90.94 45.35 103.74 25.58 133.55 108.28 31.00 52.03 188.35 77.74 71.84 348.77 75.65 84.42 125.16 173.87	74.07 225.63 222.90 51.03 645.63 69.80 59.93 101.37 38.73 36.30 356.33 29.13 37.37 14.99 473.57 25.65 54.07 162.27 168.83 61.03 109.47 534.73 58.93 93.87 66.33 259.57 51.00	47.87 213.13 132.13 84.16 1762.26 75.45 62.23 53.00 39.84 197.48 643.16 26.42 20.42 5.26 198.10 21.61 94.16 460.87 88.19 92.52 298.61 682.48 78.10 127.23 64.68 735.29 74.87	43.07 246.33 71.67 100.40 888.37 85.17 52.90 33.90 25.57 171.77 221.37 21.90 14.81 1.51 47.07 25.51 47.07 25.51 47.30 308.60 54.77 425.17 509.53 324.23 26.60 117.03 73.73 226.37 60.83	42.87 211.71 164.19 70.03 145.35 101.03 63.97 25.51 48.06 104.10 70.81 9.95 4.21 8.63 162.35 24.61 31.52 271.48 61.84 157.77 105.32 128.10 98.74 57.77 40.87 164.55	94.95 76.58 52.23 314.45 150.68 175.68 175.68 175.68 22.10 477.71 78.77 105.63 17.56 99.64 10.81 251.20 166.84 137.03 50.55 96.35 295.23 213.97 100.23 84.13 46.84 93.48	$10.22 \\ 92.63 \\ 69.43 \\ 54.67 \\ 89.90 \\ 55.03 \\ 199.80 \\ 15.85 \\ 8.33 \\ 82.60 \\ 109.30 \\ 71.46 \\ 40.60 \\ 457.17 \\ 250.72 \\ 199.89 \\ 31.97 \\ 99.67 \\ 116.90 \\ 107.90 \\ 71.20 \\ 193.57 \\ 98.67 \\ 53.50 \\ 42.63 \\ 60.37 \\ 10.00$

•

Station 09314500 Price River at Woodside--Continued

Year	October	November	Decembe	r January	February	Mar ch	April	May	June	July	August	September
1977	39.42	31.70	34.19	20.00	20.00	26.77	16.77	21.60	3.85	120.23	29.60	8.42
1978	31.48	18.66	12.24	13.06	22.14	124.42	172.93	16 8.84	53.13	48.68	25.82	17.66
1979	20.29	179.47	25.06	22.52	39.93	375.03	367.70	533.58	104.10	52.65	69.13	30.03
1980	34.35	38.83	34.06	44.58	176.59	134.77	3 83 .67	929.74	671.10	102,90	104.65	450.80
1981	6.00	*	*	*	*	*	*	#	*	×	*	ň
										00.05	115 00	100 70
Avera	ge 72.48	59.19	38.60	31.43	55.05	108.66	155.86	246.62	173.25	90.25	115.90	100.72
				Sta	tion 0931	5000 Gre	en River a	t Green Ri	ver			
N	0.4.5	N	P h .		D	Howah	Annel 1	Vou	June	July	August	September
Year	October	November	Decembe	r January	February	March	April	Nay	June	July	nuguot	Deptember
1895	3250.00	2934.33	2236.77	2168.39	2136.07	3776.45	8276.00	21406.45	14613.33	9434.84	3343.23	1771.33
1896	2023.87	1585.83	1304.52	1331.61	1385.17	2461.61	4843.33	12639.35	26336.67	6720.97	3236.77	3062.00
1897	2109.35	1725.00	1300.00	1000.00	1200.00	2000.00	6434.33	40990.32	24796.67	6126.45	3255.81	3232.00
1898	5261.93	2940.67	1398.39	1000.00	1050.00	2576.13	7699.33	13393.55	17016.67	8030.32	2250.97 8185.16	1744.67 2857.67
1899	1504.52	1376.33	1297.42	1597.42	1721.43	2797.42	5618.33	15481.29	32440.00	20978.06	0105.10	2057.07
1905	*	*	*	*	*	2988.06	4072.67	12942.26	24293.33	7640.96	2726.77	2506.67
1 906	2479.03	2053.33	1318.06	1400.00	1616.43	6106.45	9578.67	24777.42	28500.00	13432.90	6172.90	5079.33
1907	3023.55	3258.00	2429.68	2440.00	37 93 . 93	6755.16	13983.33	24670.96	38836.67	31625.81	11221.94	4821.67
1 90 8	3671.29	2564.67	1468.06	1300.00	1533.79	3572.90	6579.67	11641.61	18066.67	10258.06	6813.87	3381.33
1 90 9	3584.52	2159.00	801.45	1978.71	1716.79	8124.19	9292.00	22409.68	46310.00	25229.03	10275.16	9959.67
1910	3932.58	2981.33	1291.13	1000.00	2500.71	11434.52	12523.33	21232.26	13659.00	3228.06	2158.39	2035.67
1910	3274.52	2273.67	1515.81	2330.97	3441.07	6282.90	5481.00	11729.35	19383.33	8456.45	2925.81	1975.00
1912	3802.58	2244.67	1642.58	1720.97	17 98.28	3688.71	6551.33	160 86 13	37630.00	16270.97	6864.19	3624.33
1913	3655.48	3505.67	1523 87	2303.23	2228.57	4156.45	12813.33	16498.71	19426.67	14726.45	4330.00	3831.33
1914	3564.52	3253.00	1679.03	1950.00	2640.36	6431.94	12588.67	28522.58	35683.33	13631.61	4617.10	2624.67
	2050 00			4500 00	4776 40	2021 50		10988.06	15606 67	(150.00)	2075.16	3118.33
1915	3958.06 3937.42	2723.00 2834.00	1531.29 1878.71	1500.00 1715.48	1766.43 2237.93	3034.52 9075.48	7439.00 10524.33	20958.06	15606.67 22996.67	6159.03 10341.61	5748.06	2570.67
1916 1917	4994 .1 9	2565.00	2054.84	1293.55	2089.29	3350.65	11 930 . 33	26222.58	46303.33	27 993 55	6655.48	4010.67
1918	3256.45	3096.33	27 23 . 23	2351.61	2450.00	4081.94	6474.67	13772.90	29046.67	11480.97	3276.13	2572.00
1919	36 84 . 84	3013.00	2116.13	1420.32	1750.00	4495.81	7974.67	14854.84	9286.33	1754.68	1203.19	17 87 . 80
1 920	1993.87	2101.67	1472.90	1748.39	2431.38	3965.16	6533.67	26723.55	34056.67	10220.00	4533.55	2537 .33
1921	2607.10	3313.00	1896.13	1970.97	3042.14	7669.03	7449.67	25160.32	46653.33	10753.22	5501.61	3434.67
1 922	2346.13	2463.33	2179.03	1753.71	2474.29	6420.65	6045.67	26770.97	37423.33	8595.16	4071.29	2885.33
1923	2061.61	2587.00	2131.94	2198.06	2118.57	3672.58	11468.33	25832.26	30850.00	12942.90	57 82.58	3302.67
1924	3887.42	3382.33	2066.45	1444.19	2868.28	3305.81	11311.33	15880.00	12590.00	3627.42	1473.23	1499.33
1925	1708.06	2052.33	1178.84	1451.61	2332.14	4475.16	7 887 .00	136 88.39	14100.00	9267.74	4371.94	4529.00
1 9 2 6	4846.77	3222.00	2372.58	1897.10	2274.64	5601.61	10269.00	18235.81	13120.67	5766.45	3228.39	1575.33
1927	1923.87	1728.67	16 85.32	1656.13	1996.07	3545.48	6466.33	20748.39	22066.67	12333.23	3754.84	8514.67
1928	4935.48	4320.33	2334.84	2801.94	2724.83	6432.26	6636.67	30561.29	21156.67	7240.32	36 92 . 90	2095.33
1929	3567.10	2849.00	1585.94	2007.42	1971.43	7857.74	12236.33	25058.06	26273.33	10400.00	4769.35	6346.00
1930	4156.77	27 92 . 33	2136.90	1252.90	4163.57	3981.61	10254.67	11827.74	17476.67	5512.90	8228.39	37 95.00
1931	3926.13	2481.33	1863.23	1531.94	1943.21	3506.45	4982.67	77 82.90	7447.33	16 92.65	1488.71	943.20
1932	1484.84	1498.43	869.35	1288.39	1588.62	4127.42	8254.67	22529.68	20930.00	10906.13	3863.55	2254.33
1933	1898.39	2275.00	1264.55	1454.84	1677.50	3094.52	4504.67	10772.90	23033.33	5426.45	1742.26	1345.00
1934	1231.94	1485.67	1392.00	1625.48	2149.29	2155.16	2927.33	4632.26	2128.00	645.03	711.81	603.07
1935	717.68	934.83	927.68	1112.16	1508.93	1892.90	2891.67	7430.97	21240.00	5393.55	2019.68	1272.60
1936	958.84	1393.33	986.71	1083.87	1575.86	2288.39	7519.67	21374.19	17664.67	6180.65	5160.00	2291.00
1937	1921.61	2194.00	1317.29	1000.00	1700.00	4575.48	7583.00	18813.55	15103.33	8994.84	2593.87	2474.67
1938	1986.77	2089.67	1953.35	1643.23	2253.93	4277.42	7862.00	18248.71	22603.33	7910.32	2820.65	4982.00
1939	3809.35	2875.00	2498.71	2082.58	1863.93	6342.58	7499.33	14347.42	8804.33	2638.71	1609.35	2119.63
1940	2051.94	1650.00	1442.10	1327.48	1678.97	3231.61	4260.33	11436.13	8271.67	1736.32	804.61	1361.47
1940	2464.19	1902.67	1556.06	1629.68	2269.64	3513.87	5268.33	19061.61	19263.33	5829.68	4350.32	3057.00
1942	5169.35	4028.67	2736.13	1823.29	2206.43	4298.71	14412.33	15932.26	21353.33	6743.55	2473.23	1524.33
1943	1912.90	2077.33	1894.84	1816.45	2336.07	3834.52	9568.33	12409.35	18050.00	9954.52	4880.00	1951.00
1944	2015.48	2451.67	1823.23	1367.42	1935.52	4104.52	8884.67	15032.90	23380.00	96 17 . 10	2322.58	1224.33
1.00	1 867 10	2001.33	1438.39	1770.32	2302.50	3013.55	4888.67	147 83.22	17073.33	11396.45	5455.16	2734.33
1945 1946	1867.10 2620.00	2503.67	1834.64	2000.00	2105.36	3833.23	8876.33	12606.77	12543.00	4288.06	2471.94	1758.67
1940	2420.00	2862.33	2503.87	1487.1	27 17 . 86	66 86 .77	7090.00	22767.42	22646.67	10667.10	5941.94	27 86 .67
1948	2943.23	3006.33	2478.39	2290.65	2373.45	5097.42	9374.33	17250.32	16000.66	4357.74	2230.32	1159.00
1949	1499.68	1739.67	1577.10	1633.23	1976.79	4495.48	7963.33	19861.29	25993.33	9629.68	27 98.39	1871.67
1950	3361.61	3200.67	2078.61	2290.32	2637.14	57 94 . 64	10419.00	166 90 .65	26330.00	11940.65	3997.74	2503.00
1951	2492.26	27.92.00	2779.35	1842.90	3010.36	3326.45	6247.00	14345.81	22000.00	10200.32	6158.39	2986.00
1.952	3421.29	2754.67	2140.65	2187.10	2440.00	2601.29	16597.00	34096.77	30396.67	8365.16	5124.52	3095.67 1467.67
1953 1954	2096.13 1403.23	2059.33 2106.67	2096.45 17/10 68	2271.61 1744.52	2542.14 2086 70	3525.48	3712.33	7381.94	19610.00	6120.32 6622.22	3441.61	1467.67
1.024	1962+52	100.01	1742.58	11 11 12	2486.79	2751.61	4537.00	10402.58	6316.33	5623.22	1946.13	2253-33

Table 8.--Monthly mean discharge at streamflow-gaging stations--Continued

Station 09315000 Green River at Green River--Continued

Year	October	November	Decembe	r January	February	March	April	May	June	July	August	September
1 955	2253.87	2015.00	1295.48	1296.45	1555.71	3861.94	5226.33	11020.32	11000.00	3620.00	2616.45	1187.87
1956	1255.48	1449.73	2064.84	2513.87	1735.66	5110.00	7731.33	16180.65	20290.00	4776.77	2750.32	1217.00
1 957	1243.48	1666.00	1291.61	1354.19	1801.43	3846.13	4878.00	14842.90	31436.67	18927.42	6282.90	3390.67
1958	3006.13	3834.00	2421.61	2076.45	3306.43	4004.84	7263.00	21318.39	19726.33	3643.23	1791.94	1609.33
1 95 9	1481.29	1713.67	1857.74	1579.03	2043.57	2379.03	3678.33	7812.26	12817.33	5627.42	2919.68	1742.67
1960	2898.06	2552.00	1728.39	1546.77	1768.62	5209.68	8968.33	8961.93	11469.67	2768.39	1121.23	986.93
1961	1564.87	1767.67	1306.77	1291.94	1692.86	2220.65	3097.67	5554.84	9110.33	1815.39	1292.90	2946.33
1962	3809.35	2700.33	2043.55	1861.29	7258.21	6520.97	18366.67	21948.39	18053.33	9725.48	2871.29	1647.00
1963	2044.52	1586.67	1178.26	1157.65	2151.43	1617.42	2590.67	6485.16	5205.00	824.77	1170.29	1594.03
1964	772.06	1242.50	1369.74	1767.42	1976.55	2087.10	3191.33	10306.45	12181.33	5590.00	3194.84	2345.00
1965	3184.84	3364.67	4340.00	4883.22	5452.14	5877.74	8707.33	13314.52	20286.67	6879.03	3710.65	3172.67
1966	4108.06	4023.33	4033.87	2948.71	2983.57	6397.74	6550.33	9197.42	5467.67	2380.97	2382.26	2645.00
1967	3077.10	2672.33	2378.39	3190.32	3042.86	4159.35	4375.67	8194.52	19060.00	8254.52	4020.32	3882.00
1968	4061.94	4087.00	3730.00	4045.16	3406.55	3927.42	4618.00	11523.23	20966.67	6922.26	5618.06	4043.33
1969	3750.00	3715.00	3396.45	4589.03	5632.50	5763.55	11048.33	17812.90	11497.00	5812.26	4396.13	4133.33
1970	4151.61	3972.00	4404.52	3106.13	3155.00	3148.39	4176.33	14093.87	17123.33	6835.16	3447.74	3014.33
1971	2836.45	2675.00	2354.19	2511.61	2968.93	3279.68	8052.66	11617.74	17 820.00	6456.13	3203.55	3521.00
1972	3432.90	4412.67	4343.55	4425.81	5264.48	5245.81	5439.33	10332.90	14010.33	4008.71	3277.42	2076.00
1973	4919.35	5721.67	4508.06	4296.77	4778.57	5562.26	5092.33	18990.00	17970.00	8469.03	4932.58	3908.00
1974	3755.16	4291.67	3880.97	37 56 .77	2706.43	4880.97	5991.33	19174.19	14992.00	4370.00	3128.71	2909.00
1975	3720.00	3916.00	3330.97	4231.29	4653.93	4056.13	3768.00	10605.8	21056.66	14613.55	5173.22	2872.00
1976	2608.71	3438.00	4748.06	4205.81	4331.38	4774.19	5205.33	12443.55	11051.00	4574.84	3356.45	3109.67
1977	3485.48	36 84 . 33	3671.29	3849.68	3592.14	4665.48	4474.33	5650.32	4409.67	2978.06	2759.68	2358.33
1978	1898.06	1951.67	1924.84	2049.35	2246.79	4035.16	6287.33	11157.42	18053.33	7 855.16	2815.48	2332.00
1979	2289.68	3089.00	2881.61	2970.97	3003.57	5619.68	8700.67	15448.06	15826.67	6554.52	3474.84	2519.00
1980	2453.23	3035.67	2713.23	3356.13	5300.69	4358.06	5884.67	16919.35	17005.00	5070.32	2319.35	3074.67
1981	2947.83	*	*	*	*	*	*	*	*	*	*	*
Averag												
	2860.05	2660.51	2111.82	2089.39	2581.23	4433.30	7489.74	16324.31	20045.74	8365.87	37 92 . 34	27 81 . 95

о н	2000.51	2111.82	2089.39	2581.23	4433.30	7489.74	16324.31	20045.74	8365.87	37 92 • 34	27 81 . 95
------------	---------	---------	---------	---------	---------	---------	----------	----------	---------	------------	------------

Station 09328000 San Rafael River near Castle Dale

Year	October	November	December	January	February	March	April	May	June	July	August	September
1948	26.71	58.73	58.77	45.00	98.14	88.10	59.93	320.74	222.27	29.19	16.52	5.50
1949	19.26	30.80	30.71	27.74	37.93	119.97	180.93	499.77	748.63	143.10	71.39	22.60
1 950	37.00	49.53	35.42	34.84	87.50	68.84	51.43	170.45	179.37	88.97	19.61	23.63
1951	22.19	37.77	48.19	35.00	36.79	31.26	23.63	252.19	386.80	55.06	143.16	31.17
1952	61.39	50.67	41.29	40.45	79.83	167.97	352.53	1600.32	2116.03	303.45	100.81	70.57
1953	57.52	61.07	62.39	84.19	94.89	83.42	48.73	51.16	538.03	89.26	111.03	30.83
1954	53.03	60.77	44.06	49.68	84.89	52.32	52.70	139.71	31.30	14.38	8.79	29.95
1955	21.42	29.07	34.55	29.97	31.36	107.74	39.70	68.06	95.53	12.79	54.84	5.61
1 956	11.57	17.30	32.61	44.42	43.69	39.26	22.13	225.06	126.40	18.72	7.12	2.87
1957	9.67	15.97	15.03	22.10	58.79	29.97	24.53	137.55	1450.07	315.87	147.65	58.13
1958	119.58	189.33	63.87	61.94	127.40	96.10	243.43	1126.74	929.17	38.16	28.29	41.50
1959	24.97	40.13	55.10	41.43	65.36	41.42	28.10	24.61	45.57	6.08	8.23	10.82
1960	12.23	23.00	22.00	21.97	28.62	103.61	53.13	146.77	164.70	7.56	1.94	10.34
1961	71.17	31.93	22.68	22.58	26.50	31.90	30.20	57.36	35.38	5.76	50.46	167.56
1962	43.00	56.37	40.55	39.84	101.25	81.48	211.97	447.00	635.17	115.06	26.06	25.37
1963	48.48	39.67	31.77	30.16	63.89	26.55	14.67	127.9	166.87	13.10	68.06	72.37
1964	22.10	25.93	23.87	20.23	36.55	44.74	20.47	252.65	312.80	48.39	43.61	7.37
1972	¥	*	*	*	*	*	*	*	*	*	33.90	33.40
1973	62.45	53.17	37.32	26.00	26.00	120.65	82.77	474.45	644.60	134.77	79.65	61.60
1974	73.48	47.63	38.94	32.65	33.61	52.42	35.03	77.23	98.43	95.32	55.77	49.07
1975	71.00	65.80	27.26	23,23	39.86	45.23	32.37	48.55	517.50	422.42	94.58	101.87
1976	85.55	53.10	36.32	26.00	56.83	33.13	26.90	56.71	53.80	45.61	26.97	34.90
1977	35.52	28.23	23.45	20.00	22.57	25.29	9.92	10.18	4.64	15.32	3.70	2.59
1978	7.85	9.69	13.26	17.06	23.43	44.48	20.93	21.52	328.83	86.81	28.97	26.17
1979	32.32	53.53	30.00	28.94	23.82	161.10	55.20	146.52	425.30	85.84	64.84	42.13
1980	55.64	47.40	83.29	121.64	139.96	69.13	59.10	220.10	1178.67	258.25	54.79	118.97
1981	72.29	*	*	¥	*	*	*	*	*	*	*	¥
Average	e 43.66	47.06	38.11	35.66	58.19	70.64	71.23	268.26	457.43	96.63	51.91	41.80

Table 8 .-- Monthly mean discharge at streamflow-gaging stations--Continued

Station 09328100 San Rafael River at San Rafael Bridge Campground, near Castle Dale

		Starte	093201	VU San ne	user viver	at Jan B	ardet pri	age camper	,	000000 000	-	
Year	October	November	December	January	February	March	April	May	June	July	August	September
1975	*	*	*	*	*	*		*	#	*	61.75	64.50
1976	82.23	55.77	34.03	25.00	53.83	25.71	20.44	79.00	49.53	43.39	26.86	37.63
1977	34.19	28.43	20.87	19.00	20.11	26.94	11.31	8.63	2.04	26.97	22.73	17.28
1978	11.85	9.28	13.15	18.26	25.39	58.87	24.03	20.94	284.87	60.97	30.97	29.93
1979	35.16	105.50	31.00	27.29	27.00	147.77	64.77	127.16	400.13	93.87	68.29	36.50
1980 1981	46.97 73.86	37.63 *	58.71 *	72.61	152.22 *	94.06 #	56 .86 #	218.69 *	1231.00 *	246.55 *	66.23 *	96 • 88 *
Average	e 42.59	47.32	31.55	32.43	52.15	68.16	35.19	89.21	286.47	94.35	44.77	41.90
				Station	0 932 8500	San Rafa	el River	near Green	River			
Year	Octcber	November	December	January	February	March	April	Мау	June	July	August	September
1910	127.58	162.00	125.00	150.00	200.00	728.74	748.07	1196+13	306.93	110.16	44.26	234.77
1911	222.16	98.83	100.90	224.42	196.25	164.16	163.43	491.52	607.63	98.81	68.03	152.43
1912	355.77	64.17	60.00	50.00	70.00	100.00	95.73	405.97	1570.43	222.65	74.74	59.73
1913	384.39	199.17	46.65	40.00	50.00	136.06	338.37	1075.00	464.00	136.26	45.61	236.93
1914	72.55	124.57	65.13	55.00	65.00	90.00	251.27	1625.58	1650.33	293.55	45.10	25.17
1915	158.71	41.20	60.90	48.00	47.00	207.94	196.83	379.58	448.77	38.03	1.20	34.11
1916	7.52	119.97	68.61	58.00	80.93	379.48	207.20	541.52	931.70	196.48	343.77	71.33
1917	848.26	81.10	87.19	20.00	99,96	130.61	194.23	854 74	2245.07	369.68	109.16	219.13
1918	64.77	78.97	63.87	55.97	73.68	109.16	107.27	140.90	588.03	552.48	125.42	129.33
1946	48.71	48.10	33.35	29.26	70.54	97.03	182.73	321.39	133.47	17.45	112.92	6.36
1947	41.83	78.33	57.87	37.55	96.11	66.55	55.57	536.39	435.27	76.06	317.32	48.90
1948	32.19	58.63	64.68	50.00	110.52	115.94	64.27	269.16	222.90	29.86	88.89	0.13
1949	13.96	28.90	34.45	31.26	43.57	144.45	166.87	492.00	871.00	219.81	78.35	42.72
1 950	47.03	53.40	40.39	39.19	111.75	86.65	55.87	141.10	176.27	138.58	9.85	17.27
1951	17.16	36.67	45.48	40.00	51.32	36.65	20.33	237.43	387.93	44.19	193.35	19.77
1952	91.81	62.43	47.42	46.00	88.34	221.29	405.00	1505.84	2150.33	317.42	192.00	81.67
1953	56.23	59.20	66.77	92.45	119.14	92.85	56.97	36.03	521.77	82.13	139.68	25.73
1954	58.19	69.03	49.81	58.65	96.39	57.84	49.00	125.39	22.05	19.24	10.70	63.53
1 955	36 94	28.63	37.81	33.97	36.32	104.77	42.47	57.39	93.07	4.96	48.38	0.74
1956	2.55	17.07	36.39	48.71	48.76	44.03	21.77	187.88	131.93	14.66	11.40	0.11
1957	0.85	12.68	16.16	26.45	65.68	41.06	23.30	141.58	1588.07	387.84	208.48	70.10
1958	162.97	357.83	79.68	72.9	135.5	94 • 97	222.50	1067.65	959.17	34.23	71.67	70.68
1959	22.29	41.30	60.48	42.71	69.79	47.68	27.43	16.65	36.54	1.84	10.46	18.82
1960	11.18	29.57	23.94	22.9	33.48	123.97	51.67	123.45	187.90	2.35	0.38	20.00
1961	123.88	34.80	29.71	31.71	46.11	40.19	32.00	48.61	32.17	0.31	116.69	308.73
1962	50.06	61.47	33.71	39.42	138.61	90.00	192.43	464.74	619.87	119.74	13.13	57.54
1963	67.32	38.60	35.97	33.23	71.93	35.13	15.54	96.13	170.77	8.80	150.68	108.50
1964	19.16	26.80	27.97	23.19	39.93	49.97	23.17	248.54	334.57	62.88	100.93	23.95
1965	2.28	20.33	50.48	57.81	55.93	52.35	92.77	291.29	1296.90	620.84	256.74	85.47
1966	65.10	77.93	83.42	48.35	62.86	136.52	74.97	70.10	28.09	28.05	8.99	29.06
1967	23.87	22.10	39.16	18.94	35.57	34.55	11.90	86.21	373.47	108.77	48.25	84.87
1968	34.94	36.57	29.94	26.61	42.55	42.13	40.17	98.71	426.17	97.58	179.48	65.13
1969	87.71	45.43	38.26	52.26	52.43	140.13	211.23	612.81	541.53	125.26	146.16	107.90
1970	68.48	61.23	59.61	32.26	68.21	39.42	32.20	220.13	805.50	143.35	60.68	63.53
1971	53.90	51.00	46.39	25.81	36.54	53.03	46.20	66.90	87.10	88.68	68.03	39.97
1972	87.00	68.37	30.65	33.00	52.69	51.26	26.60	34.68	53.10	23.03	16.26	13.13
1973	143.71	62.23	30.61	25.97	45.00	287.19	75.50	464.26	861.93	159.55	70.00	67.10
1974	76.81	55.33	40.55	32.68	33.61	49.81	34.20	56.29	73.27	78.06	41.61	37.80
1975	74.00	72.63	29.29	25.16	42.57	49.58	28.67	46.81	525.33	451.35	80.97	90.33
1976	64.23	55.27	29.90	23.00	47.72	23.29	15.20	37 - 35	37.40	29.94	22.10	27.36
1977	31.26	28.57	22.58	19.00	20.89	24.52	6.84	3.72	1.09	41.63	35.31	15.04
1978	4.95	5.68	11.83	14.65	22.18	79.32	16.77	23.26	369.17	137.68	13.96	7.24
1979	79.65	200.37	24.23	18.90	35.93	232.16	90.83	85.68	411.33	65.32	45.39	22.67
1980 1981	41.33 40.75	41.57 *	76.23 #	95 •77 *	148.90 #	107.45 ¥	55.70 *	209.35 *	1516.80 ¥	850.35 *	111.37 ¥	99.70 *
Averag		68,59	48.72	46.62	71.80	114.54	110.70	346.27	574.91	151.13	89.95	68.28
averag	5 92.00	00.09	40.12	40.02	11.00	114+24	110.70)∠+0+2(J14.71	(1))	03.33	0 4+2 0
			•									

[Abbreviations: ft, feet; in., inches; gal/min, gallons per minute; °C, degrees Celsius, µmhos, micromhos per centimeter at 25°C] Location: See text for description of well- and spring-numbering system. S, well plugged back in year shown as year

constructed. Dwner: Owner at time well was visited by U.S. Geological Survey or listed by driller in State Well Driller's Report or Owner:

Constructed.
Conner at time well was visited by U.S. Geological Survey or listed by driller in State Well Driller's Report or given in other State or Federal records.
Depth: All depths reported, except for test holes drilled or logged by U.S. Geological Survey.
Finish: P, pipe perforated; X, open hole below unperforated pipe.
Principal aquifer: See table 1 for explanation of code; see table 2 for description of lithology.
Altitude: Altitude of land surface at well, in feet above National Geodetic Vertical Datum of 1929. Most altitudes are interpolated from topographic maps.
Water level: In feet below or above (+) land surface at well. Accuracy--G, measured with steel tape; T, measured with logging device; R, reported; S, measured with steel tape; T, measured with electric tape. Site status (second column)--D, dry; F, flowing, but head not measured; R, pumped or flowed recently.
Type of lift: A, air; P, piston, generally pump jack and cylinder pump; N, none; S, submersible pump (electric); T, turbine. Flowing wells are not equipped.
Discharge: B, bailer measurement by driller; E, estimated; F, discharge is by natural flow; R, reported; V, volumetric, generally with bucket and stopwatch.
Use of water: H, domestic; N, industrial; S, stock; U, unused; Z, not used because well plugged or destroyed.
Remarks: Data available--A, aquifer test; C, chemical analysis in table 14; D, driller's log (see table 12 for selected logs); G, geologist's log of drill cuttings in table 12; J, geophysical logs in files of U.S. Geological Survey; W, water-level observations (see fig. 14 for selected hydrographs).

rever	observations	(see	LIK.	14	LOL	serected	nyorographs).	

Location	Owner	Year con- struct- ed	Depth of well (ft)	Casing diam- eter (in)	Depth cased (ft)	Depth to first open- ing (ft)	Finish	Principal aquifer	Depth to aqui- fer (ft)	Altitude (ft)	Wate leve (ft)	
(D-16-13)8ddc-15	U.S. Bureau of Land Management	1974	700	10.75	128	128	X	210DKOT	550	5,328	109.0	S
(D-17-11)27ccd-1	M. D. Mills	1961	72	4	72	-	-	221SLWS	46	5,758	20	R R,D
(D-17-13)30ddd-1S	U.S. Bureau of Land Management	1974	560	10.75	104	104	х	220NVJO	353	5,147	141.2	S
(D-18-14)9dca-1	R. W. Cook	1910	3,180	14	-	-	-	220NVJO	-	4,630	-	F
(D-19-10)15bac-1	U.S. Bureau of Land Management	1946	476	7.88	37	37	x	221CRML	310	5,615	157	R
(D-19-12)14bbb-1	State of Utah	1946	57	8	-	-	-	221CRML	0	5,740	-	S,D
(D-19-13)12ddd-1	U.S. Bureau of Land Management	1969	3,269	10.75	3,268	1,274	Р	220NVJO	1,052	5,489	572.0	Т

(D-19-13)21cbd-1	do.	1980	310	-	-	-	х	220NVJO	120	5,190	96.9) Т
(D-20-10)66dd-1	Utah Power & Light Co.	1980	475	-	-	-	х	220NVJO	152	5,260	+16.() G
(D-20-14)11cba-1	U.S. Bureau of Land Management	1903	1,335	10	1,335	1,145	Ρ?	220NVJ0	1,055	4,498	+74	R
31cbd-1	L. G. Smith	1958	150	4	-		-	221CRML	0	4,560	-	-,F

Date measured	Type of lift	Date discharge measured	Discharge (gal/min)	Draw- down (ft)	Use of water	Tem pera- ture (°C)	Remarks
5-05-77	N	-	-	-	U	-	Petroleum-test well plugged back and left for use as water well.
461	т	461	22 V	20	S	-	State inspector found well unused. Slightly alkaline water at 14 ft.
9-09 - 69	N	-	-	-	U	-	Data: D
10-06-80	N	6-28-79	12 V	39	N	16.0	Petroleum-test well plugged back and left for use as water well. Perched (?) water in Carmel Formation. Data: A, C, J, W.
10-21-46	N	10-21-46	200 E,F	-	Z	27.5	Known as the "Roadside Geyser," at Woodside. Would erupt about every 30 minutes, by carbon-dioxide drive. Aquifer estimated from reported depth of hole. See Intermountain Assoc. Petroleum Geologists, 1956, p. 207. Well plugged because of saline water. Data: C.
1-25-46	P	1-25-46	20 R	4	S	14.0	Known as Buckhorn Well. Data: C, D.
4-26-78	N	-	-	-	U	-	Driller reported drilling fluid lost through fissure in limestone.
11-10-80	N		-	-	U	-	Petroleum-test well plugged back and left, unperforated, for use as water well. Opened by U.S. Geological Sur- vey. Fluid in hole very saline; measurements showed that plug did not leak. Jet-perforated by Welex Co. with one shot per foot from 1,274 to 1,294 ft. Water level rose to that shown and stabilized. Attempt to pump well abandoned after repetitive pump failure. During last pumping period, fluid specific conductance decreased from 11,300 to 9,400 µmhos showing that sandstone was yielding fresher water to well. Data: J. W.
7-31-80	N	6-27-80	30 E	-	U	15.5	U.S. Geological Survey test hole NSR T-3. Water perched in Carmel Formation at 59 ft; heard dripping. Yield estimated while cleaning out hole with air. Data: C, G, J.
7-14-80	N	7-14-80	10 E,F 2.8 F,V	16 -	<u>2</u> _	13.0	U.S. Geological Survey test hole NSR T-1. Drilled with air, then mud, and finally river water. Head increased as hole deepened; began flowing estimated 10 gal/min when completed. Set packer 141-146 ft. Second (smaller) discharge measured through 0.75-in. faucet. Data: A, C, G, J.
1903	N	803 555	11 F,R 2 F,R	-	S -	19.0	Known as Rio Grande well. Location originally reported as in section 15 (unsurveyed). Found caved, but still sceping in May 1977. Data: D.
4-26-78	N	4-26-78 6-08-79	20 E,F 50 E,F	-	U -	15.0 15.0	Uncontrolled flow to nearby dry wash. Has flowed long enough to establish water cross (Nasturtium Officinate) and other vegetation and looks like a natural spring. Casing below surface of small pond. Local rancher reported that a spring in Navajo Sandstone in adjacent canyon ceased flowing when this well was drilled. Data: C.

Location	Owner	Year con- struct- ed	Depth of - well (ft)	Casing diam- eter (in.)	Depth cased (ft)	Depth to first open- ing (ft)	Finish	Principal aquifer	Depth to aqui- fer (ft)	Altitud (ft)	Wate e leve (ft)	e1
(D-20-16)17bab-1	Howard Hastings		30	-	-	-	-	112ALVM	0	4,110	-	-
(D-21-14)4cbd-1	U.S. Bureau of Land Management	-	-	-	-	-	-	221CRML	0	4,500	-	
(D-21-16)9aac-1	E. C. Gerhart	1960	1.6	4	16	12	Р	1]]ALVM	0	4,070	6	R
(D-22-8)11ccb-15	U.S. Bureau of Land Management	1961	1,937	2.38	1,937	1,416	Р	231 KYNT	1,300	5,940	285	R
(D-22-10)23cbc-1	Utah Department of Transportation	1971	84	7.88	-	-	-	231WNGT	0	7,035	33.1	s
33abc-	do.	1963	475	-	-	-	-	-	-	7,120	-	R,D
(D-22-11)23bdc-1	do.	1963	29 0	-	-	-	-	237SNBD	56	6,520	-	
(D-22-13)35bcd-2	U.S. Bureau of Land Management	1980	310	-	-	-	х	220NVJO	0	4,510	137.5	S
(D-22-14)15acc-1	Energy Fuels Inc.	1979	180	5	120	120	P	221MRSN	0	4,275	-	-
(D-22-14)28dba-1	Hatt Ranch	1979	515	4	-	-	P?	221ENRD	250	4,235	16.7	S
28ddd-1	do.	1952	265	8	70	70	x	221CRTS	100	4,200	6	S
31ddb-1	U.S. Bureau of Land Management	1935	350	6.25	320	70	Р	221CRML	130	4,290	40	ĸ
(D-23-8)3bab-1	Utah Department of Transportation	1963	300	-	-	-	-	221CRML	0	5,800	-	
7dbd-1	do.	1963	40	-	-	-	-	-	-	5,515	-	R,D
(D-23-9)2ccb-1	W. R. Snow	1966	690	5	690	-	-	310CCNN	560	7,030	576	L
(D-23-10) 12DDD-1	U.S. Bureau of Land Management	1936	196	6.62	217	193	Ρ	230MNKP	40	6,850	160 25.6	R S
(D-23-11)22ccc-15	do .	1936	2,270	8.62	-	-	x	330MSSSP	1,270	6,710 1	,730	т
(D-23-14)25bca-1	Utah Power & Light Co.	1980	700	-	-	-	-	220NVJO	460	4,160	+105	G,R
256cd-1	do.	-	-	5	-	-	-	-	-	4,150	9.7	S
36bba-1	do.	-	57	3.25	-	-	-	221 ERND	-	4,150	17.1	s

and test holes--Continued

•

Date measured	Type of lift	Date discharge measured	Discharge (gal/min)	Draw- down (ft)	Use of water	Tem pera- ture (°C)	Remarks
-	s	-	-	-	-	-	Alluvium from Green River overlies Mancos Shale. Data: C.
-	N	-	-	-	U	-	Mine shaft; uranium test by B. J. Allers. Data: C.
960	-	-	. -	-	-	-	Formerly used for lawn irrigation; abandoned after filled with sand; alluvium overlies Mancos Shale. Data : C.
661	N	-	-	-	Z	-	Core hole plugged back; casing perforated 1,416-1,418, 1,420-1,442, and 1,459-1,467 ft. Found unused and casing filled in 1978.
10-21-77	N	-		-	Z	-	Test hole for construction water for Interstate High- way 70. Found filled with rocks in 1978. Data: C.
-	-	-	-	-	-	-	Test hole for construction water for Interstate High- way 70. Data: D.
-	-	10-29-63	1.5 R	-	-	-	Do.
7-17-80	N	7-17-80	- 20 E	-	Z	17.5	U.S. Geological Survey test hole NSR T-5. Drilled wit air. Discharge estimated while cleaning hole with air Drilled into sandstone outcrop where dip is about 60° . Samples from about 100 to 170 ft appeared damp. At 17 ft, after connecting drill stem, drilled about 0.2 ft and hole started producing water; may have been result of an open fracture. Data: C, G, J.
-	s	10-30-79	7 R	160	н		At mine on State Highway 24.
8-24-79	N	5-21-80	5 V	180	U	17.0	Well drilled by mineral exploration company and left f water well. Gas can be heard bubbling and an unpleasa odor comes from between surface pipe and casing. When test pumped, water was heavily charged with carbon dioxide which, after water level was pumped down and pump stopped, caused well to continue to flow by gas lift. Data: C, J, W.
10-28-58	N	-	-	-	U	16.0	Never used because of poor water quality. Produced no flammable gas from 125-225 ft that caused well to flow "like a geyser" only when well was bailed. Data: C,
1-07-36	N	1-07-36	10 B	160	Z	-	Known as San Rafael Well. Abandoned before 1952. Old report notes the well produced brackish water ample fo sheep. Data: C, D.
-	N	9-15-63	0.5 R	-	-	-	Test hole for construction water for Interstate Highway 70. Data: D.
9-13-63	-	-	-	-	-	-	Do.
1-5-66	N	-	-	-	-	-	Found abandoned in 1979. Data: C, J.
2-18-39 7-15-61	Р	7-28-36 12-18-39 10-31-58 7-19-80	17 R 12 R 4 E 7.2 V	37	-	- 11.0 12.5	Known both as Sinbad Well and Georges Draw Well. One eight wells reportedly drilled by Standard Oil Co. of California for supply of drilling and domestic water. Drilled to 217 ft. Depth and water level measured in 1961 by R. F. Hadley, U.S. Geological Survey. When sa pled in 1979, water pumped was milky blue in color, an had strong odor of hydrogen sulfide.
7-30-79	N	11-20-36	53 R	-	U	17.2	Petroleum-test well converted to drilling water-supply well and left for use as stock-supply well. Never use Found open to depth shown on date of water-level measurement. Water leveI measured with geophysical lo ging equipment. Specific conductance of water in hole at 1,750 ft was 1,150 µmhos, measured with logging equipment.
7-23-80	N	7-22-80 7-23-80	20 E 14 F,V	-	Z	17.5 16.5	U.S. Geological Survey test hole NSR T-6A. Drilled wi air to 20 ft where hole produced a little water. Drilled hole with mud which was thinned when Navajo Sandstone was entered. Head increased with depth, and well was flowing at 550 ft. Set packer for testing at 445-450 ft. Measured discharge through 0.75-in. fauce Pressure required use of commercial well-cementing company to plug hole. Data: A, C, G, J.
3-20-80	N	-	-	-	-	-	Near north side of old ranch house. Depth more than 3 ft. Well full of black muck, with odor of hydrogen sulfide. Mineral residue on old casing head indicates probable saline water quality.
3-20-80	N	· _	-	-		-	Old test hole (?) on west side of county road. Aquife

Record of selected water wells

Location	Owner	Year con- struct- ed	Depth of well (ft)	Casing diam- eter (in.)	Depth cased (ft)	Depth to first open- ing (ft)	Finish	Principal aquifer	Depth to aqui- fer (ft)	Altitude (ft)	Water level (ft)
(D-23-14)36bdd-1	Utah Power & Light Co.	1980	215	-	-	-	-	221CRML	40	4,120	9.5 \$
(D-24-9)5bcb-1	Lucky Strike Mine	-	-	6	-	-	-	231CHNL	0	5,900	19.8 S,H
(D-24-13)11adb-15	U.S. Bureau of Land Management	1974	1,508	8.62	169	169	x	220nv.jo	486	4,740	324.8 S
32bbd-1S	State of Utah	1967	1,263	7	1,263	-	-	220NVJO	74	4,844	20.4 S
36dba-1	do.	1979	1 184	7	_	-	x	220NVJ0	155	4,660	151.7 s
(D-24-14)21adb-1	U.S. Bureau of Land Management	-	-	6	-	-	-	220NVJ0	-	4,310	,F
(D-24-15)6caa-1S	Utah Power & Light Co.	1954	-	-	-	-	-	220NVJ0	230	4,110	- , F
7aca-1	U.S. Bureau of Land Management	-	-	-	-	-	-	-	-	4,122	,F
(D-24-16)10dda-1	do.	1976?	1,245	6.63	-	-	х	220NVJO	8	4,235	170.0 S
22cbd-1	do.	1976?	1,083	7	-	-	x	220NVJO	16	4,450	297.5 S
(D-25-14)26dba-1	do.	-	1,293	6	-	-	х	220NVJO	190	4,910	336 L
(D-25-15)23bdb-1	do.	1935	350	8.25	330	330	x	220NVJO	193	4,795	290 R
32cac-1	State of Utah	1956	720	10	720	680	Р	220NVJO	255	5,080	650 R
(D-26-7)17bca-1S	U.S. Bureau of Land Management	1947	1,134	13.38	1,134	-	-	220NVJO	204	6,125	-
(D-26-8)6aab-1	do.	1969	767	6.63	767	715	Р	220NVJ0	220	5,960	686 R
(D-26-11)9666-1	State of Utah	1980	844	8	802	802	x	220NVJO	818	5,070	454.5 T

and test holes--Continued

Date measured	Type of lift	Date discharge measured	Disch (gal/		Draw- down (ft)	Use of water	Tem pera- ture (°C)	Remarks
7-20-80	N	7-19-80	30	E,F	-	Z	15.0	U.S. Geological Survey test hole NSR T-6. Drilled at first with air; changed to mud. First water noted at 35-40 ft. Lost circulation at 205 ft and drilled with- out cutting returns to 215 ft. Lost circulation of drilling fluid at 50 ft in second hole at site. Data: C.
7-19-79	S	7-19-79	10	Е	-	N,H	14.5	On north side of canyon above mine buildings. Mine superintendent reports that water is used for all pur- poses but drinking, and that well has a large drawdown. Data: C.
6-20-79	N	5-14-80	10	v	-	U	17.0	Petroleum-test well plugged back and left for use as water well, but never used. Data: A, C, J, W.
6-4-80	Ν	-	-		-	U	-	Petroleum-test well plugged back and left, unperforated, for use as water well. Opened by U.S. Geological Survey for perforating and testing. Preliminary tests showed that plug leaks and that water level represents that in formations below the Wingate Sandstone. This condition seemed to be confirmed by fresh blobs of oil appearing on the water surface in the well after preliminary testing. Well was resealed without further work.
4-15-80	N	5-13-80	13	v	26	U	15.0	Data: A, C, J.
-	N	6-7-79	8.0	F,V	-	S	15.0	Flows uncontrolled into stock pond rimmed by salt cedars (<i>Tamarix gallica</i>) on west side of Cottonwood Creek. Reportedly drilled by exploration company. Aquifer identification based on water quality. Data: C.
-	N	6-7-79	10	E,F	-	S	15.5	Petroleum-test well left for use as water well; on north bank of San Rafael River in grove of cottonwood trees (<i>Populus fremonti</i>) and salt cedar. Control valves, in 4 x 4 ft pit have rusted away; well flows uncontrol- led to small stock pond. Water has odor of hydrogen sulfide. Data: C.
-	Ņ	-	-		-	U	-	In relatively inaccessible area on south bank of San Rafael River. Local ranchers report well has flowed for many years and that water is potable.
6-27-79	N	-	-		-	U	-	Mineral (?) core hole between county road and small dry wash. Geophysical logging shows that water in hole is saline and of nearly uniform specific conductance, indi- cating that water probably is moving up the hole and out into the Navajo Sandstone. Data: J, W.
6-6-79	N	~	-		-	U	-	Mineral (?) core hole at east edge of county road. Remarks same as for preceding site.
7-17-79	N	-	-		-	U	-	Mineral (?) core hole on south side of county road. Geophysical logging shows that water in the hole is slightly saline and of nearly uniform specific conduct- ance, indicating that water probably is moving out of the Navajo Sandstone, down the hole, and out into the Wingate Sandstone. Data: J, W.
9-3-35	Р	10-1-35	8	R	-	S	-	Known as SaucerBasin Well. Water quality reported to be good. Data: D.
6-29-56	P	6-29-56	30	R	50	U	-	Known as Moonshine Well. Inspection in 1979 showed well had not been used for long period. Data: C.
-	-	-	5	R	-	U	-	Petroleum-test well plugged back and left for use as water well. Not known to have been used.
6-25-69	Р	6-25-69	11	В	40	S	18.1	Known as Last Chance Well. Drilled in midst of swarm of igneous dikes and near fault. Casing perforated with machine-cut slots, 3 x 3/8 in., from 715 to 767 ft. Data: C, D.
4-15-80	N	3-8-80	30	R	-	U	-	Water-supply test well at Goblin Valley State Reserve. On top of bluff overlooking reserve and next to water tank that stores water hauled from town of Green River. Data: C, D, J.

[Abbreviations: ft, feet; gal/min, gallons per minute; °C, degrees Celsius; umhos, micromhos per centimeter at 25°C;

[Abbreviations: ft, teet; gal/min, gallons per minute; °C, degrees Celsius; umhos, micromhos per centimeter at 25°C; mi, mile.]
Location: See text for description of well- and spring-numbering system.
Name or owner: Name given on maps of U.S. Geological Survey or U.S. Bureau of Land Management, or name used by local residents; otherwise, landowner is given. Alternative name, if any, is given in remarks.
Altitude: Altitude of land surface at spring orifice(s) in feet above National Geodetic Vertical Datum of 1929, interpolated from topographic maps.
Aquifer code: See table 1 for explanation of code and table 2 for description of lithology of geologic unit.
Discharge: Method of measurement--C, current meter; E, estimated; V, volumetric (method unspecified, but generally with bucket and stopwatch).
Remarks: C, chemical-quality data in table 14. Citations are from Baker (1946, p. 12-14).

,	ical-quality data						quality	
Location	Name or owner	Altitude (ft)	Aquifer code	Date measured	Dis- charge (gal/min)	Temper- ature (°C)	Specific conduct- ance (µmhos)	Remarks
(D-15-13)18caa-S1	Big Spring	5,700	111ALVM	9-17-75	168C	13.0	1,500	Discharges from alluvium that overlies the Mancos Shale. C.
(D-16-12)16cbd-S1	U.S. Bureau of Land Management	5,600	217CDRM	7-18-79	4 E	15.0	1,700	С.
(D-16-13)20dab-S1	do.	5,150	217CDRM	7-18-79	30E	-	3,200	с.
(D-17-12)23aba-S1	Stove Gulch Spring area	5,190	221ENRD	5-18-79 6-28-79 10-26-79	20V 1.5V Dry	20.0	6,360 -	Seepage rises in bed of gulch where gulch cuts Entrada Sandstone that is shattered by faulting. C.
(D-17-13)3abd-S1	Coon Spring	5,105	111ALVM	7-18-79	0.1V	21.0	4,050	Source is alluvium (?) on or near fault trace. C.
(D -18-1 0)13aab-S1	Staker Spring	6,365	217CDRM	7-10-79	4 E	17.5	703	Spring box with pipe to trough. C.
(D-18-11)33acd-S1	U.S. Bureau of Land Management	6,970	221BRSB	7-10-79	-	-	3,930	Seepage in canyon. Small discharge (less than 1 gal/min) affects water temperature measurement. C.
(D-18-13)29dda-S1	North Summerville Seep	5,170	221CRML	5 -8- 79 10-26-79	2E 1E	10.0	4,820	Seepage from bed of conglomerate at top of formation. C.
(D-19-9)1acd-S1	Red Seep	5,635	221BRSB	10-31-58	1 E	-	-	С.
26cab-S1	U.S. Bureau of Land Management	5,400	221 SMVI.	9-11-75	0.5E	15.5	5,240	с.
(D-19-13)13bbd-S1	do.	5,280	221CRTS	5-20-79 10-27-79 6-25-80	1E Dry Dry	18.5 - -	14,300	On west side of Woodside anticline. Site sampled is composite flow from several seepage areas that dis- charge from jointed, dark gray, limy sandstone and overlying veneer of sand. Much mineral residue along edge of stream bed. C.
(D-20-9)33dda-S1	do.	5,560	111alvm	10-25-79	5E	-	-	Streamflow originated in this reach of Coal Wash in 1979. This spring is fairly typical of several reaches of Coal and North Salt Washes where water may dis- charge from underlying bed- rock or may be underflow brought to surface. Water is saline and sustains patches of salt cedar (<i>Tamarix gallica</i>), wil- low (?)(<i>Salix Sp.</i>), and cottonwood (<i>Populus</i> <i>fremonti</i>) even where there is no visible flow.
35ccd-S1	Yellow Seep	5,700	221CRML	5-9 - 79	3E	11.0	2,860	Seepage accumulates along small strike valley. Piped to stock trough. C.
(D-20-10)23bdb-S1	U.S. Bureau of Land Management	5,390	231WNGT	-	-	-	-	Water reported fresh. Seep- age issues from sandstone just above base of forma- tion. In June 1980, creek upstream from spring reportedly was flowing.

Table 10.--Record of selected springs--Continued

						Water	quality	
Location	Name or owner	Altitude (ft)	Aquifer code	Date measured	Dis- charge (gal/min)	Temper- ature (°C)	Specific conduct- ance (µmhos)	
(D-20-11)3cab-S1	U.S. Bureau of Land Management	5,260	111ALVM	5-3-78 6-8-78	- -	-	2,480 3,190	In bed of Buckhorn Wash. Alluvium overlies Chinle Formation. C.
4aab-S1	do.	5,310	231CHNL	10-31-58 5-3-78 6-8-78	20E - -	-	2,550 2,710 6,590	May be from alluvium over Chinle Formation. C.
11bcc-S1	do.	5,155	111ALVM	5-3-78 6-8-78	-	-	3,770 5,200	Alluvium overlies Moenkopi Formation. C.
(D-20-13)15dad-S1	Cottonwood Canyon Spring	4,860	220nvjo	6-8-79	5E	13.5	1,340	Seepage issues from joints in sandstone and from over- lying canyon fill. Many cottonwood trees in canyon bed. Sampling site is head of perennial in this reach; head of flow migrates down- stream during summer and early fall. See text. C.
(D-20-14)34ccd-S1	Trail Spring	4,400	11†ALVM	6-7-79	0	-	-	Stagnant pond at head of small channel on west side of Cottonwood Wash. Many phreatophytes in vicinity. No visible flow, but creek bed and banks are damp and covered with white mineral deposit.
(D-21-9)25baa-S1	U.S. Bureau of Land Management	5,870	220GLNC		-	-	-	Personnel of U.S. Bureau of Land Management report that this spring and that down- stream, as well as others in this area, dry up in summer and in dry years.
25dda-S1	do.	5,910	220GLNC	-	-	-		See above.
(D-21-13)24cbb-S1	Sulphur Spring	4,320	230MNKP	1911	200E	-	-	One of a group of springs on both banks of San Rafael River in lower Black Box Canyon. Has strong odor of hydrogen sulfide. See Lupton (1911, p. 347-349). C.
(D-21-14)5aab-S1	Smith Cabin Spring	4,565	221CRML	6-8-79	5E	13.5	992	In deep cut below old cabin. Issues from jointed, steeply dipping limestone. Baker's report of a large amount of good water may have referred to higher spring that reportedly dried up. C.
(D-22-8)23aad-S1	Jensen Spring	6,075	221CRML	4-23-59	5E		-	Also called South Salt Wash Spring. South of trail in bed of South Salt Wash. C.
(D-22-9)8aca-S1	U.S. Bureau of Land Management	6,040	221CRML	10-25-79	10E	17.0	3,660	Seepage issues from sand- stone beds, which accumu- lates in pools in deeply incised meanders in Eagle Canyon. Seep area thickly coated with white mineral deposits. Flow sinks into canyon fill downstream. C.
(D-22-13)35bcd-S1	do.	4,500	111ALVM	6-7-79 7-15-80	5E Dry	18.0	2,200	Estimated discharge probab- ly is maximum. Underflow (?) in canyon fill does reach across Navajo out- crop. Abundant water life and some green algae. C.
(D-22-14)6bbc-S1	Spring Canyon Spring	4,500	220NV JO	10-28-58	· 5E	7.0	-	Baker called aquifer the basal Carmel; D. A. Phoenix (U.S. Geological Survey, written commun., 1962) called aquifer alluvium overlying Navajo, and could not find orifice. C.

Table 10.--Records of selected springs--Continued

						Water	quality	
Location	Name or owner	Altitude (ft)	Aquifer code	Date measured	Dis- charge (gal/min)	Temper+ ature (°C)	Specific conduct- ance (µmhos)	Remarks
(D-22-16)25ad-S	North Salt Wash Spring	4,160	221ENRD	-	-	-	-	In north fork of Salt Wash, near area of much faulting. C.
25de-S	Salt Wash Seepage	4,140	221BRSB	-	-	-	-	General area of seepage in graben. C.
(D-23-7)24bca-S1	U.S. Bureau of Land Management	5,400	221CRML	-	-	-	-	Scepage issues from bed of South Salt Wash. Bed of wash is damp from here down to confluence with Muddy Creek. Thick growth of phreatophytes along banks.
(D-23-8)21bdc-S1	do.	5,840	221CRML	7-18-79	5E	-	3,000	Pond behind low banks against strongly deformed gypsum in north wall of Kimball Draw canyon. Out- flow immediately sinks into canyon fill. Large salt cedar in damp areas.
30bdb-51	do.	5,555	221CRML	7-18-79	10E	-	6,000	Rises in bottom of Kimball Draw, near top of Carmel. Numerous large phreato- phytes in spring area. Piped to trough 0.3 mi downstream.
(D-23-10)96bd-81	Cliff Dweller Spring	7,120	231WNGT	10-31-58	1 E	-	-	In notch in cliff, near base of sandstone. Collec- tor piped to trough. Pipe was only dripping 7-19-79. C.
(D-23-13)34dbd-S1	Iron Wash Spring	4,380	111ALVM	10-28-58	15E	16.0	-	Underflow (?) in Iron Wash. Alluvium overlies Carmel. C.
(D-24-9)5bcb-S1	Lucky Strike Mine	5,840	231CHNL	7-19-79	1 E	-	-	On right bank, up canyon from mine buildings. Unused; mine uses nearby well.
(D-24-10)3bba-S1	Tan Seep	6,700	230MNKP	10-27-44	5 E	18.0	-	Developed spring; in Rods Valley. May issue from fault zone. C.
(D-24-13)4ddb-S1	Seep	4,470	221CRML	-		-	-	Seepage area in bottom of Iron Wash.
9acb-S1	Seep	4,510	220NVJO	-	- `	-	-	Do.
20ccs-S1	Lost Spring	4,790	221CRML	10-28-58	2 E	16.5	-	Also known as Red Rock Spring. Sample from pipe below cribbed rock wall.
24dcd-S1	Crows Nest Spring	4,520	220NVJ0	-	-	-	-	Rises in channel where Nav- ajo is faulted up against Entrada. Baker said spring yields a small amount of good water.
31daa-51	Old Woman Spring	4,810	221CRML	-	-	-	-	Seepage area in basal sand- stone of Carmel. Baker said yield was very small amount of alkaline water from a covered excavation.
(D-24-14)30bca-S1	Hawks Nest Spring	4,500	221CRML	-	-	-	-	Baker said yield was a very small amount of good water at Carmel-Navajo contact.
32adb-S1	Cottonwood Spring	4,375	220NVJO	-	-	-	-	Rises in canyon bottom above fault and at least 100 ft below top of Navajo. No visible flow in 1976. In June 1979 damp sand

No visible flow in 1976. In June 1979 damp sand extended about 0.25 mi across fault and pool of stagnant water stood at fault. Dense phreatophytes and hydrophytes in canyon bottom.

Table 10,--Records of selected springs--Continued

						Water	quality Specific	
Location	Name or owner	Altitude (ft)	Aquifer code	Date measured	Dis- charge (gal/min)	Temper- ature (°C)	conduct- ance (µmhos)	Remarks
(D-24-15)15aad-S1	Spring Canyon Spring	4,120	221CRML	-	-	-	-	Baker said yield was a small amount of alkaline water.
17acc-S1	U.S. Bureau of Land Management	4,165	221CRM1	-	-	-	-	Baker called this site Lower Dugout Spring; rela- tively large discharge of gypsum-bearing water.
(D-24-16)19ddd-S1	Moonshine Spring	4,530	221CRML	-	-	-	-	Baker said yield was a small amount of slightly alkaline water. Orifice on north-trending structural feature.
27cbb-S1	U.S. Bureau of Land Management	4,515	221CRML	6-6-79	2E	-	3,300	Seepage in streambed where basal sandstone overlies red siltstone. Much min- eral residue on streambed and adjacent banks. Found dry later in year and in 1980.
(D-24-17)27bad-S1	Arch Spring	4,280	220NVJO	-	**	-	-	lssues near contact with Kayenta.
(D-25-12)4aac-S1	Swazy Seep	5,020	221CRML	-	-	-	-	Issues from base of forma- tion. Reported dry in summer 1977.
(D-25-13)2cab-S1	State of Utah	4,525	220NVJO	-	-	-	-	Seepage in channel of Cottonwood Wash where it cuts into the sandstone.
6aca-S1	Temple Spring	4,800	221CRML	-	-	-	-	Seepage area in bottom of wash; flow accumulated be- hind low dam. Dense phreatophytes in seepage area.
(D-25-14)28ada-S1	Dugout Spring	4,780	221CRML	6-6-79	Dry	-	-	Baker called this site Dug- out Troughs. Poor quality water piped to troughs. In 1979 site marked only by patch of salt cedar in creek bed and broken pipe.
(D-26-14)10acd-S1	Upper Dugout Spring	4,965	221CRML	-	-	-	-	Baker reported small amount of poor quality water piped to troughs.
28bac-S1	Sweetwater Spring	5,380	221 ENRD	-	-	-	-	Baker reported small amount of good water in excavated spring area.
(D-26-16)1cda-S1	Keg Spring	4,560	220NVJO	-	-	-	-	One of a group of springs that issue along Navajo- Kayenta contact in Keg Spring Canyon. Water reported good quality.

[Abbreviations: ft, feet; gal/min, gallons per minute; ppm, parts per million; in., inch]

Location: See text for description of well- and spring-numbering system. D, well deepened in year shown as year constructed; S, well plugged back or otherwise tested in year shown as year constructed; W, test well left for use as or converted to water well. (See table 9.)
Name: Shows company that drilled well, followed by the number of the well drilled in individual lease area, followed by

Name: Shows company that officed well, followed by the number of the well drifted in individual fease area, followed by landowner or other lease holder.
 Altitude: Altitude of land surface at well, in feet above National Geodetic Vertical Datum of 1929. Many altitudes are those reported by company drilling well, but all have been checked against topographic maps and have been modified where reported value seems seriously in error.
 Selected geologic data: Formation code--See table 1 for explanation of code. See table 2 for description of lithology.

Selected geologic data: Formation code--See table 1 for explanation of code. See table 2 for description of lithology. Depths all have been adjusted, where possible, to depth below land surface. Some are company's reference datum, but difference generally is less than 15 ft.
Interval tested: Most intervals were isolated with packers and sampled through or in the drill stem; see remarks. Depths have been adjusted, where possible, as noted under selected geologic data.
Other data available: C, chemical analysis in table 14. J, geophysical logs run for this project, in files of U.S. Geological Survey. Note that most companies make geophysical logs of petroleum and mineral test holes; copies of such logs for some of the listed wells are in the files of State or Federal regulatory agencies.
Remarks: Term, MCF is 1,000 cubic feet of gas. Reference to amount of fluid recovered, in feet, means the linear distance above the packer that drill stem was filled with fluid which entered the empty drill stem when the packer was opened to test the formation. Term, "sulfur water" means water with an odor of dissolved hydrogen sulfide. Terms of water quality reported by petroleum-test drillers are not exact. "Fresh water" is any that is not recognizable salty, but not a brine; salt water may range from very saline to briny.

Location	Name	Year con- structed	tude	- Depth drilled (ft)			p <u>gic data</u> Depth to bottom (ft)		<u>al tested</u> Depth to bottom (ft)	Othe data avail able	- Remarks
(D-14-12)19cbb-1	Pacific Transmis- sion Supply No. 1 13-19 Federal	1974	5,808	1,643	210DKOT 217CDRM 217BCKR 221MRSN	880 925 1,391 1,576	925 1,576 1,576 -	- - -	- - -	-	-
22bdd-1	Oil Securities & Uranium No. 1 Marakis	1955	5,798	2,335	210DKOT 217CDRM 217BCKR 221MRSN	1,676 1,706 2,206 2,235	1,706 2,235 2,235 -	-	- - -	-	-
(D-15-10)26aaa-1	Shell No. 1 Federal	1958	5,500	10,854	221 CRTS 221 ENRD 221 CRML 220NVJO 231 KYNT 231 WNGT 310 K I BB 310 CCNN 330 MSS P	2,540 2,700 3,308 3,914 4,260 4,390 6,266 6,450 8,950	2,700 3,308 3,914 4,260 4,390 4,793 6,450 7,108 10,763	- - - - - 10,058	- - - - 10,165	С	Company called the sampled zone the Humbug Formation.
(D-15-11)12cda-1	Carbon Dioxide & Chemical No. 2 Farnham Dome	1930	5,735	3,114	220NVJO	3,100	-	3,095	3,114	С	Water sample bailed from well by using temperature logging equipment at 2,320 ft. Well produced 2,780 MCF per day of carbon dioxide.
12dbc-1	Utah Oil Refining No. 1 Farnham Dom		5,765	3,235	220NVJO	3,090	-	-	-	-	Replugged in 1944 to shut off water in sand at 1,332 to 1,392 ft. Well produced 12 MCF per day of carbon dioxide.
(D-15-12)7ccc-1	Pan American No. 1 Farnham Dome	1963	5,780	8,509	210DKOT 217BCKR 221CRTS 220NVJO 231KYNT 231WNGT 310K1BB 310CCNN 330MSSP	472 1,050 2,005 3,008 3,280 3,580 4,896 5,012 7,042	- 2,164 3,280 3,580 3,775 5,012 5,282 8,154	7,433	- - - - 7,986	С	- Recovered very cloudy water with dark brown organic
					340 DVNN 370 CMBR 400 PCMB	8,154 8,254 8,492	8,284 8,492 -	-	-		filtrate.

Location	Name	Year con- structed	tude	Depth drilled (ft)	Aquifer code		gic data Depth to bottom (ft)	Depth	l tested Depth to bottom (ft)	data	Remarks
(D-15-12)8ccd-1	Equity No. 1	1959	5,687	9,174	210DKOT	400	410	-	-	с	Drilled to 1,141
	Federal				217CDRM 217BCKR	410 970	1,002 1,002	-	-		ft by Shell Oil Co. Completed as
					221CRTS	1,873	2,030	-	-		a carbon-dioxide
					221 ENRD	2,030	2,465		-		well.
•					221CRML 220NVJO		2,787 3,118	-	-		
					231 KYNT	3,118	3,230	-	-		
					231WNGT	3,230	3,617	-	-		
					230MNKP 237SNBD		4,877 -	4,495	4,501		Produced 2,750 MC per day of carbon
					310KIBB	4.877	5,072	-	-		dioxide.
					331 HMBG	7,546	7,970	-	-		
					330RDLL 341ELBR		9,130	8,323	9,174 -		Recovered 6,750 f slightly gassy, slightly muddy salt water with a trace of oil.
17ddd-1	Equity No. 2	1962	5,598	4,572	217BCKR	905	950	-	-	-	-
	Federal				221 ENRD 220NVJO	1,960 2,715	-	-	-		
					231WNGT	2,715	3,525	-	-		
18acd-1	Equity No. 3	1953	5 7/5	5,241	2100207	1.02					
TOACU-1	Weber	1900	5,745	5,241	210DKOT 221BRSB	403 971	1,325	-	-	-	-
					221CRTS	1,816	2,003	-	-		
					221ENRD 221CRML	2,003 2,467	2,467 2,793	-	-		
					220NVJO	2,793	3,095	2,817	2,903		Zone produced 18,000 MCF per day of carbon dioxide Some "sulfur" water.
					231 KYNT	3,095	3,155	-	-		water.
					231WNGT 310KIBB	3,155 4,749	3,592 4,890	4,775	4,875		Recovered 2,048 MCF per day of carbon dioxide; 90 ft of "sulfur"
					310CCNN	4,890	-	4,935	5,112		water. Recovered 225 ft of carbon-dioxide- cut mud.
								5,091	5,241		Recovered 3,052 ft of water.
33aca-1	Equity No. 1 Weber	1952	5,440	9,360	210DKOT	430	471	-	-	-	-
	weber				217BCKR 221CRTS	798 1,651	829 1,815	-	-		
					221ENRD	1,815	2,181	· -	-		
					221CRML 220NVJO	2,181 2,487	2,487 2,853	-	-		
					231 KYNT	2,853	2,912	-	-		
					231WNGT 230MNKP	2,912 3,611	3,354 4,626	4,119	4,617		Recovered only carbon dioxide.
					310KIBB 310CCNN		4,678 -	4,652	4,781		Recovered 1,547 fr of mud and 1,773 ft of gas-cut water.
		,			330MSSP 330MDSN	6,453 8,674	-	8,741	8,779		Recovered 450 ft of mud and 440 ft
					370CMBR		-	9,272	9,360		of water. Recovered only muc
D-15-12)36caa-1	McAdams No. 3 State	1962	5,454	4,110	221CRTS 220NVJO	1,753	1,876	-	-		Drilled by Cities Service Oil Co.

83

	c		. 11 . 1			1 1 0 11 1
Table 11Records o	r selected	petroleum-test	werts and	other	test	holescontinued

Location	Name	Year con- structed	tude	Depth drilled (ft)	<u>Selecto</u> Aquifer code		gic data Depth to bottom (ft)		1 tested Depth to bottom (ft)	Other data avail- able	Remarks
(D-15-13)17dhc-1	Mountain Fuel Supply No. 1 Federal	1971	5,850	9,158	210DKOT 217BCKR 221MRSN 221CRTS 221CRTS 221CRTL 220NVJO 231KYNT 231CHTL 231CHTL 231CHTL 237CNBD 310KIBB 310CCNN 324HRMS 320MNGC 330DSRT	1,726 2,015 2,050 2,546 2,808 3,270 3,270 3,270 3,266 3,950 4,550 4,550 4,550 4,550 4,5640 6,956 7,390 7,820	1,746 2,050 2,546 2,808 2,930 3,270 3,565 3,866 3,950 4,350 4,350 4,573 - 5,504 5,200 5,640 - - - 8,480	7,990			- Recovered 300 ft slightly gas-and
					330MDSN 340DVNN 370CMBR	8,480 8,880 8,950	8,880 8,950 9,090	-	- - -		water-cut mud and 6,050 ft of slightly gas-cut salt water.
(D-16-10)28cdb-1	Chevron No. 1 Willson	1967	5,375	10,000	400PCMB 220NVJO 231WNGT 310WTRM 330MSSP	9,090 3,962 6,534 9,350	4,900 7,200	- - -	-	-	-
D-16-11)11cba-1	Pan American No. 1 Federal	1965	5,375	9,425	221 CRTS 221 ENRD 221 CRML 220NVJO 231 KYNT 231 WNGT 310 KIBS 310 CCNN 331 HMBG 330 DSRT	1,465 1,595 2,202 2,484 2,848 2,987 4,725 4,858 7,612 8,016	1,595 2,202 2,484 2,848 2,987 3,377 4,858 5,530 8,5016 8,760	- - - - - - - - - - - - - - - - - - -	- - - - - 8,275	-	- 2,500 MCF per day
								8,276	8,369		nonflammable gas b flow. 1,500 to 2,000 MCF per day nonflamma- ble gas by flow.
								8,369 8,520	8,520 8,620	1	1,720 MCF per day nonflammable, by flow. Recovered 44 MCF nonflammable gas and 2,000 ft of
					330RDLL 370CMBR	8,760 9,382	-	-	-	,	water.
D-16-12)1aab-1	Cities Service No. 4 Federal	1962	5,380	4,020	221CRTS 220NVJO 231WNGT 230MNKP	1,530 2,280 2,770 3,420	1,620	- - 3,890	- - 3,903	-	- Produced oil.
166d-1	McAdams No. 1 Federal	1953	5,425	7,930	221 CRTS 221 ENRD 221 CRML 220NVJO 231 WNGT 237 SNBD	1,512 1,650 1,983 2,270 2,750 4,017	1,650 1,983 2,270 2,693 3,169 -	4,014	4,083	1 1 1 1 1 1 1	Drilled by Cities Service Oil Co. Re-entered in 1961. Recovered 80 ft of "sulfur gas"-cut mud, 90 ft mud-cut vater and 450 ft
					310CCNN 331HMBG 330MDSN	7,350	5,177 7,733 -	7,831	- 7,930	[water. Recovered 270 ft carbon dioxide and water-cut mud and 1,910 ft of carbon dioxide-cut salt water.

Location	Name	Year con- structed	tude	- Dépth drilled (ft)			gic data Depth to bottom (ft)	Depth	l tested Depth to bottom (ft)	data	Remarks
(D-16-12)1caa-1	McAdams No. 5 Federal	1962	5,504	4,110	221CRTS 221ENRD 221CRML 220NVJO 231WNGT	1,645 2,070 2,280	1,645 2,070 2,280 3,205			_	Drilled by Cities Service Oil Co. Produced oil from Moenkopi Formation.
2aab-1	McAdams No. 2 State	1961	5,432	4,020	220NVJO 231WNGT		3,146	-	- -	-	Do.
2bab-1	Skyline No. 2-21 State	1972	5,515	4,145	221ENRD 220NVJO		-	2,330	2,800	-	Drilled with air. Produced 175 gal/ min brackish water.
					231KYNT 231WNGT	2,800	2,800	2,800	3,180		Produced 70 gal/ min brackish water.
4bad-1	Equity No. 2 Weber	1953	5,430	4,678	221 CRTS 221 ENRD 221 CRML 220NVJO 231 WNGT 230MNKP	1,668 2,029 2,339	1,668 2,029 2,339 3,228 4,611	- - - Multi	- - - - ple tests	С	Tested nine zones between 3,975 and 4,452 ft, which produced a little water from the Moenkopi Formation.
4cda-1	Equity No. 4 Weber	1953	5,443	4,671	221 CRTS 221 ENRD 221 CRML 220NVJO 231 WNGT 310 CCNN	1,902 2,180 2,673	1,532 1,902 2,180 3,121			-	-
	McAdams No. 1 Federal	1962	5,341	4,322	221ENRD 220NVJO 231WNGT 230MNKP	2,522	1,712 2,458 2,912 4,170	- - 3,655		-	Drilled by Cities Service Oil Co. Produced 3 barrels
					310CCNN			5,055	5,707		(126 gallons) of water per day with oil.
16dad-1	Equity No. 1 State	1961	5,557	3,820	217BCKR 221SLWS 221ENRD 220NVJO 231WNGT 237SNBD	170 520 1,170 1,830 2,310 3,618	196 653 1,530 2,260 2,708	- - - 3,625	- - - 3,820		- Recovered 1,300 ft slightly salty "sulfur" water.
23cbb-1	Globe Minerals No. 1 Garman and Fees	1969	5,700	3,616	221ENRD 220NVJO 231WNGT	999 1,722 2,140	1,428 2,030 2,604	1,782	2,604		Reported yield (by air lift?) was 170 gal/min.
27abb-1	Carter No. 1 Federal	1957	5,815	7,132	221CRTS 221ENRD 220NVJO 231WNGT 230MNKP 237SNBD	980 1,135 1,755 2,222 2,960 2,960	1,135 1,440 2,120 2,634 3,846 -	- - 3,501	- - 3,573		- Produced 1,604 MCF per day of nonflam- able gas with hydrogen sulfide
					310CCNN 324HRMS		4,435	- 4,442	4,458		odor, Recovered 30 ft of mud and 360 ft of
					331 HMBG 330DSRT 330MDSN	6,410	6,410 6,585 -	- 6,998	- 7,132		water. Recovered 140 ft of mud and 840 ft of salt water.
D-16-13)8ddc-1W	True No. 44-8 Hamill	1974	5,328	4,390	217BCKR 221SLWS 221CRTS 221ENRD 220NVJO 231WNGT 310KIBB	585 1,000 1,451 1,625 2,220 2,650 4,300	710 1,270 1,625 1,985 2,560 3,070				Plugged back and left for use as water well.

85

Location	Name	Year con- structed		- Depth drilled (ft)	Selecto Aquifer code		gic data Depth to bottom (ft)		l tested Depth to bottom (ft)	Othe data avail able	Remarks
(D-16-13)21ccd-1	Reserve No. 1 Socony Mobil	1963	5,287	6,506	221 CRTS 221 ENRD 220NVJO 231 WNGT	1,016 1,163 1,777 2,205	1,163 1,485 2,099 2,644	- 1,784 -	- - 2,400	С	Sampled while drilling with air in Navajo-Wingate section. At 2,400 ft yield reported as 50 gal/min of water containing 10,000 ppm of sodium chloride.
					230MNKP 237SNBD	2,912 3,516	3,896 3,574	3,494 -	3,550		Recovered 60 ft mud and 403 ft of muddy "sulfur" water.
					310CCNN 330MSSP	4,045 6,150	4,535	-	-		
(D-17-10)1dbb-1	Pure Oil No. 1 State	1961	5,569	10,915	221 CRTS 221 ENRD 220NVJO 231 WNGT 310CCNN 330MSSP 3740PHR 374TNTC 400PCMB	10,630	1,800 2,555 3,190 3,730 6,075 10,630		-	-	-
(D-17-12)1bba~1	Read No. 1 Quintana	1963	5,632	3,312	221 ENRD 220NVJO 231 WNGT	846 1,451 1,945	1,236 1,841 2,339	-	- - -	-	-
(D-17-13)30ddd-1W	True No. 44-30 Hamill	1974	5,147	2,704	221CRML 220NVJO 231WNGT	0 353 805	353 722 1,280	-	- - -	-	Plugged back and left for use as water well. Drilled with mud, 391-1,728 ft because of water
					230MNKP	1,568	2,663	-	2,600		in Navajo and (?) Wingate. Brackish water with hydrogen sulfide. Reverse fault be- tween 1,568 and 1,690 ft.
32bdc-1	U.S. Dept. of Energy No. SR-25	1979	5,157	1,625	221 CRML 220NVJO 231 WNGT	0 315 890	315 745 1,245	- 312 312	- 400 700		Test hole for coring Chinle For- mation. Drilled with air and deter- gent. Navajo drilled hard and slowly. Water level estimated at 105 ft below land surface, from geophysical logs.
(D-17-14)29acd-1	Placid No. 1 Tidewater- Southern Union	1965	4,751	8,517	200MNCS 210DKOT 217CDRM 217BCKR 221MRSN 221SMVL 221CRTS 221ENRD 221CRML	0 518 653 970 998 1,470 1,690 1,879 2,190	518 653 970 998 1,470 1,690 1,879 2,190 2,610			-	See table 4 for permeability data.
					220NVJO	2,610	2,870	2,735	2,737		Recovered fresh water with odor of hydrogen sulfide.
					0.0.1 (23751m	0 070	2 100	2,743	2,745		Recovered fresh water.
					231 KVNT 231 CHNL 230 CHNL 230 CHNL 230 MNKP 237 SNBD 310 KLBB 310 WTRM 310 OGRK 319 ELPC 324 HRMS 324 PRDX 330 MSSP	2,870 3,100 3,430 3,935 4,400 4,812 4,933 5,220 5,393 6,175 6,358 8,160	3,100 3,430 3,935 4,812 4,527 4,933 5,220 5,393 6,175 - 7,265 -	- - - - 8,340	- - - - - 8,507		Recovered 360 ft of water-cut mud, 540 ft muddy water, and 5,321 ft salt water:

.

Table 11.--Records of selected petroleum-test wells and other test holes--Continued

Location	Name	Year con- structed	tude	- Depth drilled (ft)		ed geolo Depth to top (ft)			l tested Depth to bottom (ft)	Other data avail- able	Remarks
D-18-9)31dda-1	Kralik No. 1 State	1948	5,840	3,600	220NVJO	3,540	-	-	-	-	-
D-18-10)18dab-1	Hamon No. 1 AMOCO	1973	5,767	4,530	221CRTS 221ENRD 22ONVJO 310KIBB	2,458	1,424 1,955 -	 	- - -	-	-
D-18-11)27aca-1	Austral No. 1-27 Amerada	1966	7,082	6,861	217CDRM	0	-	-	-	-	Driller reported 6-8 barrels (252- 335 gallons) of water per hour, with 900 ppm of sodium chloride.
					220NVJ0	1,682	-	1,682	1,900		Water zone indica ted by geophysica logs.
					231WNGT	-		2,300	2,400		Do.
					310CCNN 330MSSP	3,940 5,206	4,416	5,590	- 5,610		Driller reported
											water.
					371 LYNC	6,402	-	6,550	6,710		Do.
D-18-12)12ada-1	El Paso Natural Gas No. 1 Harman	1953	5,291	6,806	221 CRML	0 100	100	-	-	-	-
	Gas No. I Harman				220NVJO 231WNGT	524	400 970	-	-		
					310CCNN	2,330	-	-	-		
					320PSLV 330MSSP	2,859 4,566	4,566 -	5,050	5,150		Recovered 3,970 f of salt water.
					374TNTC 400PCMB	6,580 6,720	6,720 -	-	-		
25aab-1	Modern Menerals	1969	5,681	2,339	221CRML	0	50	-	-	-	· -
	No. 1 Skyline				220NVJO 231WNGT	_50	444 1,012	-	-		
					310KIBB	2,267	-	-	-		
D-18-14)8ccd-1	Lemm-Maiatico	1960	4 830	7,920	217BCKR	240	275	_	-	_	_
	No. 1 Federal	1,000	4,050	1,520	221SLWS	521	781	-	-	-	-
					221CRTS	1,150	1,307	-	-		
					221 ENRD 220NVJO	1,307 1,785	1,486 1,960	-	-		
					231WNGT	2,091	2,732	-	-		
					310CCNN 324HRMS	4,217 5,113	4,587 7,186	-	-		
					324PRDX	5,447	-	5,950	6,020		Recovered 300 ft of mud and 1,500 ft of slightly mud-cut
					320MOLS	7,168	7,270	-	-		water.
					320MNGC 330MSSP	7,270 7,472	7,472	7,640	7,920		Duranua 910 65
					5504331	7,472	-	7,040	7,920		Recovered 810 ft of mud, 450 ft of slightly water-cut mud, and 5,790 ft of brackish water.
30ccb-1	Humble Oil No. 2	1962	5,090	7,083	221CRTS	445	635	-	-	С	-
	Federal				221ENRD 220NVJO	635 1,294	995	-	-		
					231WNGT	-	2,246	-	-		
					310KIBB	3,606	3,710	3,605	3,673		Recovered 300 ft c mud, 720 ft of slightly mud-cut and heavily gas-cu "sulfur" water, an 1,620 ft of heavil gas-cut "sulfur"
					310CCNN	3,710	4,159	3,717	3,868	ן נ ז ז נ	Water. Recovered 160 ft of mud, 450 ft of slightly salty water, and 270 ft of gas-cut and slightly mud-cut
					330MSSP	6,872	-	6,963	7,083	1	water. Recovered 90 ft of mud and 3,366 ft o salt water.
											Salt Water.
0-18-15)19abd-1	Shamrock No. 1 Federal	1966	4,584	9,896	220NVJ0	4,920	5,300	_	-	-	-

1

Location	Name	Year con- structed	tude	- Depth drilled (ft)	<u>Select</u> Aquifer code		gic data Depth to bottom (ft)		l tested Depth to bottom (ft)		Remarks +
(D-19-9)8bdd-1	Hamon No. 1 Gulf Oil	1975	5,495	6,215	221SLWS 221CRTS 221ENRD 220NVJO 231WNGT 310CCNN 330MSSP	755 1,460 1,620 2,900 3,580 5,115 5,790	1,200 1,620 2,270 3,850		- - - - - -		-
(D-19-10)23dbb-1	Bush No. 1 Phillips	1977	5,685	1,578	221CRML 220NVJO 231WNGT	0 180 735	180 610 1,175	-	-	-	-
(D-19-11)11bda-1	True No. 22-11 Hamill	1975	7,448	2,384	217CDRM 221SLWS 221CRTS 221ENRD 220NVJO 231WNGT	0 400 765 950 1,605 2,130	100 600 950 1,313 2,045	-	-	-	-
(D-19-12)9cca-1	Hancock Utah Devel. No. 1 Federal	1954	6,089	4,930	221CRML 220NVJO 231WNGT 310CCNN	0 16 686 2,376	16 546 1,094 -	- - -	- - -	-	Witness post at site shows that at 1,583 ft hole contains a lost geophysical survey tool containing a neutron source.
					330MSSP	4,158	-	4,251 4,788	4,366 4,839		Recovered 210 ft of slightly water-cut mud. Recovered 630 ft of mud-cut fresh water.
9dbc-1	Modern Minerals No. 1 Skyline- State Re-entry by U.S. Geological	1969	6,070	2,376	221CRML 220NVJO 231KYNT	0 68 556	68 556 713	-	- -	-	Zone found dry in 1980. Zone found slightly damp in 1980.
	Survey	1980		610	231WNGT 231SRMP 310CCNN	713 1,358 2,355	1,114	1,340	1,410		Driller reported about 1.5 gal/min of fresh water.
29caa-1	Reynolds Mining No. 1 Federal	1955	6,167	6,031	221 CRML 220NVJO 231 KYNT 231 CRNL 231 SRMP 230MNKP 230MNKP 230MNKP 310KIBB 310CCNN 320PSLV 330MSSP 3410URY 341 ELBR 3740PHR	0 30 686 1,090 1,362 1,980 2,256 2,369 2,369 2,369 2,369 5,695	30 536 1,090 1,402 2,256 2,369 4,106 4,922 5,052 5,302 5,695			-	-
3066а-1	U.S. Geological Survey test hole No. NSR T-2	1980	6,182	550	221CRML 220NVJO 231KYNT	0 42 503	42 503 -	-	-	Ţ	Dry to 550 ft, but siltstone in bottom seemed damp in last 20-30 ft. Selected samples from Navajo sent for sieve analysis.
(D-19-13)12dcb-1	Utah Oil Refining No. Fitzhugh	. 1924	·	3,375	221 CRTS 221 ENRD 220NVJO 231WNGT 310CCNN	0 190 835 1,475 3,215	190 680 1,215 1,830 -				Discovery well for helium in Woodside anticline. (See Gilluly, 1929.) Zone yielded 6,000 to 9,000 MCF per day of inert gas with 1.31 percent helium.

Location	Name	Year con- structed	tude	- Depth drilled (ft)	Selecto Aquífer code		gic data Depth to bottom (ft)	Depth	l tested Depth to bottom (ft)	Othe data avail able	- Remarks
	Humble Oil No. 1 Federal Re-entry by Holly Resources	1962 1969	5,489	8,431	221CRTS 221ENRD 220NVJO 231WNGT	180 395 1,052 1,664	395 894 1,439 2,022			С	Composite record of petroleum testing operations. Plugged back and left, un-
					310KIBB		3,424	3,341	3,373		perforated, for use as water well. Produced 5,000 MCF per day of nonflam- able gas with spray of salt water that leaked from below bridge plug at
					310CCNN	3,424	3,884	3,671	3,702		3,400 ft. Swabbed about 3 gal/min from three perforated inter- vals. Water was
					324PRDX	5,301	-	5,518	5,608		salty. Recovered 180 ft of mud and 5,120 ft of slightly salty water.
					330MSSP	6,391	7,226	6,736	6,915		Recovered 300 ft of mud and 5,160 ft of slightly mud-cut salt water.
21cbd-1	U.S. Geological	1980	5,190	310	111ALVM	0	8	-	-	C,J	Drilled with air
	Survey test hole NSR T-3				221 CRML	8	120	-	-		and detergent. Small amount of perched water in Carmel at 59 ft; later heard drip- ping to water level
					220NVJO	120	-	120	310		at 95 ft. See table 9 for hydrologic data.
D-19-14)8cbd-1	Skyline No. 1 Federal	1970	5,033	6,528	220NVJO 231WNGT 310WTRM	1,640 3,980	2,560	-	-	-	-
11dc6-1	California-Time No. 1 Federal	1968	5,005	8,795	217BCKR 221SLWS 221CRTS 221ENRD 220NVJO 231WNGT	2,301 2,557 2,994 3,110 3,812 4,180	2,370 2,825 3,110 3,501 3,995 4,770	- - - 4,440	- - - 4,575	-	- Recovered 1,340 ft
					310WTRM 324PRDX	6,080 8,121	-				of mud-cut water.
	Carter No. 1-A Federal	1957	4,642	8,737	210DKOT 217BCKR 221SLWS 221ENRD 220NVJO 231WNGT 310CCNN 330MSSP	953 1,170 1,388 2,187 2,652 4,865 8,587	989 1,207 1,675 2,422 3,612 5,263	-		-	-
	Clinton No. 1 Walsh	1975	6,060	10,798	210DKOT 221ENRD 220NVJO 231WNGT 310CCNN	4,364 5,715 6,218 6,920 8,550	7,150		- - -	-	-
	True No. 11-35 Federal	1975	5,713	4,457	221CRML 220NVJO 231WNGT 310KIBB	1,530 2,150 3,130 4,350	2,150 2,790 3,250	-	- - -	-	-
	U.S. Dept. of Energy No. SR-204	1979	5,586	1,902	221CRML 220NVJO 231WNGT	0 472 1,220	472 1,012 1,550	-	-		Test hole for cor- ing Chinle Forma- tion. Water level estimated at 132 ft below land surface, from geophysical logs.
	U.S. Dept. of Energy No. SR-203	1979	5,657	1,913	220NVJO 231WNGT 231CCRK 231MBCK	520 1,264 1,601 1,737	1,044 1,601 1,737 -	- - -	-		Water level esti- mated at 152 ft below land surface, from geophysical logs.
	U.S. Dept. of Energy No. SR-202	1979	5,636	1,970	220NVJO 231WNGT	510 1,298	1,122 1,628	-	-	-	-

89

							gic data		l tested	Othe	
Location	Name	Year con- structed	tude	- Depth drilled (ft)		Depth to top (ft)	Depth to bottom (ft)	Depth to top (ft)	Depth to hottom (ft)		-
(D-20-10)6bdd-1	U.S. Geological	1980	5,260	475	111ALVM		30	-	-	C,J	Drilled with river
	Survey test hole NSR T-1				221 CRML 220NVJO	30 152	152 -	- 146	- 475		water. Flowed through packer and drill stem. Shut in for 1 hour 20 minutes. See table 9 for hydrologic data.
7deb-1	True Oil No. 34-7 Federal	1975	5,558	2,440	220NVJO 231WNGT 310CCNN	182 820 2,432	725 1,255 -	-	- -	-	-
(D-20-14)33bba-1	Toledo Mining No. 1 Skyline	1969	4,610	7,558						-	Detailed geologist log and test data in files of U.S. Geological Survey. Drilled with air to 2,269 ft where drilling mud had to be used to control water.
					221MRSN	0	430	230	240		Airlifting a "1-in. stream".
					221CRTS 221ENRD	695 865	865 1,180	- 865	880		Airlifting a "2-in. stream" of fresh water.
				220NVJO	1 435	1,950	960	990		Do.	
					231WNGT	1,005	2,450	2,130	2,260		Do. Estimated dis- charge was more than 2,000 barrels per day (58 gal/ min). Water report- edly analyzed by Green River Town.
					310CCNN 330MSSP	3,700 7,330	4,135 -	7,388	-		Drill pipe dropped about 2 ft and mud disappeared down hole.
								7,530	7,558		Recovered 180 ft of mud, 1,000 ft water-cut mud, and 2,230 ft of water containing 81,000 ppm of chloride.
(D-21-9)2666-1	U.S. Dept. of Energy No. SR-24	1979	5,770	1,772	221 CRML	0	342	-	-	С	Water level esti- mated at 200 ft below land surface, from geophysical logs.
					220NVJO	342	940	342	520		Airlifting produced flow estimated at 100 gal/min.
								342	640 860		Water production increased.
					231WNGT	1,115	1,452	342 342	860 1,450		Do. Airlifting produced flow estimated at 200 gal/min.
(D-21-13)1dba-1	Wainoco No. 33-1 Skyline	1975	4,494	4,060	310wtrm	620	1,180	-	-	-	Driller reported zone yielded water.
	,				330MSSP	3,580	-	-	-		Do.
32dad-1	American Metal Climax No. 1 Putnam		5,754	4,640	310K1BB 310CCNN 319ELPC 324HRMS 324FRDX 330MSSP 3410URY 341ELBR 3741EWNN 374BWNN 374HRMN 374OPHR	0 63 740 1,236 1,754 2,170 2,810 2,930 3,179 3,876 - 4,215	63 740 1,236 2,170 1,868 2,810 2,930 3,179 3,87 - - 4,215 4,414			-	- Evaporite section.

..

Location	Name	Year con- structed	tude	- Depth drilled (ft)	Select Aquifer code	ed geolo Depth to top (ft)	<u>gic data</u> Depth to bottom (ft)	Depth	l tested Depth to bottom (ft)	Othe data avail able	Remarks
(D-21-14)5aad-1	Dennison Mines No. 5-1 Skyline	1974	4,563	6,000	310WTRM 324HRMS 330MSSP	-	2,990 5,700	4,295	4,335	-	Recovered 1,800 ft of brackish water.
(D-21-15)24cca-1	Superior No. 14-24 Bamberger Estate	1961	4,215	10,606	221 ENRD 220NVJO 231WNGT 310CCNN	1,538 2,740	1,922 2,340 3,065 4,841	-		С	
					330MSSP	9,533	10,205	9,555	9,652		Recovered 173 ft of mud, 81 ft of water-cut mud, and 118 ft of muddy water.
								9,705	9,753		Recovered 600 ft of water-cut mud, and 5,700 ft of salt water.
(D-21-16)33bac-1	Skyline No. 1 Federal	1966	4,267	9,261	221 ENRD 220NVJO	- 1,225	1,068	-	-	-	-
					231WNGT 310CCNN	-	2,180 3,642	-	-		
					310CTLR		3,856	-	-		
34dda-1	Ruby et al, No. 1 State	1936	4,056	2,627	221 ENRD 220NVJO 231WNGT 310CCNN	695 2,622	487 1,065 1,614 -	-	-	С	Known as Crystal Geyser.
35dbc-1	Marland No. 1 Federal	1925	4,410	3,820	220NVJO 231WNGT 310CCNN 310CTLR	1,130 3,055 3,400	1,500 2,055 3,400 3,570			-	-
(D-21-17)26adc-1	Shell No. 1-26 Federal	1969	4,470	11,895	220NVJO 310WTRM 324HRMS	3,025 5,028 6,260	5,463	- 6,465	- 6,615	С	- Recovered 2,100 ft of salt water.
					324PRDX	7,916	-	-	-		or bart water.
(D-22-8)10ccb-1	True No. 14-10 Federal	1975	6,057	3,690	221ENRD 220NVJO 231WNGT 310KIBB 310CCNN	0 1,185 3,627 3,657	685 1,885 2,425 3,657 -		- - - -	-	-
11ccb-1W	Utah Plateau Uranium No. IX	1961	5,940	2,246	221ENRD 220NVJO	0 735	120 1,300	-	-	С	Plugged back and left for use as a
	Sterge				231KYNT	1,300	1,550	1,416	1,467		water well. Zone finished for
					231WNGT	1,550	1,924	_	_		water supply.
					231CHNL 230MNKP	1,924 2,195	2,195	1,400	2,246		Swabbed water sample. Water level 285 ft below land surface.
(D-22-10)30aca-1	Cities Service	1966	6,550	1,200	230mnkp	-	-			С	Core hole sampled
								-	704 1,080		while drilling. Water level recov- ered to 680 ft after 14 hours.
								-	1,200		Water level recov- ered to 580 ft after 28 hours.
33abc-1	Utah Dept. of Transportation	1963	7,120	475	231 KYNT	0	68	-	-	-	Water test hole for contruction of Interstate Highway 70 See table H
					231WNGT 231CHNL	68 370	370 -	-	-		70. See table 9.
D-22+11)23bdc-1	do.	1963	6,520	290	230MNKP	0	39	-	-	-	Do.
					237SNBD 230MNKP	39 61	61 163	-	-		
					310KIBB 310CCNN	163 268	268 -	-	-		Water in basal Sinbad Limestone Member of the Moenkopi Formation was lost when hole was drilled into Goconino Sandstone.

.

91

Table 11Records c	f selected	petroleum-test	wells	and other	test holesContinued
-------------------	------------	----------------	-------	-----------	---------------------

Location	Name	Year con- structed	tude	Depth drilled (ft)		ed geolog Depth to top (ft)	gic data Depth to bottom (ft)	Depth	l tested Depth to bottom (ft)	data	Remarks
D-22-12)5abd-1	Three States Natural Gas No. 1 Federal	1954	6,230	4,183	310CCNN 320PSLV 330MSSP 340DVNN	0 730 1,310 2,180	1,310 2,180	-	-	-	
					341ELBR 371LYNC	2,310 2,636	-	-			
					3740PHR 374TNTC	3,160 3,863	-	-	-		
					400PCMB	4,083	-	-	-		Granite wash at 4,083 ft; granite at 4,170 ft.
26abc-1	Reynolds Mining No. 1 Three	1955	6,691	5,105	310KIBB 310CCNN	223 305	305	-	-	-	-
	States Natural ' Gas				320PSLV 330MSSP	1,105	2,404 3,118	-	-		
	Gas				400PCMB	5,066	5,110	-	-		
0-22-13)24aad-1	AMAX No. 1 McCulloch	1964	4,730	6,755	221ENRD 220NVJO	480 1,187	933 1,678	:	:	-	Driller reported water in Navajo to be saline.
					231WNGT 310CCNN	1,971 3,389	2,260 4,000	-	-		Je saline.
					3100GRK 330MSSP		4,070	6,615	6,640		Recovered 200 ft o water-cut mud and
								6,645	6,755		447 ft of muddy fresh water. Recovered 636 ft o muddy Fresh water and 3,400 ft of fresh water.
0-22-15)5ddb-1	California-Utah No. 1 Politano	1899	4,400	1,600	200MNCS	0	800	-	-	-	Reportedly ended i Morrison Formation Water level 15 ft below land surface
9abc-1	AMAX No. 9-7	1964	4,427	8,991	217CDRM	354	510	-	-	-	-
	Monsanto Chemical				221 SLWS 221 ENRD	802 1,537	1,146 1,873	-	-		
					220NVJ0 231WNGT	2,063 2,664	2,494 3,067	-	-		
					310CCNN 330RDLL	4,092 8,560	4,848 -	8,637	8,747		Recovered 550 ft o water-cut mud and 7,200 ft of salt water.
26caa-1		1957	4,344	8,490	221 ENRD	1,035	1,302	-	-	-	-
	Transmission No. 1 Federal				220NVJO 231WNGT	1,530	2,015 2,256	-	-		
					310CCNN 3100GRK	3,543	4,110	-	-		D 1 (00 5)
					330MSSP	8,330	-	8,388	8,490		Recovered 630 ft o mud, 380 ft of muddy salt water, and 6,640 ft of salt water.
28bda-1	Equity No. 1 Weber	1952	4,395	8,134	220NVJO 231WNGT	1,565	2,530	-	-	-	-
	WEDEL				310CCNN 330MSSP	3,559	-	- 7,999	- 8,131		Recovered 7,360 ft
					3304331	7,000	-	7,333	0,151		of salt water.
29bbd-1	American Metal Climax No. 29-4B	1961	4,405	6,201	221SLWS 221CRTS	297 718	549 941	-	-	-	-
	Sinclair				221ENRD 220NVJO	941 1,597	1,378	-	Ξ		
					231WNGT 310CCNN	2,251 3,624	2,615	-	-		
					319ELPC 324PRDX	4,343 6,190	<u> </u>	-	Ξ		Evaporite section.
0-22-16)2bba-1	Amerada No. 1	1948	4,080	5,645	221CRTS	755	790	-	-	С	-
	State				221ENRD 220NVJO	790	1,327	-	-		
					230MNKP	2,025	2,608	-	-		Salt water at 2,00 ft. Fault at 2,02
					310CCNN		2,905	-	-		ft.
					310CTLR 324PRDX		-	5,250	-		Well flowed brine from salt section while cleaning out hole. During 31-da test well produced 1.59 million gal-

test well produced 1.59 million gallons of brine, with oil and gas.

Location	Name	Year con- structed	tude	- Depth drilled (ft)			gic data Depth to bottom (ft)	Depth	<u>l tested</u> Depth to bottom (ft)	data	Remarks
(D-22-16)2bbd-1	Amerada No. 2 State	1949	4,067	5,896	220NVJO 231WNGT 231CHNL 230MNKP	-	2,405	-	-	С	- Fault zone 2,640 to 3,180 ft.
					310CCNN 310CTLR 310RICO 324HRMS		3,110 3,195 3,750	3,199	- 3,405		Recovered 2,355 ft of mud, muddy water
					324PRDX	3,750	-	5,792	5,896		and water. Well flowed brine while drilling; produced 30 to 150 gal/min.
14bac-1	Ferguson No. 1 Ruby	1971	4,408	6,765	220NVJO 231WNGT	1,218 1,727	1,610 2,155	-	-	-	-
					310CCNN 324HRMS	3,100	-	4,765	4,847		Recovered 1,087 ft of slightly gas-cut salt water and mud.
25bbc-1	Mountain Fuel Supply No. 1 Skyline	1973	4,120	9,508	221ENRD 220NVJO 231WNGT 310CCNN 310CTLR	505 820 1,412 2,550 2,848	665 1,275 1,600 2,848	- - 2,585	2,605	С	Numerous packer tests made.
					319ELPC 324HRMS 330MSSP	2,848 3,130 3,963 9,157	3,130 9,120	3,442 4,175 9,225	3,480 4,232 9,280		Recovered 8,600 ft of salt water.
(D-22-17)32aaa-1	Pacific Western No. 1 Sharp	1949	4,470	5,046	221ENRD 220NVJO	19 485	360 700	-	-	-	-
	, i				231WNGT 310CCNN	905 2,323	1,385 2,725	-	-		
					310CTLR 310R1C0 324PRDX	2,725 2,843 4,761	2,843 2,928 -	-	- - -		
34bda-1	Superior No. 22-34	1958	4,320	10,293	231WNGT 310CCNN	2,690	1,720	-	-	С	-
	Federal				330MSSP		-	10,053	10,173		Recovered 500 ft of muddy water and 2,670 ft of salt water.
(D-23-7)16bbd-1	U.S. Dept. of Energy No.	1979	5,839	3,700	221BRSB 221SLWS	0 60	60 210	-	-	-	Formation tops estimated from geo-
	SR-12B				221 SMVL 221 CRTS	210 605	605 670	-	-		physical logs.
					221ENRD 221CRML 220NVJO 231WNGT	670 1,430 2,092 2,964	1,430 2,092 2,850 3,340	- - -	- - -		
(D-23-8)32bba-1	U.S. Dept. of Energy No.	1979	5,821	2,014	221CRML 220NVJO	0 420	420 1,234	-	-		Hole left for earth-temperature
	SR-111				231KYNT 231WNGT	1,234	1,338 1,680	-	-		gradient measure- ments by University
					231CCRK 231MBCK 230MNKP	1,680 1,858 2,014	1,858 1,880 -	-	-		of Utah. Water level reported at 344 ft below land surface.
(D-23-9)2ccb-1	Snow No. 1 State	1966	7,030	690	231WNGT 231CHNL	0 112	112 264	-	-		Water test hole near Interstate
					230MNKP 310KIBB 310CCNN	264 468 560	468 560 -	- -	-		Highway 70.
17chd-1	Amerada No. † Federal	1962	7,046	3,665	220NVJO 231WNGT 231CHNL	0 914 1,219	587 1,219 1,483	-	- 1,248		- Produced 4 to 6 gal/min of water.
					310KIBB 310CCNN 319ELPC	2,299 2,322	2,322 3,004	-	-		, .,
D-23-10)24dcc-1	Pan American No. 1 Anderson	1958	6,840	2,000	310KIBB 310CCNN 324HRMS 330MSSP	265 320 1,090 1,600	320 1,090 -			-	-
28dbb-1	Amerada No. 1-354 Federal	1961	6,817	3,144	330MSSP	-	-	-	2,197 2,265	С	Drilled with air.

•

Location	Name	Year con- structed	tude	Depth drilled (ft)			bgic data Depth to bottom (ft)	Depth	l tested Depth to bottom (ft)	data	. Remarks
(D-23-11)22ccc-1W	Standard Oil of California No. 1 Federal	1936	6,710	2,285	310KIBB 330MSSP	0	-	-	:	-	See composite sam- ple log for this and well in sec. 2& in Baker, 1946: Company converted well to water- supply well after massive loss of drilling fluid circulation. See table 9.
2766d-1	Standard Oil of California No. 2 Federal	1937	6,690	4,900	310CCNN 400PCMB	0 4,885	_	-	-	-	See preceding note for well 22ece-1W.
34cab-1	Carter Oil No. 1 Federal	1922	6,605	3,035	-	-	-	-	-	-	See log in Gilluly (1929, p. 129).
(D-23-13)7dcc-1	Kerr-McGee No. 1 Texas Pacific	1957	6,520	2,218	310CCNN 320PSLV	0 765	-	-	-	-	Water at about 900 ft. Fault zone at 1,000 ft.
					330MSSP	1,012	1,680	1,073 1,308	1,103 1,461		No water found. Do.
(D-23-14)9ddb-1	Cabot No. 1-9 Federal	1978	4,224	5,446	310wtrm	2,930	3,550	-	-		Produced water from two zones perfora- ted in Moenkopi Formation.
11aaa-1	Forest No. 1 Federal	1963	4,371	7,250	310CCNN 324PRDX	3,195 5,522	6,584	5,534	5,624	-	Recovered 315 ft of mud and 5,133 ft of black "sulfur" water containing 20,000 ppm of
					330MSSP	6,922	-	-	-		chloride.
19ddb-1	Monsanto No. 1 Federal	1958	4,378	6,060	220NVJO	-	1,018		-	-	-
25bca-1	U.S. Geological Survey test holė NSR T-6A	1980	4,160	700 -	111ALVM 221ENRD 221CRML 220NVJO	0 20 280 460	20 280 460	- - 450	- - 700	C,J	See table 9. Flowed through packer and drill stem.
36bdd-1	U.S. Geological Survey test hole NSR T-6	1980	4,120	215	221ENRD 221CRML	0 40	_40 _	Ξ	Ξ	С	Flowed at 110 ft. Appeared to contain more gas than air used for drilling. Lost circulation of clear water at 205 ft. Lost circula- tion at 50 ft in hole 30 ft south of first hole.
(D-23-15)21bab-1	Shell No. 1 Federal	1959	4,679	7,702	220NVJO	1,190	1,640	-	-	c	Well drilled with salt mud.
					330MSSP	7,452	-	7,500	7,702		Recovered 3,240 ft of salt water.
(D-23-16)3bca-1	Mobil No. 12-3 Skyline	1961	4,038	9,450	220NVJO 330MSSP	8,355	1,280 9,042	8,530	8,715	С	Recovered 1,150 ft of mud-cut salt water and 2,000 ft of salt water:
15dca-1	Mobil No. 34-15 Hancock	1961	4,050	8,440	220NVJO	539	948	-	-	С	Slight flow at 800 ft.
					310WTRM	2,540	2,860	2,530	2,570		Producing 3.3 gal/min.
					319ELPC	3,113	-	-	3,115 3,240		Producing 150 gal/min. Producing 146
					330MSSP	8,028	-	8,210	8,440		gal/min. Recovered 651 ft of mud and 6,929 ft of salt water.

Location	Name	Year con- structed		Depth drilled (ft)		ed geolo Depth to top (ft)	gic data Depth to bottom (ft)		l tested Depth to bottom (ft)	Other data avail able	Remarks
(D-23-17)9cac-1	Reserve No. 1 Colorado Fuel and Iron	1976	4,443	9,069	221 ENRD 220NVJO 231 WNGT 310CCNN 310CTLR 330MSSP	802 1,331 2,705 3,056 8,846	653 1,685 3,056 -	-		-	-
15cba-1	Pan American No. 1 Federal	1961	4,280	9,523	220NVJO 231WNGT 310CCNN 310CTLR	462 890 2,423 2,570	1,408 2,570 2,965	- - -	- - -	С	Producing oil well. Initially produced 9 barrels (378 gal- lons) of water with the oil.
					330MSSP	8,422	8,988	8,678	8,768		Recovered gas, oil, mud, and 610 ft of salt water.
					3410URY 341ELBR 371LYNC	8,988 9,100 9,493	9,100 9,493 -	- - -	-		
17ada-1	Texaco No. 1 Federal	1962	4,340	8,876	220NVJO 231WNGT 310CCNN	592 2,550	1,568	-	-	С	Producing oil well.
					330MSSP	8,458	-	8,732	8,738		Zone initially pro- duced only oil. Water obtained later.
17dbc-1	Texaco No. 2 Federal	1963	4,280	8,764	220NVJO 231WNGT 310CCNN 330MSSP	540 2,473 8,445	1,524	- 8,709	- - 8,716		Producing oil well. Initially produced 15 gal/min of water with the oil. Fault in the Hermosa For- mation at 6,050 ft.
20aaa-1	Rosenblatt No. 1 Morich	1964	4,361	2,402	221CRTS 221ENRD 220NVJO 231WNGT	0 85 540 1,000	85 445 765 1,540	- - -	- - -	-	-
(D-24-9)14dda-1	Amerada No. 1 Elliot	1961	6,670	3,253	110PTOD 230MNKP 310KIBB 310CCNN 3410URY	0 30 200 244 938	30 200 244 938 1,166	-			- Mississippian rocks
					341ELBR 371LYNC 374BWMN 374HRMN 374OPHR 374OPHR 374TNTC	1,166 1,690 2,447 2,816 3,071	1,690 2,447 2,816 3,071				are missing.
(D-24-10)28cad-1	Blackwood & Nichols No. 1-28 General Hydrocarbo	1954 on <i>s</i>	6,732	4,182	230MNKP 310KIBB 310CCNN 324HRMS 330MSSP 341ELBR 371LYNC 374BWMN 374HRMN 3740PHR	0 180 240 1,104 1,557 2,299 2,984 3,529 - 4,070	180 240 - 3,529 4,070			-	-
D-24-13)2ccd-1	Iron Wash No. 1 State	1952	4,760	2,381	220NVJ0	333	860	-		-	-
3dbb-1	Security No. 1 Federal	1970	4,510	3,800	220NVJO	88	500	300	500	-	Water reported.
11adb-1₩	Texas Gas Exploration No. 1 Federal	1974	4,740	4,224	221 ENRD 220NVJO 231 KYNT	0 486 922	218 922 1,232	- -	-		Plugged back and left for use as water well. For- mation tops cor- rected from gamma- ray log.
23ede-1	Columbia Gas No. 1-23 Paradox	1979	4,760	2,275	220NVJO 231WNGT 237SNBD	214 2,066	1,306	- - -	-		- See table 4 for permeability.

•

Table 11 .-- Records of selected petroleum-test wells and other test holes--Continued

Location	Name s	Year con+ fructed	tade	- Depth drilled (ft)	Aquifer	Depth	gic data Depth to bottom (11)	Depth	<u>l tested</u> Depth to bottom (11)	data	Remarks
(D-24-13)32bbd-1W	Union No. 1 State	1967	4,844	2,355	220NVJO 231WNGT 310CCNN	74 877 2,265	705 1,225 -		-	-	Plugged back, unperforated, and left for use as water well. For- mation tops cor- rected from gamma- ray log.
36dba-1	State of Utah	1979?	4,660	1,184	221CRML 220NVJO 231WNGT	0 155 840	155 570 1,165	- - -	-	С	Left for water well by exploration com- pany. Formation tops from gamma-ray log. See table 9.
(D-24-14)10aac-1	Union Texas No. 1 Allied Chemical	1972	4,308	7,284	220NVJO	280	-	-	-	-	-
21dab-1	Carter No. 1 Monsanto Chemical	1958	4,321	7,655	220NVJO	220	-	-	-	-	
(D-24-15)5caa-1	General Petroleum No. 45-5-G Federal	1951	4,260	7,161	220NVJO	360	880	-	-	-	Fresh water report- ed to be in Navajo and Wingate. Water in Coconino report- ed salty.
6caa-1	English No. 1 Moore	1954	4,110	2,370	220NVJO 231WNGT	230 950	740 1,320	-	-	С	Left as a flowing water well.
(D-24-16)10dda-1	U.S. Bureau of Land Management	1976?	4,235	1,245	221CRML 220NVJO 231WNGT	0 8 693	8 495 1,056	-	-	J	Probable uranium core-test hole left for use as a water well. Formation tops from gamma-ray log.
15acd-1	Pledger No. 1 U-TEX	1965	4,272	5,370	220 NV JO	-	440	-	-	-	-
19bda-1	Shell No. 1 Federal	1958	4,758	8,677	220NVJO	488	-	-	-	-	-
22cbd-1	U.S. Bureau of Land Management	1976?	4,450	1,083	221CRML 220NVJO 231WNGT	0 16 464	16 464 1,042	- -	-	J	Probable uranium core-test hole left for use as a water well. Formation tops from gamma-ray log.
(D-25-8)32cad-1	U.S. Dept. of Energy SR-112	1979	6,300	1,974	221 CRML 220NVJO 231 WNGT 231 CCRK 231 MBCK	0 178 1,308 1,574 1,784	178 1,144 1,574 1,784 1,817		- - -	-	Hole left for earth-temperature gradient measure- ments by University of Utah. Water lev- el reported 902 ft below land surface.
(D-25-11)33dbd-1	U.S. Bureau of Land Management	1975	4,900	2,090	221 ENRD 221 CRML 220NVJO	0 40 370	40 370 -	- 380	- 400	С	Drilled by mineral exploration com- pany. Formation tops from partial geophysical log. Sampled during drilling with air.
(D-25-12)1dcc-1	Union No. 019-1 Federal	1967	4,880	2,355	220NVJO	177	797	-	-	-	-
24bbb-1	Pan American No. 1 American Petrofina	1959	5,025	5,929	220NVJO	319	926	-	-	-	-
34ccc-1	Delhi No. 1 Russell	1953	5,157	6,008	220NVJO	694	1,145	-	-	-	-
(D-25-13)11bbb-1	Union No. 1 (998-A) Federal	1967	4,743	5,175	220NVJO	85	563	-	-	-	-
12bac-1	Columbia Gas No. 1-12 Paradox	1979	4,759	4,926	220NVJO 231WNGT 237SNBD	101 1,910	1,188	-			- See table 4 for
					330MSSP	3,706	-	-	-		permeability data. Do.

Location	Name	Year con- structed	tude	- Depth drilled (ft)	Select Aquifer code	ed geolo Depth to top (ft)	gic data Depth to bottom (ft)	Depth	al tested Depth to bottom (ft)	Othe data avail able	Remarks ~
(D-25-14)21bdb-1	Reynolds & Carver No. 1 Federal	1969	4,750	5,144	220nVJO	90	_	-	-	-	-
26dba-1	U.S. Bureau of Land Management	1976?	4,910	1,293	221 ENRD 221 CRML 220NVJO 231 WNGT	0 42 190 847	42 190 736 1,284		-	-	Probable uranium core-test hole left for use as a water well. Formation tops from gamma-ray log.
(D-25-15)15abd-1	Superior No. 31-15 Socony Mobil	1963	4,960	6,470	220NVJO	353	764	-	-	-	-
22aca-1	Conoco No. 2 Lloyd	1958	4,840	6,396	220NVJO	320	840	-	-	-	-
32cad-1	Standard Oil of Californía No.1 State	1956	5,075	5,843	220NVJO	250	810	-	-	-	-
(D-25-16)10bac-1	Shell No. 2 Federal	1959	4,738	7,393	220NVJ0	40	484	-	-	-	-
29cdb-1	Standard Oil of California No.1 Harrington	1957	4,853	6,701	220NVJO	117	610	-	-	-	-
R(D-25-17)20daa-1	No. 43-20	1961	4,611	7,225	231WNGT 310WTRM	- 1,364	410 -	- 1,365	1,515	С	Salty water
	Federal				330MSSP	6,050	6,604	6,361	6,386		reported. Recovered 50 ft of mud, 450 ft of muddy water, and 5,130 ft of salt water.
(D-26-6)11aad-1	Energetics No. 41X-11 Federal	1973	5,861	3,405	220NVJO	425	1,475	-	-		Drilled with air. Water reported in Navajo.
(D-26-7)7cad-1	Colorado Energetics No. 23X-7 Reserve	1973	6,017	3,230	220nvjo	214	-	-	-	-	-
17bca-1W	Mountain Fuel Supply No.1 Senior	1947	6,125	3,485	220NVJO	204	1,270	1,040	1,128		Plugged back and left for use as a fresh water well. Produced about 5 gal/min.
176db-1	Mountain Fuel Supply No. 1-A Senior	1948	6,124	8,518	220NVJO	204	1,250	-	-	-	-
17cba-1	Ramsey No. 1-X Senior	1934	6,122	3,168	220NVJO	215	1,195	-	-		Water level report- ed at about 740 ft below land surface when well was 1,745 ft deep.
17cda-1	Byrd-Frost No. 1-X English	1953	6,118	2,753	220NVJO	220	1,240	-	-	-	-
18aab-1	Coleman No. 1-A English	1953	6,084	2,875	220nvjo	230	1,309	852 860 946	855 870 968		Bailed 1.4 gal/min. Bailed 3.5 gal/min. Volume of water increased.
1966d-1	Shell No. 1 English et al	1960	5,955	6,704	220 NV JO	390	1,384	-	-	-	-
20dab-1	Shumway Uranium Mining No. 1 Parker	1957	5,200	2,620	220NVJO	38	1,050	-	-	-	-
D-26-11)9bbb-1	State of Utah	1980	5,070	855	221CRTS 221ENRD 221CRML 220NVJO	0 30 492 818	30 492 818 -	- 802	- - 855		Water test well Goblin Valley State Reserve. See table 9.
0-26-13)17cdb-1	LaRue No. 1 Kerr-McGee	1962	5,262	5,780	220NV.JO	-	1,150	-	-	-	-

Table 11.--Records of selected petroleum-test wells and other test holes--Continued

Name	Year con- structed	tude	drilled			<u>gic data</u> Depth to bottom (ft)		<u>al tested</u> Depth to bottom (ft)		Remarks
Pan American No. 9 Humble	1962	5,402	6,380	220NVJO	540	1,000	-	-	-	_
Pan American No. 10 Humble	1963	5,652	6,040	220NVJO	740	1,238	-	-	-	-
Odessa No. 1 Shannon	1959	5,155	5,750	220NVJO	490	-	-	-	-	-
Humble No. 7 Federal	1961	5,330	6,007	220NVJO	557	-	-	-	-	-
Hunt No. 1 Federal	1972	5,210	5,000	220NVJO	-	630	-	-	-	. –
	Pan American No. 9 Humble Pan American No. 10 Humble Odessa No. 1 Shannon Humble No. 7 Federal Hunt No. 1	Name con- structed Pan American No. 9 Humble 1962 Pan American No. 10 Humble 1963 Odessa No. 1 1959 Shannon 1959 Humble No. 7 1961 Federal 1972	Namecon- structedtude (ft)Pan American No. 9 Humble19625,402Pan American No. 10 Humble19635,652Odessa No. 1 Shannon19595,155Humble No. 7 Federal19615,330Hunt No. 119725,210	Name con- structed tude drilled (ft) Pan American No. 9 Humble 1962 5,402 6,380 Pan American No. 10 Humble 1963 5,652 6,040 Odessa No. 1 1959 5,155 5,750 Shannon 1961 5,330 6,007 Humble No. 7 1961 5,210 5,000	Name con- structed tude drilled (ft) code Pan American No. 9 Humble 1962 5,402 6,380 220NVJO Pan American No. 10 Humble 1963 5,652 6,040 220NVJO Odessa No. 1 1959 5,155 5,750 220NVJO Humble No. 7 1961 5,330 6,007 220NVJO Humble No. 1 1972 5,210 5,000 220NVJO	Name con- structed tude drilled (ft) code to top (ft) Pan American No. 9 Humble 1962 5,402 6,380 220NVJ0 540 Pan American No. 10 Humble 1963 5,652 6,040 220NVJ0 740 Odessa No. 1 1959 5,155 5,750 220NVJ0 490 Humble No. 7 1961 5,330 6,007 220NVJ0 557 Federal 1972 5,210 5,000 220NVJ0 -	Name con- structed tude drilled (ft) code (ft) to top (ft) bottom (ft) Pan American No. 9 Humble 1962 5,402 6,380 220NVJ0 540 1,000 Pan American No. 10 Humble 1963 5,652 6,040 220NVJ0 740 1,238 Odessa No. 1 1959 5,155 5,750 220NVJ0 490 - Humble No. 7 1961 5,330 6,007 220NVJ0 557 - Hunt No. 1 1972 5,210 5,000 220NVJ0 - 630	Name con- structed tude drilled (ft) code (ft) to top (ft) bottom (ft) to top (ft) Pan American No. 9 1962 5,402 6,380 220NVJO 540 1,000 - Pan American No. 10 1963 5,652 6,040 220NVJO 740 1,238 - Odessa No. 1 1959 5,155 5,750 220NVJO 490 - - Humble No. 7 1961 5,330 6,007 220NVJO 557 - - Hunt No. 1 1972 5,210 5,000 220NVJO - 630 -	Name con- structed tude drilled (ft) code (ft) to top (ft) bottom (ft) to top (ft) bottom (ft) Pan American No. 9 1962 5,402 6,380 220NVJO 540 1,000 - - Pan American No. 10 1963 5,652 6,040 220NVJO 740 1,238 - - Odessa No. 1 1959 5,155 5,750 220NVJO 490 - - Humble No. 7 1961 5,330 6,007 220NVJO 557 - - Hunt No. 1 1972 5,210 5,000 220NVJO - 630 -	Name con- structed tude drilled (ft) code (ft) to top (ft) bottom (ft) to top (ft) bottom (ft) avail- able Pan American No. 9 1962 5,402 6,380 220NVJ0 540 1,000 - - - Pan American No. 10 1963 5,652 6,040 220NVJ0 740 1,238 - - - Odessa No. 1 1959 5,155 5,750 220NVJ0 490 - - - Humble No. 7 1961 5,330 6,007 220NVJ0 557 - - - Hunt No. 1 1972 5,210 5,000 220NVJ0 - 630 - -

Table 12 .-- Selected lithologic logs of wells and test holes

[Abbreviations: ft³/d, cubic feet per day; ^OC, degrees Celsius; ft, feet; gal/hr, gallons per hour; gal/min, gallons per minute; in., inches; umhos, micromhos per second at 25^OC; lbs/in², pounds per square inch, lbs/in²]

Location: See taxt for description of well- and spring-numbering system. Altitudes: Given for land surface at well or test hole, in feet above National Geodetic Vertical Datum of 1929. Thickness: Given in feet. Depth: Given to base of unit, in feet below land surface. For sample logs by J. W. Hood, U.S. Geological Survey: Samples were collected at 10-foot intervals. Descriptions are not adjusted for sample-return lag. Tops of formations, as given in table 11, were picked mainly from geophysical logs and do not always match outling descriptions. (See discussion in text.) Remarks regarding drilling conditions, water levels, and chemical quality were taken from records of observations while drilling of the holes.

D-15-11)12cda-1. Log by	Thickness Depth		Depth Material		Depth	Material	Thickness	Depth
			(D-15-11)12cda-1Continued			(D-15-11)12cda-1Continued		
Carbon Dioxide and Chemical			Limestone, thin, hard;			Sand, yellow	10	2,305
Co. Altitude 5,735.			bailing water from hole	3	1,473	Rock, red	20	2,325
hale, gray	12	12	Rock, hard, red	9	1,482	Sand, red	60	2,385
imestone, thin layers, and			Shale, sandy, brown	15	1,497	Shale, dark red	80	2,465
hard rock	88	100	Rock, sandy, red; show of			Shale, red, and thin, hard	20	2 4 95
imestone, hard	12	112	water from 1,500-1,505			layers	20	2,485
and, hard, red	28	140	ft	8	1,505	Shale, dark brown, and thin,	20	2 505
hale, yellow	5	145	Shale, sandy, brown, thin			hard layers Shale, red, and thin, hard	20	2,505
ock, sandy, red	10	155	hard layers; water at 70	10	1,515	layers	20	2,525
ock, red, with gray shale	40	195 200	ft above former level Rock, hard, red	6	1,521	Shale, brown, and thin,		2,525
hale, gray	5 10	210	Shale, brown, with thin	•	1, 521	hard layers	20	2,545
hale, gray	15	225	gypsum layers	10	1,531	Shale, red, and thin, hard		
ock, red	45	270	Sand, hard	9	1,540	layers	20	2,565
hale, hard, gray	15	285	Shale, sandy, red, thin,			Shale, sandy, dark, and		
ock, red	5	290	hard layers	10	1,550	thin, hard layers	20	2,585
hale, gray	20	310	Rock, red	20	1,570	Shale, dark red, and thin,		
imestone, white	80	3 90	Limestone	10	1,580	hard layers	20	2,605
imestone, hard, white	30	420	Limestone, sandy	10	1,590	Shale, sandy, dark brown	15	2,620
imestone, white	30	450	Shale, sandy, hard	12	1,602	Shale, dark red, and thin,		
hale, sandy, gray	80	530	Limestone	24	1,626	hard layers	20	2,640
hale, gray, and thin,			Limestone, brown	12	1,638	Shale, sandy, dark	20	2,660
hard limestone	90	620	Limestone, red	12	1,650	Rock, red, and thin, hard		
hale, brown, and thin,			Limestone, sandy, hard	12	1,662	layers	25	2,685
hard layers	30	650	Limestone, hard	12	1,674	Rock, soft, red	10	2,695
hale, sandy, gray, and			Limestone, sandy, hard	12	1,686	Shale, gray	75	2,770
thin, hard layers	50	700	Sandstone and limestone	12	1,698	Limestone, hard, gray	20	2,790
imestone, hard	10	710	Limestone, sandy, hard	12	1,710	Shale, gray, and thin, hard	•0	2 000
hale, gray, and thin,			Limestone	10	1,720	gypsum layers	10	2,800
hard layers	40	750	Limestone, sandy, hard, red .	10	1,730	Shale, gray, and thin, hard	25	2,825
and	10	760	Limestone, sandy, hard	10	1,740	layers	20	2,025
hale, gray	10	770	Shale, red, thin, hard	10	1 750	Limestone, blue	20	2,049
ock, redand thin,	10	7 80	layers Limestone, hard, red	10	1,750 1,760	Shale, gray, and thin, hard gypsum layers	15	2,860
	25	805	Limestone, red, thin, hard	10	1,700	Shale, gray	25	2,885
hard layers	10	815	layers	10	1,770	Shale, blue	10	2,895
and, hard, sharp	20	835	Limestone, hard, red	5	1,775	Shale, gray	25	2,920
hale, brown	35	870	Limestone, red, thin, hard			Shale, gray and gypsum	15	2,935
ock. red	15	885	layers	10	1,785	Shale, gray and brown	10	2,945
hale, brown	15	900	Limestone, red	10	1,795	Limestone, hard, thin,		-,,,,
ock, hard, red	30	930	Limestone, hard, red	2	1,797	gray	30	2,975
hale, sandy, hard, red	30	960	Rock, thin, hard; light	•		Limestone, hard	25	3,000
ock, red; caving	25	985	show of heavy oil	3	1,800	Limestone, gray	20	3,020
hale, brown	30	1,015	Shale, sandy, red	5	1,805	Limestone, sandy, hard,	20	5,020
ock, red	30	1,045	Limestone, red	10	1,815	dark	20	3,040
hale, brown	30	1,075	Shale, brown, thin, hard		.,	Limestone, hard	27	3,067
hale, gray	20	1,095	layers; caving	10	1,825	Limestone, hard, gray	15	3,082
imestone, hard, gray	15	1,110	Shale and thin, hard			Sand, red, sharp	4	3,086
and, hard; show of water	10	1,120	layers; caving	10	1,835	Sand, very fine, hard, dark		
imestone, hard, blue	35	1,155	Shale, brown, thin, hard			gray; first show of carbon		
imestone with thin layers			layers; caving	10	1,845	dioxide at 3,093 ft	10	3,096
of sand; hole filled with			Shale, brown; caving	17	1,862	Sand, hard, gray, and		
200 ft of water from 1,165-			Shale, brown, and thin,			limestone; slight increase	_	.
1,170 ft	15	1,170	hard layers; caving	28	1,890	in gas	7	3,103
and; water to within 400	-		Limestone, thin, hard	5	1,895	Limestone, sandy, gray with		
ft of surface	5	1,175	Limestone, brown	5	1,900	yellow bands, some sand	5	3,108
imestone, hard, blue;		1 100	Limestone, gray	15	1,915	Sand; gas tested at		
caving	17	1,192	Limestone, brown Shale, red, and thin, hard	5	1,920	2,780,000 ft ³ /d, shut-in	,	h
hale, gray	18	1,210		10	1 000	pressure to 750 lbs/in ²	6	3,114
and, fine, hard	37	1,215	layers Shale, brown; bailed water	10 15	1,930	(D-15-11)12dbc-1. Log by		
hale, gray; caving imestone, thin, hard	10	1,262	Limestone, thin, hard, and	15	1,945	Utah Oil Refining Co.		
ock, hard, red	18	1,280	shale;, bailed water to			Altitude 5,765.		
ock, thin, hard	4	1,284	1,950 ft	10	1,955	Shale, red	120	120
hale, red	7	1,291	Limestone, gray, shale and	10	1,900	Sand, coarse	5	125
ock, thin, hard	5	1,296	thin, hard layers	15	1,970	Sand, coarse, mixed	5	130
hale, red	9	1,305	Limestone, blue, hard	15	1,985	Sand, gray, sharp	20	150
ock, thin, hard	5	1,310	Sand, gray	10	1,995	Shale, soft, gray	15	165
ock, red	8	1,318	Sand, hard, sharp, gray	20	2,015	Sand and shale, mixed	15	180
and	7	1,325	Sand, gray	20	2,035	Shale, hard, gray	6	186
ock, hard, red	7	1,332	Sand, hard, gray	15	2,050	Shale, red	14	200
ock, red, and thin, hard			Sand, sharp, gray	50	2,100	Rock, thin, hard	3	203
layers	23	1,355	Sand, hard, green	10	2,110	Shale, sandy, red	42	245
ock, red	22	1,377	Sand, hard, sharp, gray	25	2,135	Shale, red, and thin, hard		
hale, brown	7	1,384	Shale, gray, and thin,		-	layers	20	265
ock, red	12	1,396	hard layers	15	2,150	Shale, gray	85	350
and, reddish; water	6	1,402	Shale, gray and red			Shale, sandy, gray	105	455
ock, sandy, thin, hard	5	1,407	banded	7	2,157	Sand, hard, gray	10	465
and; water rose to 1,426			Rock, red	8	2,165	Sand, hard, and thin, hard		
	42	1,449	Limestone, hard, brown	15	2,180	layers	35	500
ft			Limestone, red and gray	15	2,195	Shale, dark, and thin, hard		
ft imestone, thin, hard, with			Limestone, thin, hard	10	2,205	layers	110	610
ft imestone, thin, hard, with brown shale	8	1,457						
ft imestone, thin, hard, with brown shale imestone	8 3	1,457	Rock, hard, red	10	2,215	Shale, gray and red, and		
ft imestone, thin, hard, with brown shale imestone imestone; bailing water	3	1,460	Rock, hard, red Sand, hard, red	10 30	2,215 2,245	Shale, gray and red, and thin, hard layers	40	650
ft imestone, thin, hard, with brown shale imestone from hole			Rock, hard, red Sand, hard, red Sand, hard, brown	30 10	2,245 2,255	thin, hard layers Shale, hard, red	20	670
ft imestone, thin, hard, with brown shale imestone imestone; bailing water from hole ock, red; bailing water	3	1,460 1,461	Rock, hard, red Sand, hard, red Sand, hard, brown Sand, hard, red	30	2,245	thin, hard layers Shale, hard, red Shale, sandy, gray	20 40	670 710
ft imestone, thin, hard, with brown shale imestone; bailing water	3	1,460	Rock, hard, red Sand, hard, red Sand, hard, brown	30 10	2,245 2,255	thin, hard layers Shale, hard, red	20	670

Table 12.--Selected lithologic logs of wells and test holes--Continued

	Thickness	Depth	Material Ti	hickness	Depth		hickness	Depth
(D-15-11)12dbc-1Continued Shale, sandy, red	175	975	(D-15-11)12dbc-1Continued Sand, hard, gray and yellow			(D-19-12)30bba-1Continued Siltstone, sandy, maroon,		
Shale, red, and thin,			banded; gas encountered at			and sandstone, very fine		
hard layers	120 5	1,095 1,100	estimated 20,000,000 ft ³ /d; filled hole with water to			to medium-grained Sandstone, maroon, very fine	10	510
Sand, hard; fresh water, 1			control gas	19	3,105	to fine-grained; cuttings		
barrel (42 gal/hr)	45	1,145	Sand, hard, dark gray	6	3,111	slightly damp at 520 ft	10	520
Sand	40 20	1,185 1,205	Sand blue; show of heavy black oil	4	3,115	Sandstone, pale brown, and many very small fragments		
Sand, fine, hard	20	1,225	Sand, hard, dark	5	3,120	of maroon siltstone	10	530
Sand, coarse	23	1,248	Sand, hard, light gray	30 4	3,150	Sandstone, pale orange-		
Shale, sandy, red Rock, thin, hard	7	1,255	Shale, blue, very sticky Sand and shale, very hard	4	3,154	brown, very fine to fine-grained; cuttings		
Sand, hard, red	59	1,318	gray	3	3,157	damp when recovered	10	540
Sand, fine, hard, red Sand, hard, red; brackish	14	1,332	Sand, gray, and thin, hard layers	58	3,215	Sandstone, pale maroon, very fine to fine-grained and		
water 400 ft below drilling			Sand, light gray	20	3,235	marcon siltstone; cuttings		
floor	60	1,392	Sand, white at total depth			damp; few drops of water		
Shale, sandy, hard, brown Shale, sandy, red and brown .	18 18	1,410 1,428	Note: Hole abandoned due to tools.	0 1095 01	driffing	ejected with cuttings at 545 ft	10	550
Sand, red, and thin, hard						Note: This hole, drilled wi		
layers Limestone, sandy, red	12 30	1,440 1,470	(D-17-11)27ccd-1. Log by owner. Altitude 5,758.			 through the entire Navajo secta away a substantial amount of 		
Shale, hard, and gypsum	10	1,480	Sand, dry	2	2	This megascopic examination		
Sand, hard, red	10	1,490	Sandstone, soft	7	9	monotonous lithology altered		
Limestone, sandy, hard Shale, sandy, hard	5 9	1,495 1,504	Shale, hard, blue Conglomerate, hard	23 8	32 40	changes. Little was seen in t grain-size changes or secondary		
Sand, hard, red	6	1,510	Clay, hard, white	6	46	iron, quartz, calcite,	and	gy psum.
Shale, sandy, hard	25	1,535	Sandstone, porous	12	58	Consequently, the cuttings we		
Sand, soft Sand, hard, red	7 7	1,542 1,549	Gravel and coarse sand	14	72	ideal set to test the indefinit the Navajo Sandstone has a c		
Limestone, sandy, hard	5	1,554	(D-19-10)15bac-1. Log by			size change with depth in	the fo	rmation.
Sand, hard, red	6	1,560	Conway Brothers. Altitude			Samples were selected at se		
Limestone, sandy, hard Limestone, hard, red	7 8	1,567 1,575	5,615. Soil, brown	8	8	changes to represent the e samples; 14 samples were split		
Limestone, sandy, red	10	1,585	Sand, muddy red	32	40	table 3 for results of sieve an		
Sand, hard, red	17	1,602	Shale, red	60	100			
Shale, sandy, hard Sand, red, and limestone	8 8	1,610 1,618	Shale, red, sandy Shale, light to dark red	110 50	210 260	(D-19-13)21cbd-1. Sample log by J. W. Hood. Altitude		
Limestone, hard, pink	12	1,630	Shale, red, medium to hard	38	298	5,190.		
Limestone, crystalline,	2	1 (22	Sandstone, light, hard	7	305	Soil, brown, bit-cut tan		
pink Shale, limy, red	2	1,632 1,638	Sandstone, medium hard, brown	5	310	siltstone, and fine gravel	10	10
Rock, thin, hard, red	6	1,644	Shale, limy, alternating			Siltstone, red, bit-cut tan		
Shale, red, and flint	6	1,650	medium to hard	30	340	siltstone and fine	10	
Rock, thin, hard	23	1,652 1,655	Limestone, very hard, light . Shale, limy, gray	10 10	350 360	gravel Siltstone, gray, with thin	10	20
Conglomerate; show of oil	14	1,669	Shale, blue-gray	25	3 85	layers of red color	10	30
Sand, shaly, hard	10	1,679	Shale, brown	15	400	Siltstone, gray	10	40
Rock, shaly, thin, hard Shale, and thin, hard	5	1,684	Shale, limy, gray Shale, brown	10 25	410 435	Sandstone, tan, fine-grained, very silty	10	50
layers	25	1,709	Sandstone, soft, dark gray;			Siltstone, finely bit-cut,		50
Shale, hard, and thin, hard			water	10	445	grayish tan; cuttings		
layers	4 5	1,713 1,718	Sandstone, limy, light Sandstone, light	5 15	450 465	damp at 57 feet; small amount of water at 59 ft;		
Shale, pink, and thin, hard	,	.,	Shale, hard, light blue	11	476	changed from air to foam	10	60
layers	4	1,722				Limestone, gray, and		
Shale, red, and thin, hard layers	21	1,743	(D-19-12)30bba-1. Sample log by J. W. Hood. Altitude			interbedded gray siltstone	30	90
Sand, hard, and shale	7	1,750	6,182.			Limestone, dark gray	20	110
Shale, red, and thin, hard	25	1 775	Limestone, gray, and pale gray siltstone, with about			Limestone, red and light gray, and red siltstone	10	120
layers Shale, sandy, hard	25	1,775 1,782	3 in. of soil on top	10	10	Siltstone, red, and hard,	10	120
Shale, red, and thin, hard			Siltstone, bright red, and			light brown, very fine		
layers Shale, hard, red, and thin,	44	1,826	some limestone Siltstone, pale yellow	10 10	20 30	to medium-grained bit-cut sandstone fragments	10	120
hard layers	49	1,875	Sandstone, light brown and	10	50	Sandstone, tan, and (cavings	10	130
Shale, red	40	1,915	tan, very fine to fine-			of ?), gray limestone,		
Shale, sandy, red	35 40	1,950	grained Sandstone, pale ocherous	10	40	and red siltstone Sandstone, light brown, very	10	140
Shale, sandy, red and green . Shale, sandy, gray	20	1,990 2,010	yellow, very fine to fine-			fine to medium-grained, and		
Sand, gray	10	2,020	grained, well-sorted	20	60	(cavings of ?) limestone	20	160
Limestone, sandy, hard, gray	20	2,040	Sandstone, tan, very fine to fine-grained, silty	110	170	Sandstone, light brown, very fine to medium-grained, and		
Sand, gray	30	2,070	Sandstone, light brown to			(cavings of ?) limestone;		
Sand, yellow	10	2,080	light yellow-brown, very	20	200	sandstone more friable; test hole definitely producing		
Sand, hard, gray and yellow . Sand, shaly, green	40 20	2,120 2,140	fine to fine-grained Sandstone, pale gray-tan,	30	200	water at 170 ft	20	1 80
Rock, thin, hard, and shale .	13	2,153	very fine grained	10	210	Sandstone, light orange-		
Sand, hard, red, and thin, hard layers	457	2,610	Sandstone, pale brown, very fine to fine-grained	20	230	brown, very fine to medium- grained, friable, with		
Sand, reddish brown	40	2,650	Sandstone, light orange-	20	250	limestone fragments; amount		
Shale, sandy, red	20	2,670	brown, very fine to fine-		210	of water produced gradually		
Shale, soft, red, and thin, hard layers	50	2,720	grained Sandstone, pale gray-tan,	10	240	increased Sandstone, light brown, very	10	190
Shale, sandy, gray	55	2,775	very fine to fine-grained .	100	340	fine to fine-grained, well-		
Shale, sandy, pinkish gray	20	2,795	Sandstone, pale yellow-			sorted, friable, with		
Limestone, hard, gray Shale, sandy, gray	15 20	2,810 2,830	brown, very fine to fine-grained	10	350	fragments of limestone and red siltstone	10	200
Shale, hard, gray	15	2,845	Sandstone, tan, very fine			Sandstone, pale brown, very		200
Gypsum, shaly, gray	37	2,882	to fine-grained	10	360	fine to fine-grained, well-	20	0.00
Shale, hard, gray Gypsum, shaly, hard, gray	18 20	2,900 2,920	Sandstone, pale gray, very fine to fine-grained	20	380	sorted Sandstone, tan, very fine	20	220
Shale, gray and pink	35	2,955	Sandstone, tan, very fine			to fine-grained, with some		
Sand, hard, red, and thin,			to fine-grained	10	3 90	red siltstone and limestone	26	
hard layers Sand, hard, brown	10 5	2,965 2,970	Sandstone, pale brown, very fine to fine-grained	10	400	cavings Sandstone, tan, very fine to	20	240
Sand, gray, and limestone	9	2,979	Sandstone, tan	10	410	fine-grained, with some		
Sand, white	5	2,984	Sandstone, pale brown, very	20	440	red siltstone and limestone		
Limestone, sandy, hard, gray	30	3,014	fine to fine-grained Sandstone, tan, very fine	30	440	cavings with specks of white precipitates	10	250
Sand, very hard, dark gray	20	3,034	to fine-grained	10	450			2-
Limestone, sandy, brown	33	3,067	Sandstone, pale tan-gray, very fine to fine-grained .	50	500			
Sand, hard, reddish	19	3,086	seth true contra-Rustagen '	50	500			

Table 12 .-- Selected lithologic logs of wells and test holes -- Continued

	Thickness	Depth	Material	hickness	Depth			
(D-19-13)21cbd-1.Continued			(D-20-10)6bdd-1Continued			(D-20-10)7dcb-1Continued		
Sandstone, tan, very fine			Sandstone, pale brown, very			Sandstone, silty, reddish,		
to fine-grained, with some			fine to medium-grained,			fine- to medium-grained,		
red silstone and limestone			with very fine fragments	20	220	subrounded, well-cemented, with white anhydrite	30	
cavings, with specks of white precipitates and			of red siltstone Sandstone, gray-brown, very	30	320	Sandstone, silty, pale red,	00	
with thin layer of well-			fine to fine-grained;			fine- to medium-grained,		
cemented very fine			changed to drilling with			subrounded, well-cemented,		
grained sandstone;			clear river water	10	330	with some pale grayish		
specific conductance of			Sandstone, pale grayish tan,			green clay and gray shale.	30	
water was 690 umhos	10	260	very fine to fine-grained,			Sandstone, white to pale		
Sandstone, tan, very fine			with specks of white precipitates	10	340	yellow, medium- to fine- grained, poorly sorted;		
to fine-grained, with some red siltstone and limestone			Sandstone, pale brown, very	10	5.0	fair porosity and		
fragments	30	290	fine to fine-grained, with			permeability	90	
Sandstone, tan, very fine to			specks of white			Sandstone, fine- to medium-		
fine-grained, silty, with			precipitates	40	380	grained, white to reddish,		
white precipitates Sandstone, tan, very fine to	10	300	Sandstone, very pale brown to tan, very fine to fine-			shaly to silty, some clay	30	
fine grained, silty, with			grained	40	420	Sandstone, fine- to medium-	-	
white precipitates, red			Sandstone, pale brown, very			grained, white to pale		
siltstone, and thin layers			fine to fine-grained,			reddish, shaly to		
of well-cemented very fine			with very fine fragments	10	460	slightly silty, some	120	
grained sandstone; at 310			of red siltstone Sandstone, pale brown, very	40	460	clay Sandstone, pale pink to red,	120	
ft, discharge estimated to be 30 gal/min;			fine to fine-grained, with			fine-grained, subangular		
temperature 15.5°C; pH 7.8;			very fine fragments of red			to subrounded, some brick	_	
specific conductance 960			siltstone and many white			red shale	70	
umhos; water level 97 ft			flakes of white			Sandstone, pale pink to red,		
below land surface	10	310	precipitatesprobably	10	470	fine-grained, subangular to subrounded, with white,		
(D-20-10)6bdd-1. Sample log			gypsum or calcite Sample missing	5	475	chalky anhydrite	50	
by J. W. Hood. Altitude			Note: After completion of a	-		Sandstone, fine-grained,		
5,260.			at estimated 10 gal/min over:	ight, unti	l packer	pale green, with green		
Clay, silty, brownish gray,			set for test. Temperature	13.0°C;	specific	interbedded clay, and white		
and fine to medium	10		conductance 870 umhos.			to pale pink, fine-grained,		
gravel Gravel, fine to coarse, bit-	10	10	(D-20-10)7dcb-1. Log summari	zed		subangular to subrounded sandstone, green to grayish		
cut, surficial material			from sample descriptions by			green sand, and brick red		
caved and made the setting			K. Reavens. Altitude 5,55			shale and siltstone	10	
of surface pipe difficult;			No sample	140	140	Shale, green to grayish		
water at 22-23 ft; drilled	••	20	Shale, very calcareous,			green and reddish brown		
with thick mud Siltstone, gray, clayey,	10	20	variegated, and dense limestone; no porosity or			to brick red, red siltstone, some fine-		
and gray limestone	10	30	permeability	30	170	grained, pale green		
Limestone, gray, and some			Sandstone, slightly			sandstone	10	
gray, sandy siltstone	60	90	calcareous, fine- to			Shale, red to brick red,		
Siltstone, red, gray			medium-grained; subrounded,			siltstone, and some pale	20	
limestone, and some light	10	100	moderately sorted, orange			green shale Shale and siltstone, red to	30	
gray sandstone Siltstone, red, gray	10	100	to white, thin clay inter- beds, and brick red shale;			brick red	30	
limestone and some light			fair to good porosity			Shale and siltstone, red to	3-	
gray sandstone, generally			and permeability; no			brick red, green to pale		
paler color than above,			sample from 260-290 ft	180	350	green shale, and dense,		
with gypsum	10	110	Siltstone, very sandy, gray-			buff to gray dolomite	20	
Limestone, gray and some red			green, and slightly calcareous, fine- to			Shale and siltstone, red to brick red	50	
siltstone; drilling fluid subsided to 8 ft overnight;			medium-grained, subrounded			Shale and siltstone, red to	50	
changed to air drilling;	10	120	moderately sorted, orange			brick red, and white to		
Limestone and gray			to white; fair to good			pale pink, well-cemented,		
siltstone	10	130	porosity and permeability.	30	380	subangular to subrounded,		
Limestone, gray	10	140	Sandstone, slightly calcareous, fine- to			fine- to medium-grained sandstone; no porosity or		
Limestone, gray, red silt- stone, and some sandstone;			medim-grained, subrounded,			permeability; some pale		
hole producing water;			moderately to poorly			grayish green shale and		
temperature 16.7°C;			sorted, friable, orange			white anhydrite from		
specific conductance 5,220			to white; fair to good			1,420-1,430 ft	30	
umhos	10	150	porosity and permeability.	120	500	Sandstone, fine to coarse,		
Siltstone, red, limestone	10	160	Sandstone, slightly calcareous, fine- to			white to gray, subrounded hard, black dead hydro-		
and some sandstone Sandstone, brown, with	10	160	medium-grained, subrounded			hard, black dead hydro- carbon residue on and		
much red siltstone	10	170	moderately to poorly			between some grains, and		
Sandstone, brown, with			sorted, friable, orange			red to brick red and pale		
small fragments of red			to white; fair to good			green shale and siltstone;		
siltstone	10	180	porosity and permeability;			fair to poor porosity and	60	
Sandstone, brown, very fine to fine-grained with a			and very shaly, slightly calcareous, variegated			permeability Sandstone, fine to coarse,	60	
few fragments of black			sandstone, very fine to			hard, white to gray, sub-		
limestone	10	190	medium-grained, poorly			rounded, well-cemented,		
Sandstone, brown, very fine			sorted; poor porosity			slightly calcareous,		
to fine-grained, with a few			and permeability	30	530	infilled with anhydrite,		
fragments of limestone and red siltstone (cavings ?)			Sandstone, fine-grained, moder:tely sorted, sub-			with red and greenish gray shale	50	
at approximately 200 ft;			anguiar to subrounded,			Sandstone, fine to coarse,	υų	
specific conductance was			white, some orange chalky			slightly conglomeratic,		
about 4,000 umhos	20	210	sand with anhydrite; fair			hard, white to gray, sub-		
Sandstone, muddy, grayish			porosity and	60	r	rounded, well-cemented,		
brown, with fewer cavings; water increasing and			permeability Sandstone, fine-grained,	60	590	slightly calcareous, in- filled with anhydrite, and		
nearly clear	30	240	moderately sorted, sub-			gray to white, dense		
Sandstone, pale orange-brown,	÷.		angular to subrounded,			limestone; no porosity or		
very fine to medium-			white; fair porosity and			permeability	10	
grained, with small			permeability; with			Shale, variegated, dense,		
fragments of red siltstone;			reddish brown, very fine			pyritic, white to gray		
water level 4.4 ft below			grained, very argillaceous			limestone, and fine to		
land surface or about ? It above river level	20	26.0	sandstone; poor perosity and permeability	100	710	coarse, slightly conglom-		
Sandstone, grayish brown,		100	Siltstone, reddish brown,	120	710	eratic, hard, white to gray subrounded, well-cemented,	,	
very fine to fine-			with white, fine-grained,			slightly calcareous		
grained, with very fine			moderately sorted, sub-			sandstone	10	
fragments of red siltstone;			angular to subrounded			Siltstone, brown, and	10	
estimated 30 gal/min from hole with airlift;			sandstone and inter- bedded white, chalky			variegated shale	10	
specific conductance			anhydrite	120	830			

Table 12.--Selected lithologic logs of wells and test holes--Continued

	ickness	Depth		Thickness	Depth	Material	Thickness	Depth
(D-20-10)7dcb-1Continued			(D-20-10)7deb-1Continued			(D-20-17)7deb-1Continued		
Silistone, green to reddish			Shale, light gray to			Shale, light gray, very		
brown, variegated shale, some buff, dense, sandy			grayish green, very pyritic, slightly			pyritic, contains pyrite crystals and nodules,		
dolomite, some anhydrite;			micaceous, and subangular,			grades to siltstone;		
no porosity or permeability	10	1,580	well-cemented, poorly sorted, fine-grained, white			poor porosity and permeability	10	2,330
Dolomite, hard, dense, buff,	10	1,500	to blue mottled, calcareous			Siltstone, brown oil-stained,		- 15.70
some anhydrite; green to			sandstone to sandy			light gray, very pyritic		0 0 h 0
reddish brown siltstone, variegated shale; no			limestone; poor porosity and permeability; 50 percent			shale Shale, light gray, very	10	2,340
porosity or			shale, 50 percent sandstone			pyritic, brown oil-		
permeability	20	1,600	from 1,940-1,950 ft,			stained siltstone	10	2,350
Siltstone and shale, reddish brown, hard, dense, buff,			slightly less sandstone from 1,950-1,960 ft	40	1,970	Limestone, gray to dark brown, oolitic, abundant		
sandy dolomite, varie-			Sandstone, subangular, white	40	13310	chert, some light gray,		
gated shale, some anhy-			to blue mottled,			pyritic shale; no		
drite; no porosity or permeability	10	1,610	argillaceous, well-cemented, fine-grained, poorly sorted,			porosity or permeability Limestone, dolomitic, oolitic	10	2,360
Siltstone, reddish brown	20	1,630	slightly calcareous; very			fragmental, pelletal,		
Siltstone, reddish brown,			poor porosity and	10	1 0 00	black stain between frag-		
variegated shale, and dense, buff, silty			permeability Shale and siltstone, light	10	1,980	ments, pinpoint vugular porosity, white to bluish		
dolomite	10	1,640	gray to grayish green,			white chert; very poor		
Dolomite, silty, gray, dense			pyritic; no sample from	lio.	2 000	porosity and permeability .	50	2,410
and reddish brown siltstone	10	1,650	2,000-2,020 ft Shale and siltstone, light	40	2,020	Limestone and dolomite, white to gray, dense, fragmental,		
Siltstone, red to reddish		.,	2,000-2,020 ft	40	2,020	some dead oil stain, some		
brown, some buff to light			Shale and siltstone, light			clear bluish white chert;		
gray, silty doiomite Shale, gray, soft, very	10	1,660	gray to grayish green, pyritic, some sandstone or			no porosity or permeability	10	2,420
pyritic dolomite, with			sandy dolomite; no			Limestone, white to gray,		
red shale and red to			porosity or permeability	40	2,060	dense, fragmental, some		
reddish brown siltstone Siltstone, dark brown to	10	1,670	Shale and siltstone, grayish green, mottled brown			dead oil stain, fine- grained, calcareous		
black, interbedded with		•	dolomitic sandstone with			sandstone	10	2,430
anhydrite	10	1,680	interbedded pyrite; no			Sandstone, fine-grained,		
Shale, light gray to grayish green, very			porosity or permeability Limestone, white, dense,	10	2,070	very calcareous, pelletal and oolitic limestone	10	2,440
pyritic, and dark			pelleted to colitic, black,				10	2,110
brown to black			dead oil residue between		_	(D-20-14)11cba-1. Log by		
siltstone Shale, light gray to grayish	10	1,690	pellets and colites Limestone, white, dense, less	10	2,080	W. F. Burns Co. Altitude 4,498.		
green, very pyritic	10	1,700	pelleted and colitic;			Sand, gray	5	5
Shale, light gray to grayish			abundant light gray, dense,			Conglomerate	58	63
green, and brown to black anhydritic siltstone	10	1,710	chalky limestone Limestone, gray to light	10	2,090	Sand, gray; first water Slate, blue; caves slowly	5	68
Shale, light gray to		.,,	gray, dense, 25 percent			but does not prevent		
grayish green, very	~~	4 9 00	white pelleted oolitic		0.000	drilling; set 10-in.	1 00	250
pyritic Shale, variegated, pyritic	70 10	1,780 1,790	limestone Limestone, gray to light	10	2,100	casing Talc	182 40	250 290
Shale, light gray to grayish		.,,,,,,,,	gray, dense, some dense,			Sand, white; second water	6	296
green, pyritic, with			pelleted, oolitic, dark			Slate, blue	10	306
nodules Shale, light gray to grayish	10	1,800	gray, argillaceous limestone	10	2,110	Rock, red Sand, white; water	14 12	320 332
green, pyritic, slightly			Limestone, gray to dark gray,			Slate	8	340
micaceous	10	1,810	dense, pyritic, some			Sand, white; water	5	345
Shale, light gray to grayish green, pyritic, slightly			oolitic and pelletal dark gray, dense, argillaceous			ConglomerateSlate, green	5 10	350 360
micaceous, and brown			limestone	50	2,160	Sand, gray	10	370
mottled, slightly to very			Limestone, gray to light			Slate, green	12	382 427
calcareous, very pyritic, fine-grained sandstone;			gray, pelleted to dense; fair porosity and			Sand, green; water Rock, red	45 8	435
poor to no porosity and		_	permeability	10	2,170	Sand, gray	55	4 90
permeability Shale, light gray to	10	1,820	Limestone and dolomite, light gray to white,			Rock, red; caves Sand, gray	10 90	500 590
grayish green, very			dense; no porosity or			Gypsum	18	608
pyritic, slightly			permeability	10	2,180	Slate, white	10	618
micaceous, slightly cal- careous, some brown			Shale, light gray, very pyritic, interbedded with			Sand, red Slate, red; set 8.25-in.	85	703
mottled, slightly			brown micaceous shale	10	2,190	casing	5	708
to very calcareous, very			Shale, light gray to white,			Sand, gray; slight show of		0.0.0
pyritic, fine-grained sandstone; no porosity			very pyritic, contains pyrite nodules,			Water Sand, white; slight show of	162	870
or permeability; 50			micaceous	20	2,210	oil	10	880
percent shale, 50			Shale, light gray to white,			Sand, hard, gray; water		
percent sandstone, from 1,830-1,840 ft	20	1,840	very pyritic, contains pyrite nodules, micaceous,			filled 150 ft of hole Rock, red	50	885 905
Shale, light grayish green,	20	11040	and brown, micaceous,			Sand, red	5	910
very pyritic, micaceous,			very pyritic siltstone	30	2,240	Sand, gray	10	920
some brown mottled, slightly to very			Shale, pale gray, very pyritic	20	2,260	Sand, red and white Sand, red	25 20	945 965
calcareous, very pyritic,			Siltstone, very pyritic,	20	.,	Sand, hard, white; more	20	,0,7
fine-grained sandstone.			very micaceous	10	2,270	water	35	1,000
80 percent shale, 20 per- cent sandstone from 1,850-			Shale, pale gray, very pyritic, and very			Sand, soft, gray; more water	20	1,020
1,860 ft, 90 percent			micaceous, very pyritic			Sand, soft, white; well		
shale, 10 percent sand- stone from 1,860-1,870			siltstone Shale, light gray,	40	2,310	flowing Sand, hard, gray	15 35	1,035 1,070
ft	30	1,870	Shale, light gray, calcareous, pyritic,			Sand, nard, gray Shale, red	35 15	1,085
Shale, light gray to	-		micaceous, interbedded			Sand, white; flow increased .	5	1,090
grayish green, very pyritic with pyrite			with calcareous, shaly,			Sand, hard, red	25 18	1,115
			light brown to brown, oolitic, pelletal, fine-			Sand, red Rock, red; set 6.25-in.	18	1,133
			, ,, ,,					1,145
nodules, slightly micaceous, slightly			grained, well-cemented			casing	12	
nodules, slightly micaceous, slightly calcareous	20	1,890	siltstone and sandstone;			Sand, soft, white	10	1,155
nodules, slightly micaceous, slightly	20	1,890		10	2,320			
nodules, slightly micaceous, slightly calcareous Shale, light gray to	20 40	1,890 1,930	siltstone and sandstone; poor porosity and	10	2,320	Sand, soft, white Sand, hard, white	10 25	1,155 1,180

Table 12 .-- Selected lithologic logs of wells and test holes -- Continued

	hickness	Depth	Material	Thickness	Depth	Material	Thickness	D
(D-20-14)11cba-1Continued			(D-22-13)35bcd-2Continued			(D-22-14)31ddb-1Continued		
Sand, hard, black	8	1,303	Sandstone, pale brown, very			Sand, soft, red; water	48	
Alabaster	4	1,307	fine to fine-grained			Shale, red	82	
Sand, hard, red	8	1,315	with a few fragments of			Sandstone, white; water	45	
Sand, soft, red	10	1,325	red siltstone	20	190	Shale and sandstone,		
Shale, purple	10	1,335	Sandstone, light brown to brown, very fine to fine-			interbedded; ample brackish water	45	
(D-22-10)33abc-1. Log by			grained; some road-fill			brackian water	-,	
Utah Department of			cavings; specific conduc-			(D-23-8)3bab-1. Log by		
Transportation. Altitude			tance 1,310 umhos	10	200	Utah Department of		
7,120.			Sandstone, light brown to			Transportation. Altitude		
Sandstone, gray to buff	40	40	brown, very fine to fine-			5,800.		
Sandstone, gray with thin	- 0		grained; some road-fill			Gypsum and shale,	0	
beds of shale Sandstone, homogeneous, fine-	28	68	cavings and some small fragments of white vein			weathered Gypsum, gray, and thin-	8	
to medium-grained	302	370	filling; specific conduc-			bedded shale	16	
Sandstone, fine-grained	7	377	tance 1,280 umhos; water			Shale, hard, gray	9.5	
Shale, sandy	5	3 82	level, after overnight			Gypsum, sandy, gray	23.5	
Sandstone, very fine			recovery, 137 ft below land			Gypsum, white, pure	2.5	
grained	6	388	surface	10	210	Shale, gray	2	
Shale, limy	2	390	Sandstone, pale brown, very			Gypsum, white, pure	3.5	
Sandstone Sandstone, shaly and thin-	5	395	fine to fine-grained, with a few very small iron-			Shale, gray Gypsum, gray, with thin-	7.5	
bedded shale	11	406	stained sandstone aggre-			bedded shale	7	
Shale	5	411	gates and some ocherous			Shale, with thin gypsum	,	
Sandstone	ĩ	418	yellow fragments	40	250	beds	12.5	
Shale	11	429	Sandstone, pale brown, very			Shale, red and siltstone	1.5	
Sandstone	6	435	fine to fine-grained with			Shale, and some gypsum		
Shale, and thin-bedded			some ocherous yellow frag-			beds	13	
sandstone	40	475	ments and a larger number			Shale, hard, brown-gray	5	
			of iron-stained aggregates			Gypsum, white	3	
(D-22-11)23bdc-1. Log by Utah Department of			than above	10	260	Shale, with some gypsum beds	20.5	
Transportation. Altitude			Sandstone, gray with fine mottling of iron-stained			Gypsum, white	3.5	
6,520.			spots	10	270	Sample missing	10	
Shale and thin sandstone	3.5	3.5	Sandstone, gray and tan, very		-	Shale, soft, red, and		
Sandstone, silty and thin-			fine to fine-grained, with			mudstone	1.5	
bedded shale	4.5	8	a few small fragments of			Shale, gray	4	
Sandstone, limy and sandy shale	28	26	red siltstone and white vein filling	10	280	Shale, soft red	2	
Sandstone, silty and some	20	36	Sandstone, gray and tan, very	10	200	Shale, grayShale, red	9 8.5	
shale	3	39	fine to fine-grained, with			Shale, gray, limy	52	:
Limestone, light gray	17	56	a few small fragments of			Shale, hard, gray and	2	
Limestone, fossiliferous,			red siltstone, and white			shaly limestone	69.5	
and shale	5	61	vein filling, and a few			Limestone, sandy	5	
Shale, thin-bedded limy			angular fragments of					
and shaly sandstone	102	163	dense silica-cemented	10	2.00	(D-23-8)7dbd-1. Log by		
Limestone, and sandy lime- stone with geodes	105	26 8	sandstoneSandstone, pale brown, very	10	290	Utah Department of Transportation. Altitude		
Sandstone, medium- to	105	200	fine to fine-grained, with			5,515.		
coarse-grained	22	290	many very small iron-			Sand, silty	9	
			stained sandstone			Sand and gravel	6	
(D-22-13)35bcd-2. Sample			aggregates	20	310	Sand and gravel, coarse-		
log by J. W. Hood. Altitude 4,510.			Note: Drilled in mouth of a	anvon ubere	access	grained and a small boulder	18	
Sandstone, ocherous yellow,				Secause of	space	Siltstone and mudstone with	10	
very fine to fine-			restrictions, drilled in edg			gypsum	7	
grained; small amount of			where road fill may be as m	uch as 2 ft	thick.			
road fill at top	20	20	From about 100 ft down, sand			(D-23-10)12ddd-1. Log by		
Sandstone, white, very fine	10	20	was damp, but no free water ap			C. A. McKinnon, Altitude		
to fine-grained Sandstone, white, very fine	10	30	where level later was 137 ft Apparently hole penetrated			6,850.	ho	
to fine-grained and very			Final water sample at 310 ft;			Soil, red Limestone and shale, red;	40	
fine to medium-grained,			pH 7.3; specific conductance			small amount of water	25	
nolo wollow with door			· · · · ·	,		Shale, gray, limy	25	
pale yellow with iron	20	50	(D-22-14)15aac-1. Log by H.	ын.		Shale, brown, limy		
inclusions		50					10	1
inclusions Sandstone, pale gray, very			Drilling, Inc. Altitude 4,2	275.		Shale, gray, limy	10 75	•
inclusions Sandstone, pale gray, very fine to fine-grained	10	50 60	Drilling, Inc. Altitude 4,2 Sandstone, white	2 75 - 5	5	Shale, gray, limy Shale, brown	10 75 20	
inclusions Sandstone, pale gray, very fine to fine-grained Sandstone, pale tan, very			Drilling, Inc. Altitude 4, Sandstone, white Nudstone, brown	275. 5 25	30	Shale, gray, limy Shale, brown Sand, gray, fine; water	10 75	
inclusions Sandstone, pale gray, very fine to fine-grained Sandstone, pale tan, very fine to fine-grained	10 10		Drilling, Inc. Altitude 4, Sandstone, white Mudstone, brown Mudstone, gray	275. 5 25 10	30 40	Shale, gray, limy Shale, brown	10 75 20	
inclusions Sandstone, pale gray, very fine to fine-grained Sandstone, pale tan, very fine to fine-grained Sandstone, pale tan, very			Drilling, Inc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Sandstone, gray	275. 5 25	30 40 55	Shale, gray, limy Shale, brown Sand, gray, fine; water Shale, gray	10 75 20	
inclusions Sandstone, pale gray, very fine to fine-grained Sandstone, pale tan, very fine to fine-grained		60 70	Drilling, Inc. Altitude 4, Sandstone, white Mudstone, brown Mudstone, gray	275. 5 25 10 15	30 40	Shale, gray, limy Shale, brown Sand, gray, fine; water	10 75 20	
inclusions Sandstone, pale gray, very fine to fine-grained Sandstone, pale tan, very fine to fine-grained and light brown, very fine to fine-grained			Drilling, Tuc. Altitude 4,2 Sandstone, white	275. 5 25 10 15 20	30 40 55 75	Shale, gray, limy Shale, brown Sand, gray, fine; water Shale, gray (D-23-14)25bca-1. Sample	10 75 20	
inclusions	10 10	60 70 80	Drilling, Inc. Altitude 4, Sandstone, white	275. 5 25 10 15 20 30 3 3 7	30 40 55 75 105 108 115	<pre>Shale, gray, limy Shale, brown Shale, prown Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole</pre>	10 75 20	
inclusions	10	60 70	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, white Mudstone, brown	275. 5 25 10 15 20 30 3 7 3	30 40 55 105 108 115 118	<pre>Shale, gray, limy Shale, brown Shale, gray, fine; water Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft;</pre>	10 75 20 19 3	
inclusions Sandstone, pale gray, very fine to fine-grained Sandstone, pale tan, very fine to fine-grained Sandstone, pale tan, very fine to fine-grained and light brown, very fine to fine-grained Sandstone, pale gray, very fine grained	10 10	60 70 80	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Sandstone, gray Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, white Mudstone, gray Mudstone, gray	275. 5 25 10 15 20 30 3 7 3 22	30 40 55 105 108 115 118 140	Shale, gray, limy Shale, brown Shale, brown Shale, gray, fine; water Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud .	10 75 20 19 3	:
inclusions	10 10 10	60 70 80 90	Drilling, Tuc, Altitude 4,2 Sandstone, white Hudstone, brown Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, gray Nudstone, brown Sandstone, white Hudstone, brown Sandstone, gray Hudstone, brown	275. 5 25 10 15 20 30 3 7 3 7 3 22 22	30 40 55 75 105 108 115 118 140 160	Shale, gray, limy Shale, brown Shale, gray, fine; water Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud. Siltstone, red, sandy	10 75 20 19 3	
inclusions Sandstone, pale gray, very fine to fine-grained Sandstone, pale tan, very fine to fine-grained Sandstone, pale tan, very fine to fine-grained and light brown, very fine to fine-grained Sandstone, pale gray, very fine grained	10 10	60 70 80	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Sandstone, gray Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, white Mudstone, gray Mudstone, gray	275. 5 25 10 15 20 30 3 7 3 22	30 40 55 105 108 115 118 140	Shale, gray, limy Shale, brown Shale, brown Shale, gray, fine; water Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud . Siltstone, red, sandy Sandstone, red, sandy	10 75 20 19 3 20 20	
inclusions	10 10 10	60 70 80 90	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, brown Sandstone, white Mudstone, dray Mudstone, gray Mudstone, gray Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, brown Sandstone, brown Mudstone, brown Sandstone, brown Sandstone, brown Sandstone, brown	275. 5 25 10 15 20 30 3 7 3 7 3 22 22	30 40 55 75 105 108 115 118 140 160	<pre>Shale, grey, limy Shale, brown Shale, gray, fine; water Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud . Siltstone, red, sandy Sandstone, cream-colored, very fined grained, silty</pre>	10 75 20 19 3	
inclusions	10 10 10	60 70 80 90	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, gray Sandstone, gray Mudstone, gray Sandstone, gray Mudstone, brown Sandstone, white Mudstone, white Mudstone, gray Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, brown Sandstone, brown Mudstone, brown Mudstone, brown Sandstone, brown Mudstone, brown Sandstone, brown H. R. Phillips. Altitude	275. 5 25 10 15 20 30 3 7 3 7 3 22 22	30 40 55 75 105 108 115 118 140 160	<pre>Shale, gray, limy Shale, brown Shale, brown Shale, gray, fine; water Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud . Siltstone, red, sandy Sandstone, cream-colored, very fined grained, silty Sandstone, cream-colored, very fine grained, silty,</pre>	10 75 20 19 3 20 20	
inclusions	10 10 10 20	60 70 80 90 110	Drilling, Tuc. Altitude 4,2 Sandstone, white Hudstone, brown Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, brown Sandstone, white Hudstone, brown Sandstone, gray Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, brown Mudstone, brown Sandstone, brown Kandstone, brown Sandstone, brown Sandstone	275. 5 25 10 15 20 30 3 7 3 7 3 22 22	30 40 55 75 105 108 115 118 140 160	Shale, grey, limy Shale, brown Shale, grey, fine; water Shale, grey (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud. Sandstone, red, andy Sandstone, cream-colored, very fined grained, silty Sandstone, cream-colored, very fine grained, silty	10 75 20 19 3 20 10	
inclusions	10 10 10	60 70 80 90	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, brown Sandstone, white Mudstone, wrown Sandstone, gray Mudstone, brown Sandstone, brown (D-22-14)28ddd-1. Log by H. R. Phillips. Altitude 4,200. Sand and gravel; shallow	275. 5 25 10 15 20 30 3 7 3 22 20 20	30 40 55 75 108 115 118 140 160 180	<pre>Shale, grey, limy Shale, brown Shale, brown Shale, gray, fine; water Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud . Siltstone, red, sandy Sandstone, cream-colored, very fined grained, silty, and red, very fined grained, silty sandstone</pre>	10 75 20 19 3 20 20	
inclusions	10 10 10 20 10	60 70 80 90 110	Drilling, Tuc. Altitude 4,2 Sandstone, white Hudstone, brown Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, brown Sandstone, brown Sandstone, white Hudstone, brown Sandstone, gray (D-22-14)28ddd-1. Log by H. R. Phillips. Altitude 4,200. Sand and gravel; shallow water	275. 5 25 10 15 20 30 3 7 3 22 20 20 20 20	30 40 55 75 108 115 118 140 160 180	<pre>Shale, gray, limy Shale, brown Shale, brown Shale, gray, fine; water Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud . Siltstone, red, sandy Sandstone, cream-colored, very fined grained, silty Sandstone, cream-colored, very fine grained, silty, and red, very fined grained, silty sandstone Sandstone, write, very fine</pre>	10 75 20 19 3 20 10 10	
inclusions	10 10 10 20	60 70 80 90 110	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Mudstone, brown Sandstone, brown Sandstone, brown Sandstone, white Mudstone, white Mudstone, gray Mudstone, gray Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, brown Sandstone, brown Mudstone, brown Sandstone,	275. 5 25 10 15 20 30 3 7 3 22 20 20	30 40 55 75 108 115 118 140 160 180	Shale, grey, limy Shale, brown Shale, gray, fine; water Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud. Sandstone, cream-colored, very fined grained, silty Sandstone, cream-colored, very fine grained, silty Sandstone, white, very fine silty sandstone Sandstone, white, very fine to fine-grained, silty	10 75 20 19 3 20 10	1
inclusions	10 10 10 20 10	60 70 80 90 110	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Sandstone, gray Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, white Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, brown (D-22-14)28ddd-1. Log by H. R. Phillips. Altitude 4,200. Sand and gravel; shallow water Shale, red and gray Sand gray shale; water	275. 5 25 10 15 20 30 3 7 3 22 20 20 20 20	30 40 55 75 108 115 118 140 160 180	<pre>Shale, grey, limy Shale, brown Shale, brown Shale, gray, fine; water Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud . Siltstone, red, sandy Sandstone, ream-colored, very fined grained, silty, and red, very fined grained, silty sandstone Sandstone, white, very fine to fine-grained, silty Sandstone, white and red,</pre>	10 75 20 19 3 20 10 10	
inclusions	10 10 10 20 10	60 70 80 90 110	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Sandstone, gray Mudstone, brown Sandstone, brown Sandstone, white Mudstone, white Mudstone, wray Nudstone, brown Sandstone, gray Mudstone, brown Sandstone, brown (D-22-14)28ddd-1. Log by H. R. Phillips. Altitude 4,200. Sand and gravel; shallow water Shale, red and gray Shale, sast	275. 5 25 10 15 20 30 3 7 3 22 20 20 20 20	30 40 55 75 108 115 118 140 160 180	Shale, grey, limy Shale, brown Shale, brown Shale, grey, fine; water Shale, grey (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud. Sandstone, cream-colored, very fined grained, silty Sandstone, cream-colored, very fine grained, silty Sandstone, white, very fine silty sandstone Sandstone, white, very fine to fine-grained, silty	10 75 20 19 3 20 10 10	
inclusions	10 10 10 20 10 10	60 70 80 90 110 120 130	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, white Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, brown (D-22-14)28ddd-1. Log by H. R. Phillips. Altitude 4,200. Sand and gravel; shallow water Shale, red and gray Sand gray shale; water	275. 5 225 10 20 30 3 7 3 22 20 20 70 30	30 40 55 75 108 118 118 140 160 180 70 100	<pre>Shale, grey, limy Shale, brown Shale, grey, fine; water Shale, grey (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud. Sandstone, red, sandy Sandstone, cream-colored, very fined grained, silty Sandstone, write, very fine to fine-grained, silty Sandstone, white, very fine to fine-grained, silty Sandstone, white and red, very fine to fine-grained, suft siltstone. Sandstone, white, very fine to fine-grained, silty Sandstone, white and red, very fine to fine-grained, with siltstone.</pre>	10 75 20 19 3 20 10 10 10	
inclusions	10 10 10 20 10 10	60 70 80 90 110 120 130	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Sandstone, gray Mudstone, brown Sandstone, brown Sandstone, white Mudstone, white Mudstone, sray Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, brown (D-22-14)28ddd-1. Log by H. R. Phillips. Altitude 4,200. Sand and gravel; shallow water Shale, red and gray Shale, red and uncompany Shale, red shale; water and increasing amount of norflamable gas.	275. 5 25 10 15 20 30 3 7 3 22 20 20 70 30 20	30 40 55 75 108 115 118 140 160 180 70 100	Shale, grey, limy Shale, grey, limy Shale, grey, fine; water Shale, grey Shale, grey (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud. Siltstone, red, sandy Sandstone, cream-colored, very fined grained, silty Sandstone, oream-colored, very fine grained, silty Sandstone, white, very fine drained, silty Sandstone, white, very fine to fine-grained, silty Sandstone, white and red, very fine to fine-grained, with siltstone Sandstone, white, very fine to make Sandstone, white, very fine to medum-grained, with red	10 75 20 19 3 20 10 10 10	: : : : : : : : : : : : : : : : : : :
inclusions	10 10 20 10 10 10	60 70 80 90 110 120 130	Drilling, Tuc. Altitude 4,3 Sandstone, white	275. 5 25 10 15 20 30 3 7 3 22 20 20 20 70 30 70 30 70 30 20 70 30	30 40 55 75 108 115 118 140 160 180 70 100	<pre>Shale, grey, limy Shale, grey, limy Shale, grey, fine; water Shale, grey (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud . Siltstone, red, sandy Sandstone, cream-colored, very fine grained, silty. and red, very fined grained, very fine grained, silty, and red, very fined grained, silty sandstone Sandstone, white, very fine to fine-grained, silty Sandstone, white and red, very fine to fine-grained, with siltstome Sandstone, white, very fine to medium-grained, with red siltstome</pre>	10 75 20 19 3 20 10 10 10	: : : : : : : : : : : : : : : : : : :
inclusions	10 10 10 20 10 10	60 70 80 90 110 120 130	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Sandstone, gray Mudstone, brown Sandstone, brown Sandstone, white Mudstone, white Mudstone, sray Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, brown (D-22-14)28ddd-1. Log by H. R. Phillips. Altitude 4,200. Sand and gravel; shallow water Shale, red and gray Shale, red and uncompany Shale, red shale; water and increasing amount of norflamable gas.	275. 5 25 10 15 20 30 3 7 3 22 20 20 20 70 30 70 30 70 30 20 70 30	30 40 55 75 108 115 118 140 160 180 70 100	Shale, grey, limy Shale, brown Shale, brown Shale, gray, fine; water Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud. Sandstone, cream-colored, very fined grained, silty Sandstone, cream-colored, very fine grained, silty Sandstone, vream-colored, very fine grained, silty Sandstone, white, very fine to fine-grained, silty Sandstone, white and red, with siltstone Sandstone, white, very fine to medium-grained, with red siltstone.	10 75 20 19 3 20 10 10 10 10	: : : : : : : : : : : : : : : : : : :
inclusions	10 10 20 10 10 10	60 70 80 90 110 120 130	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, gray Mudstone, gray Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, white Mudstone, white Mudstone, white Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, gray Mudstone, brown Mudstone, brown (D-22-14)28ddd-1. Log by H. R. Phillips. Altitude 4,200. Sand and gravel; shallow water Shale, red and gray Shale, red and gray Shale, red and increasing amount of nofilamaable gas Shale, red Muter Shale, red Muter Shale Shale Shale Shale Shale Shale Muter Shale Sh	275. 5 25 10 15 20 30 3 7 3 22 20 20 20 70 30 70 30 70 30 20 70 30	30 40 55 75 108 115 118 140 160 180 70 100	<pre>Shale, grey, limy Shale, brown Shale, gray, fine; water Shale, gray Shale, gray (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud . Siltstone, redm-colored, very fined grained, silty, and red, very fined grained, silty sandstone Sandstone, veram-colored, very fine grained, silty Sandstone, very fined grained, silty sandstone Sandstone, white, very fine to fine-grained, silty Sandstone, white and red, very fine to fine-grained, with siltstone Sandstone, white, very fine to medum-grained, with red siltstone Sandstone, white, very fine to medum-grained, with red siltstone</pre>	10 75 20 19 3 20 10 10 10 10	: : : : : : : : : : : : : : : : : : :
inclusions	10 10 20 10 10 10	60 70 80 90 110 120 130	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, brown Sandstone, brown Sandstone, white Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, brown Sand and gravel; shallow water Shale, red and gray Shale, red ang gray Shale, red Note: Well would flow like minutes only when well was to (D-22-14)31ddb-1. Log by	275. 5 25 10 15 20 30 3 7 3 22 20 20 20 70 30 70 30 70 30 20 70 30	30 40 55 75 108 115 118 140 160 180 70 100	<pre>Shale, grey, limy Shale, grey, limy Shale, grey, fine; water Shale, grey Shale, grey (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud. Sandstone, cream-colored, very fined grained, silty Sandstone, cream-colored, very fined grained, silty Sandstone, cream-colored, very fined grained, silty Sandstone, white, very fine to fine-grained, silty Sandstone, white and red, with siltstone Sandstone, white and red, with siltstone Sandstone, white and red, siltstone, white, very fine to medium-grained, with red siltstone, white, very fine to medium-grained, with red siltstone, sandstone is</pre>	10 75 20 19 3 20 10 10 10 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
inclusions	10 10 20 10 10 10	60 70 80 90 110 120 130	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, gray Mudstone, gray Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, white Mudstone, white Mudstone, white Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, gray Mudstone, brown Mudstone, brown (D-22-14)28ddd-1. Log by H. R. Phillips. Altitude 4,200. Sand and gravel; shallow water Shale, red and gray Shale, red and gray Shale, red and increasing amount of nofilamaable gas Shale, red Muter Shale, red Muter Shale Shale Shale Shale Shale Shale Muter Shale Sh	275. 5 25 10 15 20 30 3 7 3 22 20 20 20 70 30 70 30 70 30 20 70 30	30 40 55 75 108 115 118 140 160 180 70 100	<pre>Shale, grey, limy Shale, grey, limy Shale, grey, fine; water Shale, grey Shale, grey Shale, grey Shale, grey Shale, grey Sambox Sandstone, red, silty; hole produced water near 20 ft; started drilling with mud . Siltstone, red, sandy Sandstone, cream-colored, very fined grained, silty. and red, very fined grained, silty sandstone Sandstone, white, very fine to fine-grained, silty Sandstone, white and red, very fine to fine-grained, with siltstone Sandstone, white, very fine to modium-grained, with red siltstone Sandstone, white, very fine to medium-grained, with red siltstone Sandstone, white, very fine to medium-grained, with red siltstone Sandstone, white, very fine to medium-grained, with red siltstone</pre>	10 75 20 19 3 20 10 10 10 10	
inclusions	10 10 20 10 10 10	60 70 80 90 110 120 130	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, brown Sandstone, brown Sandstone, white Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, brown Sandst	275. 5 25 10 15 20 30 3 7 3 22 20 20 70 30 125 40 20 20	30 40 55 75 108 118 118 140 160 180 70 100 225 265 yr a few 29	<pre>Shale, grey, limy Shale, grey, limy Shale, grey, fine; water Shale, grey Shale, grey (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud. Sandstone, cream-colored, very fined grained, silty Sandstone, cream-colored, very fined grained, silty Sandstone, cream-colored, very fined grained, silty Sandstone, white, very fine to fine-grained, silty Sandstone, white and red, with siltstone Sandstone, white and red, with siltstone Sandstone, white and red, siltstone, white, very fine to medium-grained, with red siltstone, white, very fine to medium-grained, with red siltstone, sandstone is</pre>	10 75 20 19 3 20 10 10 10 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
inclusions	10 10 20 10 10 10	60 70 80 90 110 120 130	Drilling, Tuc. Altitude 4,2 Sandstone, white Hudstone, brown Mudstone, gray Mudstone, gray Mudstone, brown Mudstone, brown Sandstone, brown Sandstone, white Mudstone, white Mudstone, white Mudstone, brown Sandstone, white Mudstone, brown Sandstone, brown Sandst	275. 5 25 10 25 20 30 3 7 3 22 20 20 20 70 30 20 20 70 30 20 20 20 20 20 20 20 20 20 20 20 20 20	30 40 55 75 105 108 115 118 140 160 180 70 100 225 265 xr a few 29 43	<pre>Shale, grey, limy Shale, grey, limy Shale, grey, fine; water Shale, grey Shale, grey (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud. Sandstone, cream-colored, very fined grained, silty Sandstone, cream-colored, very fined grained, silty Sandstone, vined, silty Sandstone, white, very fine to fine-grained, silty Sandstone, white, very fine to fine-grained, silty Sandstone, white and red, very fine to fine-grained, with siltstone Sandstone, white, very fine to medium-grained, with red siltstone, sandstone is mainly fine to medium- grained and better sorted</pre>	10 75 20 19 3 20 10 10 10 10 10	- - - - - - - - - - - - - - - - - - -
inclusions	10 10 20 10 10 10	60 70 80 90 110 120 130	Drilling, Tuc. Altitude 4,2 Sandstone, white Mudstone, brown Mudstone, gray Mudstone, gray Mudstone, brown Sandstone, brown Sandstone, brown Sandstone, white Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, gray Mudstone, brown Sandstone, brown Sandst	275. 5 25 10 15 20 30 3 7 3 22 20 20 70 30 125 40 20 20	30 40 55 75 108 118 118 140 160 180 70 100 225 265 yr a few 29	<pre>Shale, grey, limy Shale, grey, limy Shale, grey, fine; water Shale, grey Shale, grey (D-23-14)25bca-1. Sample log by J. W. Hood. Altitude 4,160. Sand, loose, red, silty; hole produced water near 20 ft; started drilling with mud. Sandstone, cream-colored, very fined grained, silty Sandstone, cream-colored, very fined grained, silty Sandstone, vined, silty Sandstone, white, very fine to fine-grained, silty Sandstone, white, very fine to fine-grained, silty Sandstone, white and red, very fine to fine-grained, with siltstone Sandstone, white, very fine to medium-grained, with red siltstone, sandstone is mainly fine to medium- grained and better sorted</pre>	10 75 20 19 3 20 10 10 10 10 10	- - - - - - - - - - - - - - - - - - -

Table 12.--Selected lithologic logs of wells and test holes--Continued

(D-23-14)25bca-1Continued			(D-23-14)12ddd-1Continued			(D-23-14)36bdd-1Continued		
andstone, white, very fine			Limestone, gray, finely cut,			Sandstone, light reddish to		
to medium-grained, with red			some very fine to fine brown			dark brown, fine- to medium-		
siltstone, sandstone is mainly fine to slightly			sand and red siltstone; siltstone diminishes at 440-			grained, with fragments of red sandy siltstone	20	60
coarse grained, drilling			450 ft	20	450	Sandstone, medium brownish	20	00
mud alternates in color from			Siltstone, red, and very fine	20	,,,,,	red, very fine to fine-		
chocolate-brown to brownish			to fine-grained sandstone			grained, a few fragments of		
tan	10	120	(sample lag about 19-20 ft?);			gray shale	10	70
Sandstone, white to grayish			at 460 ft penetration rate		hra	Sandstone, pale reddish tan,	••	00
tan, fine to slightly coarse	10	120	increased rapidly	20	470	very fine to fine-grained Sandstone, pale reddish brown	10	80
grained, with red siltstone . Sandstone, pale brown to gray,	10	130	Sandstone, white, very fine to medium-grained, with			to light brown, with a few		
fine to slightly coarse			many small fragments of dark			fragments of dark red		
grained, wiht red siltstone .	10	140	red siltstone	10	4 80	siltstone	10	90
andstone, light reddish brown,			Sandstone, tan, very fine to			Sandstone, light yellow to tan,		
very fine to medium-grained .	20	160	fine-grained, with many			very fine to fine-grained,		
Sandstone, light reddish brown,		4=0	specks of white evaporites,			with a few fragments of red		
silty andstone, pale brown to gray,	10	170	well-sorted, some fragments of red siltstone at 490-500			siltstone and dark yellow sandstone	10	100
very-fine to medium-grained,			ft; at 490 ft, mud level in			Sandstone, light yellow to tan,	10	100
with many specks of red			hole did not subside while			very fine to fine-grained,		
siltstone	10	180	adding drill stem; mud is			with a few fragments of red		
andstone, pale tan, very fine			thinning	20	500	siltstone and dark yellow		
to fine-grained, well-sorted,			Sandstone, pale tan, very fine			sandstone, slightly darker		
with a few fragments of red			to fine-grained with fine			than at 90-100 ft, with		
siltstone andstone, pale brown, very	10	190	specks of red siltstone at 500-520 ft, increasing to			more fragments of dark red, very friable siltstone and		
fine to medium-grained, well-			about 40 percent of sample			very small fragments of		
sorted; lost some drilling			at 520-530 ft, again			gray shale; hole flowing;		
mud to formation	20	210	decreasing to less than 5			temperature 15.0 ⁰ C; specific		
Sandstone, light brown, very			percent at 540-560 ft and			conductance 3,230 umhos; pH		
fine to medium-grained, well-			about 10 percent at 560-570			6.7	10	110
sorted, with a few small		22.0	ft, with some flakes of white			Sandstone, light yellow to tan,		
fragments of dark siltstone .	20	230	evaporite; mud level rose			very fine to fine-grained,		
Sandstone, pale tan, very fine to medium-grained, with a			during change of drill stem at 510 ft; at 550 ft, hole			with a few fragments of red siltstone and dark yellow		
few fragments of dark			was definitely flowing	70	570	sandstone, contains more red		
siltstone	10	240	Sandstone, very pale brown,		2115	siltstone and gray shale		
Sandstone, pale tan, very fine			very fine to fine-grained			than at 90-100 ft; fragment		
to fine-grained, with a few			with little red siltstone	10	580	of crystalline gypsum	10	120
small fragments of red			Sandstone, pale tan, very fine			Sandstone, pale tannish brown,		
siltstone Sandstone, light brown, very	10	250	to medium-grained, with about 10 percent red siltstone and			very fine to fine-grained; very few other fragments in		
fine to medium-grained, with			white evaporite at 580~590 ft			sample	10	130
a few small fragments of red			and less than 5 percent at			Sandstone, tannish brown, very	10	130
siltstone; had to add material			590-610 ft; drilling fluid			fine to medium-grained; many		
to mud to decrease loss of			now is almost plain water	30	610	large (as much as 1 in.)		
drilling fluid	20	270	Sandstone, pale brown, very			fragments of dark red silt-		
Sandstone, pale tan, very	••	200	fine to fine-grained	10	620	stone at 130-170 ft; red		
fine to medium-grained Siltstone, cream-colored,	10	280	Sandstone, pale brown, very fine to medium-grained, with			siltstone fragments smaller at 170-180 ft; red siltstone		
sandy, with much evaporitic			less than 10 percent red			fragments up to 3/4-in. dia-		
mineral fragments	10	290	siltstone and white flakes			meter at 180-190 ft; fragments		
Sandstone, dark brown, with			of evaporite	10	630	of iron-oxide cavity		
small fragments of dark			Sandstone, pale brown, very			filling	60	1 90
siltstone and gypsum	10	300	fine to fine-grained, with			Sandstone, pale brown, fine-		
Siltstone, red-brown, with			a few fragments of red		650	to medium-grained, many		
small fragments of gypsum and some sand	20	320	siltstone Sandstone, pale yellowish	20	650	small fragments of red silt- stone and some small frag-		
Sypsum, finely cut up, with	20	320	brown, very fine to fine-			ments of white amorphous		
red-brown siltstone, and			grained	10	660	gypsum; hole producing 100-		
some sand	20	340	Sandstone, pale tan, very fine			200 gal/min; water and air		
Gypsum, finely cut up, with			to medium-grained, with			flowing from joint about 6		
red-brown siltstone, sandier	••	250	white flakes of evaporite			ft east of rig; temperature		
than at 320-340 ft Siltstone, dark reddish brown,	10	350	at 650-670 ft, about 10 per- cent red siltstone; little			17.9 ⁰ C; specific conductance 2,650 umhos; changed to		
sand, and finely-cut gypsum;			red siltstone at 670-680 ft;			water for drilling	10	200
section from 300-360 ft hard;			about 10 percent at 680-690			No samples; drilled blind		200
changed to button bit	10	360	ft; red siltstone diminished			after circulation lost; water		
Sandstone, brown, fine- to			to less than 5 percent at			level 10 ft below land		
medium-grained, with some			700-710 ft; hole flowing;			surface	15	215
brown siltstone and finely-		24.0	temperature 17.5°C; specific	50		Note: Well partly drilled with		
cut gypsum	10	370	conductance 908 umhos	50	710	walls of hole and probably conta with cavings of wall above of		
Sandstone, brown, very fine to medium-grained, with traces			(D-23-14)36bdd-1. Sample log			shown, by violently ejecting wat		
of brown siltstone and			by J. W. Hood. Altitude			bore; well flowed from depth of a		
gypsum	10	380	4,120.			at 205 ft, flowing water appea		
Sandstone, brown, very fine			Soil, thin red, over fine-			lifted long after drilling ai	r should	d have
to fine-grained, with traces			to medium-grained silty			dissipated. Circulation lost		
of brown siltstone and			red sandstone and very fine			205 ft reached. Circulation lost	, in seco	nd hole,
gypsum	10	390	to fine-grained pale	10	10	30 south, at depth of 50 ft.		
Sandstone, brownish gray, very fine to fine-grained, with			yellow sandstone Sandstone, pale yellow, very	10	10	(D-25-15)23bdb-1. Log by		
traces of brown siltstone			fine to medium-grained, very			O. R. Anderson. Altitude		
and gypsum	20	410	friable sandstone	10	20	4,795.		
Sandstone, gray limy, and			Sandstone, pale yellow, very			Soil, sandy	4	դ
gray limestone	10	420	fine to medium-grained, very			Sandstone, red	66	70
			friable sandstone, with some ocherous yellow to pale			Sandstone, white	20	90 105
			ocuerous yerrow to pare			Shale, sandy, red	15 hr	
with some tan, very fine to	10	100	red friable sandstone	10				
	10	430	red friable sandstone Sandstone, light reddish brown.	10	30	Sandstone Shale, sandy red	45 14	
	10	430	red friable sandstone Sandstone, light reddish brown, fine- to medium-grained, with	10	30	Shale, sandy red	45 14 6	150 164 170
with some tan, very fine to	10	430	Sandstone, light reddish brown,	10	30		14	164
with some tan, very fine to	10	430	Sandstone, light reddish brown, fine- to medium-grained, with	10	30	Shale, sandy red Shale, blue	14 6	164 170

Table 13.--Descriptions of rock samples analyzed for hydrologic properties and grain-size distribution, and of sampling sites.

[Abbreviations: ft, feet; in., inch; mm, millimeter; md, millidarcy.]

Location: See descriptions of well- and spring-numbering system.
Samples of several formations in the northern San Rafael Swell area were obtained, mainly from outcrops, and submitted to Core
Laboratories, Inc., Dallas, Texas or to the Central Laboratory of the U.S. Geological Survey, Denver, Colorado. In addition,
analyses of cores from three petroleum-test wells were obtained from the files of the U.S. Geological Survey. The description
of the sources and the general nature of the samples follow. Thin-section descriptions are by Core Laboratories, Inc.; per-
centages cited for the thin sections are from point counts. Hydrologic characteristics, grain-size analyses, and permeability
are given in tables 2, 3, and 4.

Sample from the Entrada Sandstone

(D-23-13)24add-1 UTSR-28 Hand specimen from outcrop near top of hill 200 ft east of State Highway 24. Yellow, very friable sandstone. This sandstone contrasts with the usual red silty sandstone and siltstone in the Entrada Sandstone.

Sample from the Carmel Formation

Hand specimen from outcrop in slope between east edge of Furniture Draw and county road, near head of Buckhorn Wash. Very dense, red-brown to lavender, finely crystalline, fossiliferous limestone. Interbed in red siltstone at base of formation. (D-19-11)17bba-2 UTSR-25 Samples from the Navajo Sandstone (D-18-12)25aac-1 UTSR-4 Weathered hand specimen from slope north of dry wash; near top of formation. Light gray friable sandstone. (D-19-10)13dbd-1 UTSR-5 Hand specimen from low road cut on north edge of county road in head of Buckhorn Wash. Firm tan sandstone. Core hole at east edge of stream channel in Furniture Draw. (See UTSR-25, above.) Cut 2.25-in. core to depth of 0.5 ft in the top of the formation. Upper 0.3 ft used for grain-size analysis; last 0.2 ft used for permeability sample. Took 2 hours to cut sample. Very hard, light brown sandstone; almost limonitic in color. (D-19-11)17bba-1 UTSR-26 (D-19-11)20bca-1 UTSR-24 Hand specimen broken from 2 ft calyx core near bottom of dry wash above box canyon near head of Buckhorn Wash. Core was cut as part of a 1949 explosion test on the sandstone. Sample is from a depth of 2-4 ft below land surface and from near top of formation. Very hard white to pale tan sandstone. Sample was too hard to disaggregate for grain-size analysis. U.S. Geological Survey test hole drilled at southwest side of intersection of county road and trail to Big Flat. Hole was drilled with air and penetrated full thickness of Navajo Sand-stone which was found to be dry to bottom. From set of 10-foot samples, suite of 14 samples chosen to represent zones apparently uniform in megascopic lithology and color. (D-19-12)30bba-1 NSR T-2 Core hole in bare bottom of small stream channel at north side of ranch trail. Cut 2.25-in. core to depth of 5 ft near top of the formation. Top 0.9 ft was very soft. Remainder moder-ately indurated. Tan sandstone. Core hole cased with sealed aluminum tubing for soil mois-(D-20-12)3cab-1 UTSR-27 ture measurements. UTSR-27-1 Depth 0.0-0.2 ft. UTSR-27-2 Depth 0.2-0.45 ft. UTSR-27-4 Depth 0.9-1.7 ft. Thin-section description: medium sandstone: quartzarenite. This sample is homogeneous, poorly sorted sandstone consisting of 97 percent quartz, 1 percent feldspar, 1 percent chert, and 1 percent kaolinite. Grain size ranges from 0.02 to 0.4 mm, and the grains are generally equant and rounded to well-rounded. The moderately packed grains are in tangential or planar contact. Monocrystalline quartz with straight or slightly undulose extinction constitutes the bulk of the sample. Rutile needles, mica, and amphibole are present as inclusions. Well-rounded chert grains are scattered throughout the sample. Minor amounts of polycrystalline quartz also are present. Secondary quartz overgrowths are delineated by faint dust rims and are the primary cementing agent. This cementation is incomplete, however, and 22 percent intergranular porosity remains. Microcline and plagioclase feldspars are dispersed throughout the sample. Kaolinite is present as an alteration product which completely masks the original grains. Traces of finely crystalline siderite, muscovite, hornblende, and zircon also are present in the sample. UTSR-27-6 Depth 2.05-2.45 ft. UTSR-27-7 Depth 2.45-2.85 ft. UTSR-27-9 Depth 3.5-3.8 ft. UTSR-27-12 Depth 4.4-4.7 ft. UTSR-27-13 Depth 4.7-5.0 ft.

Table 13.--Descriptions of rock samples analyzed for hydrologic properties and grain-size distribution, and of sampling sites--Continued.

Location	Sample No.	Description
Samples from the N	lavajo Sandst	oneContinued
(D-20-13)15cad-1	UTSR-20	Hand specimen from base of cliff on north side of Cottonwood Wash at bend in canyon. Sample from near base of formation. Slightly friable sandstone with red and tan laminae.
		Thin-section description: subarkosic quartzarenite.
		This sample is a homogeneous, poorly sorted sandstone consisting of 92 percent quartz, 6 per- cent feldspar, 1 percent kaolinite, and 1 percent organic material. Grain size ranges from 0.01-0.28 mm, and the grains are equant to subelongate and subrounded to subangular. The mod- erately packed grains are in planar or concavo-convex contact.
		Monocrystalline quartz with straight or undulose extinction is the primary mineral constituent. Rutile needles, zircon, and tourmaline are present as inclusions. Traces of rounded chert also are present.
		Microcline, orthoclase, and plagioclase feldspars are scattered throughout the sample. Alter- ation to clay and dissolution of these feldspars is common. The orthoclase appears to be more elongate than the quartz and fresher than the other feldspars.
		The sample is cemented with an early stage of secondary quartz overgrowths and a fine sili- ceous matrix. The cementation is incomplete and remaining intergranular pore space accounts for 14 percent of the sample. Kaolinite occurs as an alteration product which completely masks the original grains. Traces of organics, muscovite, hornblende, and zircon also were found.
(D-20-13)15daa-1	UTSR-21	Core hole at base of cliff on north side of Cottonwood Wash; on sandstone shelf, about 3 ft above bottom of stream channel. Core consists of brown, moderately indurated sandstone. Low- er part of cliff and the shelf is damp and covered with mineral efflorescence. Core was sat- urated, and air used for coring would not clear cuttings from hole; air bubbled up from joints 1-2 ft from hole. No water standing in hole after coring stopped. Cased with open-ended alu- minum tubing for water-level measurement.
	UTSR-21-1	Depth 0.0-0.2 ft.
	UTSR-21-2	Depth 0.2-0.5 ft.
	UTSR-21-3	Depth 0.5-0.9 ft.
	UTSR-21-4	Depth 0.9-1.1 ft.
(D-21-9)15add-1	UTSR-30	Weathered hand specimen from outcrop in bed of Coal Wash. Sample from near top of formation.
(D-21-9)15dda-1	UTSR-29	Weathered hand specimen from base of bluff at northeast side of the junction of North and South Forks, Coal Wash. Light yellow-brown, thin-bedded sandstone. Weathering causes sandstone to split into layers 0.75 to 1 in. thick.
(D-22-13)12aab-1	UTSR-3	Hand specimen from road cut at south side of Interstate Highway 70, at mouth of Spotted Wolf Canyon. Brown to tan friable sandstone about 30 ft below top of formation.
(D-22-13)12aba-1	UTSR-2	Hand specimen from road cut at south side of Interstate Highway 70 in Spotted Wolf Canyon, Brown friable sandstone near middle of formation.
		Thin-section description: fine sandstone; quartzarenite.
		This sample is a homogeneous, moderately sorted sandstone consisting of 97 percent quartz, 2 percent feldspar, and 1 percent calcite. The grains are generally subrounded to subangular and equant in shape. Grain size ranges from 0.01 to 0.20 mm. The grains are moderately packed and are in concavo-convex or planar contact.
		Monocrystalline quartz with straight or slightly undulose extinction is the primary mineral constituent. Rutile and muscovite are present as inclusions. Traces of chert and polycrys-talline quartz also are present. Microcline and plagioclase feldspar are present in minor amounts and appear as fresh unaltered grains. Traces of zircon and hornblende are present.
		Secondary quartz overgrowths are the most important cementing agents. Minor patches of cal- cite also are present. Remnant porosity is very high due to the poorly consolidated nature of the sample, but an accurate estimate is not possible because of extensive plucking (of the thin section).
(D-22-13)12abb-1	UTSR-1	Hand specimen from outcrop at south side of Interstate Highway 70 in Spotted Wolf Canyon and at base of formation. Very hard brown calcareous sandstone or sandy limestone; contains healed fractures.
		Thin-section description: fine sandstone; calcareous quartzarenite.
		This sample is a homogeneous, moderately sorted sandstone consisting of 52 percent quartz, 39 percent calcite, 8 percent organics, and 1 percent feldspar. Grain size ranges from 0.02-0.20 mm, with grains averaging 0.12 mm. A few large grains are as large as 0.34 mm. The grains generally are equant and subangular to angular. Loosely packed grains are in tangential or planar contact.
		Monocrystalline quartz with straight or slightly undulose extinction is the primary mineral constituent. Rutile needles are common inclusions. Minor amounts of chert and polycrys-talline quartz are also present. The most important cementing agent is calcite which is often encroaching on framework grains. Some iron staining is evident within the calcite. Organic material is associated with this calcite and also is a cementing agent. Remaining pore space is limited to 1-2 percent.

.

Location	Sample No.	. Description
Sample from the Na	avajo Sandsto	oneContinued
		Microcline and plagioclase feldspars are present in minor amounts. These appear as fresh, un altered grains, although several grains are fractured. Trace minerals include hornblende, zircon, and muscovite. Some grain plucking occurred during thin section preparation.
(D-22-13)12abb-2	UTSR-1A	Hand specimen from bed overlying source bed of sample UTSR-1. Soft, gray friable sandstone.
(D-22-13)35bdc-1	UTSR-8	Hand specimen from cut in unused mine access road in mouth of canyon. Sample from near middle of formation. Light brown friable sandstone that contains numerous thin fractures which are healed with a non-carbonate mineral.
		Thin-section description: medium sandstone; quartzarenite.
		This sample is a moderately to tightly packed sandstone consisting of 96 percent quartz, 3 pe cent feldspar, and 1 percent chert. The grains generally are equant and subrounded. Grain size ranges from 0.03 to 0.35 mm, except for a vein of medium silt-sized grains that occur throughout the length of the sample. Grain contacts are planar, concavo-convex, or slightly sutured. The primary mineral constituent is monocrystalline quartz with straight or undulos extinction. Rutile needles are common inclusions. Polycrystalline quartz and chert are present in minor amounts.
		Microcline and plagioclase feldspars are randomly scattered throughout the sample. Alteration to clay and dissolution of these feldspars is common and has resulted in minor secondary por- osity.
		The sample is cemented with an early stage of secondary quartz overgrowths, as well as a minor amount of organic material. The vein of silt-sized material is tightly cemented by a fine siliceous matrix and no porosity is present here. However, in the rest of the sample as much as 22 percent intergranular pore space was observed. Trace amounts of hornblende and musco- vite are present.
(V-23-9)3bda-1	UTSR-16	Hand specimen from cut on north side of local access road, south of Interstate Highway 70. Rock in the cut shows intense shattering and a small thrust zone; rock in the shattered zone is bleached. Sample is from the darker rock. Light yellow to tan, friable sandstone. Outer part of sample weathered.
(D-23-9)3bdb-1	UTSR-15	Hand specimen from cut on north side of local access road, south of Interstate Highway 70. Sample is from top of formation. Light tan to yellowish white sandstone; locally ocherous. Induration so poor that sandstone will shatter into bits when hit with a hammer.
(D-23-13)27bcc-1	UTSR-19A	Core hole in bare bottom of gulley about 5 ft above south edge of Straight Wash and south of trail that goes up canyon. Cut 2.25-in. core to 3.4 ft. Hole seemed to be damp near bottom. Hole cased with sealed aluminum tubing for soil moisture measurements. Tan to brown sandstone.
	UTSR-19A-1	Depth 0.0-0.20 ft.
	UTSR-19A-2	Depth 0.2-0.45 ft.
	UTSR-19A-3	Depth 0.45-0.90 ft.
	UTSR-19A-6	Depth 2.7-3.0 ft.
	UTSR-19A-7	Depth 3.0-3.4 ft.
D-23-13)28add-1	UTSR-19	Hand specimen from south wall of Straight Wash Canyon, 50-100 ft below top of formation. Tan to yellowish gray mottled sandstone. Weathered.
(D-24-12)35bcd-1		Core hole in bare slope of San Rafael Reef, where precipitation can drain from site. Cut 1.375-in. core to depth of 3.5 ft. See Hood and Danielson, 1981, table 11. Tan friable sand stone.
	TQUT-5	Depth 0.0-1.0 ft.
	DAN-15	Depth approximately 1 ft.
	DAN-18	Depth approximately 3 ft.
	DAN-19	Depth approximately 3.4 ft.
D-24-12)35bcd-2		Core hole in bare slope of San Rafael Reef, where precipitation can accumulate in depression. Cut 1.375-in. core to depth of 3.9 ft. See Hood and Danielson, 1981, table 11. Tan friable sandstone.
	TQUT-4	Depth 0.0-1.0 ft.
	DAN - 21	Depth approximately 1 ft.
	DAN-22	Depth approximately 2 ft.
	DAN-23	Depth approximately 3 ft.

Table 13.--Descriptions of rock samples analyzed for hydrologic properties and grain-size distribution, and of sampling sites--Continued.

		grain-size distribution, and of sampling sitesContinued.
Location	Sample No	. Description
Sample from the Na	avajo Sandsto	oneContinued
(D-24-12)35cbd-2		Core hole in bare bottom of Old Woman Wash. Cut 2,25-in. core to approximately 4 ft. See Hood and Danielson, 1981, table 11. Tan friable sandstone.
	76UT-39-1	Depth 0.0-0.10 ft.
	76UT-39-2	Depth 0.10-1.0 ft.
	NS-7A	Depth 1.0-2.0 ft.
(D-24-14)32aac-1	UTSR-18	Weathered hand specimen from base of bluff west of Cottonwood Wash and south of fault scarp that exposes Navajo Sandstone near Cottonwood Spring. Very friable sandstone with red and tam laminae. Weathering causes sandstone to split into thin sheets. Sample from about 100 ft below top of formation.
(D-24-16)12bcb-1	UTSR-7	Weathered hand specimen from edge of canyon west of Green River and south of ranch trail. Sam- ple from near top of formation. Pale orange well-indurated sandstone.
(D-24-16)15dbb-1	UTSR-22	Core hole in bare sandstone at north side of dry stream channel and east of county road where it skirts around shallow canyon. Cut 2.25-in, core to depth of 3.5 ft. Hole cased with sealed aluminum tubing for soil moisture measurements. Hole is in top of formation. Brown, moderately indurated sandstone.
	UTSR-22-1	Depth 0.0-0.40 ft.
	UTSR-22-2	Depth 0.40-0.90 ft.
	UTSR-22-5	Depth 1.5-1.9 ft.
	UTSR-22-9	Depth 2.8-3.3 ft.
Samples from the K	ayenta Forma	ation
(D-22-10)33bca-1	UTSR-14	Hand specimen from road cut on north side of Interstate Highway 70 and west of Ghost Rocks rest area. Sample is from point about 10 ft below natural land surface. Tan to light pink, cross- bedded sandstone with streaks of red along bedding planes and included pellets of green shale.
(D-22-10)33bca-2	UTSR-14A	Hand specimen from same site as UTSR-14, but from about 4 ft below natural land surface. Light tan to greenish-white, even-bedded, very fine-grained sandstone with green streaks along bed- ding planes.
Samples from the W	lingate Sands	ltone
(D-19-11)33bbd-1	UTSR-6	Hand specimen from road cut on east side of road in Buckhorn Wash Canyon. Pinkish-tan firm sandstone.
(D-22-13)1dcd-1	UTSR-11	Hand specimen from road cut at south side of Interstate Highway 70 in Spotted Wolf Canyon. Sample from near middle of formation. Pink to tan or orange massive sandstone with thin lam- inae. Moderately indurated.
		Thin-section description: fine sandstone; quartzarenite.
		This sample is well-sorted, loosely packed sandstone consisting of 95 percent quartz, 4 per- cent feldspar, and 1 percent chert. Grain size ranges from 0.02-0.20 mm, and the grains are subrounded and equant to subelongate. Grain contacts are primarily planar and tangential. The major clastic constituent is monocrystalline quartz with straight or slightly undulose extinction. Rutile and zircon are present as inclusions. Minor amounts of polycrystalline quartz and chert also are present.
		Plagioclase feldspar and microcline are evenly dispersed throughout the sample. Clay alter- ation and dissolution of these feldspars is common.
		The sample is cemented by an early stage of secondary quartz overgrowths. A trace amount of calcite also is present. The sample is very poorly consolidated and contains 31 percent pore space. Trace amounts of organic material and hornblende are present in the sample.
(D-22-13)35bcc-1	UTSR-9	Weathered hand specimen from south wall of canyon, near stream level. Dark red sandstone, part of which has a salt and pepper appearance.
(D-23-10)9bbd-2	UTSR-17	Weathered hand specimen from near base of formation and near road to Swazy Cabin, about 100 ft north of Cliff Dweller Spring (table 10). Brown sandstone with specks of unidentified min- eral.
Sample from the Mo	ss Back Sand	istone Member of the Chinle Formation

(D-22-13)35bcc-2 UTSR-10 Hand specimen from the mouth of an old mine adit in the south wall of canyon. Slightly weathered banded cream and tan firm sandstone.

Location	Sample No.	Description
Samples from the S	Sinbad Limest	cone Member of the Moenkopi Formation
(D-17-12)1bba-1	-	Suite of 1 ft cores from petroleum-test well (table 11); from depths of 3,128-3,136 ft. Table 4 gives average of four samples.
(D-24-13)23cdc-1		Suite of 1 ft cores from petroleum-test well (table 11).
	1	Depth 2,083-2,084 ft; gray-tan very finely crystalline sugary dolomite.
	2	Depth 2,084-2,085 ft; Do.
	3	Depth 2,085-2,086 ft; Do.
	1-6	Depth 2,083-2,089 ft; Do. Air permeability range: 0.13-48 md. Porosity range: 4.4-20.4 percent.
	7	Depth 2,089-2,090 ft; gray-tan very finely crystalline sugary dolomite.
	8-23	Depth 2,090-2,106 ft; Do. Air permeability range: 0.04-1.0 md. Porosity range: 3.9-11.4 percent.
	24-28	Depth 2,108-2,113 ft; gray-tan very finely to finely crystalline dolomite. Air permeability range: 0.02-0.25 md. Porosity range: 0.06-6.9 percent.
	29	Depth 2,118-2,119 ft; gray-tan very finely crystalline slightly shaly dolomite.
(D-25-13)12bac-1		Suite of 1 ft cores from petroleum-test well (table 11); from depths of 1,876.5-1935 ft.
	1-6	Depth 1,876.5-1,882 ft; dark tan-gray silty limy very fine grained sandstone. Air permeability range: 0.05-0.12 md. Porosity range: 3.1-5.8 percent.
	7	Depth 1,882-1,883 ft; dark gray very finely crystalline silty limestone.
	8-12	Depth 1,883-1,888 ft; dark tan-gray silty limy very fine grained sandstone. Air permeability range: 0.03-0.10 md. Porosity range: 1.8-4.6 percent.
	13-15	Depth 1,892-1,895 ft; dark tan-gray silty limy very fine grained sandstone. Air permeability range: 0.3-0.4 md. Porosity range: 1.0-3.6 percent.
	16-19	Depth 1,899.5-1,903 ft; dark tan-gray silty limy very fine grained sandstone. Air permeability range: 0.04-2.7 md. Porosity range: 2.0-7.9 percent.
	20-21	Depth 1,920-1,922 ft; dark tan-gray very finely crystalline silty limestone. Air permeability range: 0.27-1.8 md. Porosity range: 7.1-13.8 percent.
	22-23	Depth 1,922-1,924 ft; dark tan-gray very finely crystalline silty dolomite. Air permeability range: 0.75-1.1 md. Porosity range: 10.1-10.8 percent.
	24-26	Depth 1,924-1,927 ft; dark tan-gray very finely crystalline silty limestone. Air permeability range: 0.03-0.04 md. Porosity range: 1.1-1.9 percent.
	27	Depth 1,927-1,928 ft; dark tan-gray very finely crystalline silty dolomite.
	28-33	Depth 1,928-1,934 ft; Do. Air permeability range: 0.07-0.77 md. Porosity range: 4.8-9.0 percent.
	34	Depth 1,934-1,935 ft; dark gray-tan very finely crystalline dolomite.
	36	Depth 1,936-1,937 ft; Do.

Table 13.--Descriptions of rock samples analyzed for hydrologic properties and grain-size distribution, and of sampling sites--Continued.

Samples from the Kaibab Limestone

•

(D-24-13)23cdc-1		Suite of 1 ft cores from petroleum-test well (table 11); from depths of 2,200-2,236 ft. Sam- ples are variously anhydritic or conglomeritic and contain pyrite.
	30-51	Depth 2,200-2,222 ft; gray to gray-tan very finely to finely crystalline dolomite. Air permeability range: 0.01-0.06 md. Porosity range: 0.4-2.4 percent.
	52	Depth 2,222-2,223 ft; tan finely crystalline dolomite.

Table 13.--Descriptions of rock samples analyzed for hydrologic properties and grain-size distribution, and of sampling sites--Continued.

Location	Sample No.	Description
Samples from the k	Kaibab Limest	oneContinued
(D-24-13)23cdc-1 Continued	53-59	Depth 2,223-2,230 ft; tan very finely to finely crystalline dolomite. Air permeability range: 0.05-0.15 md. Porosity range: 4.6-8.8 percent.
	60	Depth 2,230-2,231 ft; tan very finely to finely crystalline dolomite.
	61	Depth 2,231-2,232 ft; Do.
	62~65	Depth 2,232-2,236 ft; Do. Air permeability range: 0.06-1.9 md. Porosity range: 7.4-9.1 percent.
Samples from the C	Coconino Sand	stone
(D-21-11)25ddd-1	UTSR-13	Weathered hand specimen from outcrop at east edge of scoured bare bottom of Cottonwood Draw and west of nearby county road. Gray to tan, massive sandstone that has crust of desert varnish.
(D-21-11)25ddd-2	UTSR-13A and UTSR-13B	Pair of core holes, about 1 ft apart, at site of UTSR-13. Cut 2.25-in. cores. Hole 13A, on south, cut to depth of 2 ft and cased with sealed aluminum tubing for soil moisture measurements. Hole 13B, on north, cut to depth of 0.5 ft. Sandstone was very hard.
	UTSR-13A-1	Depth 0.0-0.15 ft.
	UTSR-13B-1	Depth 0.0-0.20 ft.
	UTSR-13B-2	Depth 0.20-0.45 ft.
	UTSR-13A-3	Depth 0.80-1.10 ft.
	UTSR-13A-5	Depth 1.45-1.80 ft.
		Thin-section description: medium sandstone; quartzarenite.
		This sample is homogeneous, moderately sorted sandstone consisting of almost 100-percent quartz. These grains generally are equant in shape and subrounded to subangular. Grain size ranges from 0.04-0.46 mm. The moderately packed grains display concavo-convex and sutured contacts.
		The sample consists of monocrystalline quartz grains with straight or undulose extinction. Rutile needles and zircon are common inclusions. Rare polycrystalline and composite grains also are present.
		Secondary quartz overgrowths cement the sample. Faint dust rims delineate these overgrowths on a few grains. This cementation is incomplete, however, and remaining intergranular pore space accounts for 12 percent of the sample.
		Traces of microcline, plagioclase feldspar, muscovite, and calciteare found in the sample.
	UTSR-13A-6	Depth 1.80-2.00 ft. Laboratory reported sample too hard to disaggregate for sieve analysis.
(D-23-11)27bca-1	UTSR-23	Core hole in bare, weathered outcrop on slope southwest of abandoned petroleum-test well foun- dation and east of county road; near top of the formation. Cut 2.25-in. core to depth of 4.5 ft. Hole bottom in damp limestone that was very hard to cut. Hole cased with sealed aluminum tubing for soil moisture measurements. Upper 1.2 ft not used for permeability determination because of natural vertical fracture.
	UTSR-23-1	Depth 0.0-0.1 ft. Used for soil carbonate determination.
	UTSR-23-4	Depth 1.45-2.10 ft.
	UTSR-23-5	Depth 2.10-2.50 ft.
	UTSR-23-6	Depth 2.50-2.85 ft.
	UTSR-23-9	Depth 3.70-4.15 ft.
(D-23-13)8със-1	UTSR-12	Hand specimen from strongly weathered outcrop on terrace at west side of a flat-topped butte and south of an abandoned petroleum-test well; on a jeep trail. Sample from near top of for- mation. White to gray sandstone that weathers to yellow color. Here and elsewhere in general area, these weathered outcrops have irregular patches of bright red color, which probably relate to localized iron concentration.
Samples from rocks	of Mississi	ppian age
(D-25-13)12bac-1		Suite of 1 ft cores from petroleum-test well (table 11); from a depth of 3,823-3,840 and 3,941-3,960 ft. All samples were very finely crystalline dolomite.

Location	Sample No.	Description										
Samples from rocks of Mississippian ageContinued												
(D-25-13)12bac-1 Continued	37-41	Depth 3,823-3,828 ft; light tan to tan; one section slightly vuggy. Air permeability range: 0.17-0.70 md. Porosity range: 7.2-12.2 percent.										
	42	Depth 3,828-3,829 ft; light tan.										
	43-47	Depth 3,829-3,834 ft; light tan; vertical fracture in lower 1 ft.										
	48	Depth 3,834-3,835 ft; tan, chalky; vertical fracture.										
	49	Depth 3,835-3,836 ft; Do.										
	50	Depth 3,836-3,837 ft; Do.										
	51-53	Depth 3,837-3,840 ft; Do. Air permeability range: 0.23-0.43 md. Porosity range: 11.3-13.2 percent.										
		Unsampled interval										
	54-56	Depth 3,941-3,944 ft; light tan to tan. Air permeability range: 0.02-0.08 md. Porosity range: 1.5-4.3 percent.										
	57-58	Depth 3,944-3,946 ft; tan.										
	59-60	Depth 3,946-3,948 ft; light tan to tan.										
	61-62	Depth 3,948-3,950 ft; tan.										
	63-67 and 69-72	Depth 3,950-3,960 ft; light tan. Air permeability range: 0.02-0.07 md. Porosity range: 4.6-8,3 percent.										

Table 13.--Descriptions of rock samples analyzed for hydrologic properties and grain-size distribution and of sampling sites--Continued.

[Constituents are in milligrams per liter unless otherwise noted; Abbreviations: ft, feet; gal/min, gallons per minute; °C, degrees Celsius;

Location: See text for description of well- and spring-numbering system. S, well plugged back; W, petroleum-test well con-verted to or left for use as water well. Prefix R designates half-range east. Source of water: M, mine shaft; P, petroleum-test well; S, spring; T, test well or test hole; W, water well. Date: F, sampled from open-hole flow; P, sampled through packer. Note - samples from most petroleum-test wells were col-lected by means of packer tests. Analysis by: U.S. Geological Survey, except analyzed or reported by CL, Core Laboratories, Inc., Dallas; CGL, Chemical and Geological Laboratories, Gasper; CSO, Cities Service Oil Co.; CTL, California Testing Laboratories, Inc., Los Angeles; FL, Ford Laboratory, Salt Lake City; MFS, Mountain Fuel Supply Co.; PL, Peterson Laboratory, Salt Lake City; RO, Reserve Oil and Gas Co.; ShO, Shell Oil Co.; SO, Superior Oil Co.; UH, Utah Department of Health; VHA, Vaughn Hansen Associates, Salt Lake City.

	ter	}	(see 2)	Sample I			(c)			Dissol	lved co	nstituer	nts	
Location	Source of wate	Date	Geologic unit tables 1 and 2	Depth to top (ft)	Depth to botton (ft)	Discharge (gal/min)	Temperature (°	Silica (Si02)	lron (Fe) (μg/L)	Calcium (Ca)	Magnesium	Sodium (Na)	Sodium plus Potassium as (Na)	Potassium (K)
(D-15-10)26aaa-1	Р	5-13-58	331 HMBG	10,060	10,160	-	-	-	-	1,530	396	-	6,580	-
(D-15-11)12cda-1	Р	1-21-39	220NVJ0	3,095	3,114	-	-	-	m	874	61	-	422	-
(D-15-12)7ccc-1	Р	463	300PLZC	7,433	7,986	-	-	-	m	1,444	311	-	10,960	-
8ccd-1	Р	8-18-59	300PLZC	8,323	9,174	-	-	-	-	3,496	716	-	21,580	-
(D-15-13)17dbc-1	Р	1971	330DSRT	7,990	8,080	-	-	-	-	5,350	915	23,900	-	2,900
18caa-S1	S	9-17-75	111ALVM	-	-	168	13.0	18	30	77	77	120	-	2.6
(D-16-12)1bbd-1	Р	153 553	237SNBD 330MDSN	4,014 7,831	4,083 7,930	-	-	-	-	-	-	-	-	-
4bad-1	Р	1953 1953 1953	237SNBD 237SNBD 237SNBD	4,138 4,138 4,185	4,175 4,175 4,207	-		- - -	- - -	-		-	- -	-
16cbd-S1	\$	7-18-79	217CDRM	-	-	2.0e	15.0	7.5	10	3.4	1.	1 550	-	2.1
27abb-1	Р	1-14-57 257	310CCNN 330MDSN	4,442 6,998	4,458 7,132	-	Ξ	:	-	1,360 1,940	377 454	-	4,750 18,500	-
D-16-13)20dab-S1	s	7-18-79	217CDRM	-	-	30 e	29.0	16	20	190	230	550	-	3.4
21ccd-1	p	563 5-17-63	220GLNC 230MNKP	1,784 3,494	2,400 3,550	50	-	-	-	480 -	-	-	-	-
D-17-12)23aba-S1	S	5-18-79	221 ENRD	-	-	25	20.0	9.8	20	430	260	850	-	25
D-17-13)3abd-S1	S	11-21-67 7-18-79	111ALVM	-	-	- .1	21	17 23	10 20	113 190	168 320	390 450	-	5.0 6.1
30ddd-15	W	6-28-79	220NVJO	353	560	12	16.0	11.	5,000	320	280	2,500	-	4.4
32bdc-1	Т	5-19-79 5-20-79	220NVJO 220GLNC	312 312	400 700	25 e 100 e	17.0 17.5	9.2 9.4	30 390	620 620	210 210	270 260	Ξ	30 29
D-18-10)13aab-S1	s	7-10-79	217CDRM	-	-	4 e	17.5	9.8	10	58	12	74	-	1.3
D-18-11)33acd-S1	S	7-10-79	221 BRSB	-	-	<.1	22.0	7.3	30	10	6.	7 850	-	4.5
D-18-14)9dca-1	т	10-16-33 3-14-47 9-15-47 9-17-52 6-22-56	220NVJO	-	3,180	15	28.0 26.0	24	0 - - -	684 908 - 847 -	295 288 - 287 -	- 312	351 360 - -	112
30ccb-1	Р	10-25-62 10-29-62 10-20-62	310KIBB 310CCNN 330MSSP	3,606 3,717 6,963	3,673 3,868 7,083	-	- - -		0 0		486 4,860 4,860	-	9,670 12,100 16,200	-
D-19-9)1acd-S1	s	10-31-58	221BRSB	-	-	1 e	14.0	7.3	-	7.2	0	-	287	-
26cab-S1	s	9-11-75	221SMVL	-	-	.5	15.5	6.8	-	150	170	710	-	5.7
D-19-10)15bac-1	W	10-21-76	221CRML	-	476	20	14.0	13	60	510	270	210	-	10
D-19-13)12ddd-1S	Р	10-5-69	310KIBB	3,341	3,373	-	-	-	-	1,680	437	12,500	-	1,400

e, estimated, m, presence of ion verified, but not quantified. $\mu g/L$, micrograms per liter; $\mu mhos/cm$, micromhos per centimeter.]

33)		03)	1	Di	ssolve	d cons	titue	nts		Dissol	ved solid:	, ô		ness CaCO3	E		
Bicarbonate (HCO3)	Carbonate (CO3)	Alkalinity (CaCO3)	Sulfate (SO4)	Chloride (Cl)	Fluoride (F)	Nitrate (NO3)	Nitrite plus Nitrate (N)	Orthophosphate (PO4)	Boron (B) (ug/L)	Residue at 180°C	Sum of constituents	Specific conductance (umhos/cm at 25°	Total (Ca, Mg)	Noncarbonate	Sodium-adsorption ratio	pH (units)	Analysis by
634	0	520	2,820	11,600	-	-	-	-	-	-	23,570	36,700	5,500	4,900	-	7.1	Sh0
3,070	-	2,520	586	172	-	-	-	-	-	-	3,607	-	2,400	0	-	-	
2,269	-	1,860	8,400	13,100	-	-	-	-	-	-	35,780	42,300	4,900	3,000	-	7.3	CGL
2,147	-	1,760	2,346	38,570	-	-	-	-	-	-	67,770	91,700	12,000	9,900	-	7.2	CGL
3,200	0	2,630	956	49,000	-	-	-	-	-	-	84,600	100,000	17,000	15,000	79	6.2	CGL
395	0	324	480	47	0.2	-	7.2	0.00	120	-	1,080 1	1,500	650	320	2.1	7.6	
-	-	-	-	9,700 44,000	-	-	-	-	-	-	-	-	-	-	-	-	CSO CSO
-	-	-	6,400 72,000 10,400	78,000 75,200 88,000		- - -	-	-	-		-		29,200 38,400 51,320	-		6.7	PL PL PL
-	-	940	150	79	1.6	-	-	-	620	-	1,360	2,140	13	0	66	-	
2,490 4,030	-	2,040 3,310	642 2,710	8,900 29,000	-	-	-	-	-	-	17,200 54,600	27,500 68,800	4,900 6,700	2,900 3,400	-	7.9 6.8	CGL CGL
-	-	250	2,000	130	.4	-	-	-	410	-	3,270	4,170	1,400	1,200	6.3	6.9	
:	-	-	-	18,000	-	-	-	-	-	-	-	-	-	-	-	-	RO RO
-	-	180	3,300	230	.8	-	-	-	410	-	5,210	6,360	2,100	2,000	8.0	6.4	
506 -	0 -	416 350	1,220 2,000	105 120	.4 .3	9.5 -	-	.70	250 320	Ξ	2,438 ² 3,320	2,505 4,050	976 1,800	560 1,400	5.4 4.6	7.6 6.2	UH
-	-	690	5,600	1,100	.7	-	-	-	6,400	-	10,200	12,800	2,000	1,300	25	6.1	
-	-	610 680	2,000 2,000	120 110	.8 .6	-	2	-	590 520	· -	3,630 3,650	4,000 3,900	2,400 2,400	1,800 1,700	2.4 2.3	7.2 7.0	
-	-	240	75	39	.3	-	-	-	80	-	414	703	190	0	2.3	6.1	
-	-	380	1,300	200	1.0	-	-	-	470	-	2,710	3,930	53	0	51	8.8	
2,160 2,840 2,760	- 0 0	1,770 2,330 2,260	1,560 1,540 -	200 215 195	- -	.10 - -			400	-	4,170 4,170 -	- 5,640 5,490	2,920 3,450	1,100 1,120 -	-	-	
2,660 1,560	0 0	2,180 1,280	-	-	-	-	2	-	-	-	-	5,430 4,700	3,300 2,440	1,120 1,160	2.4	- 6.6	
4,050 3,030 3,270	0 0 0	3,320 2,490 2,680	60 200 29,100	18,800 22,700 29,110	-		-		- -	-	36,800 39,400 51,890	50,000 52,400 75,800	8,000 26,000 26,000	4,700 24,000 23,000	-	6.0 6.0 6.0	CL
329	28	316	181	94	1.9	.70	-	-	-	754	768	1,240	18	0	29	8.8	
332	0	272	1,600	470	• 5	-	.06	~	600	-	3,280 ³	5,240	1,100	800	9.4	8.1	
105	0	86	2,200	270	.4	-	.17	-	1,000	-	3,550 4	3,700	2,400	2,300	1.9	7.1	
3,870	0	3,170	2,980	20,300	-	-	-	-	-	-	41,200	55,000	6,000	2,800	70	7.4	CGL

Table 14.--Selected chemical analyses of water samples from water

	er		2) see	Sample 1			6			Díss	olved e	onstitue	11.8	
Location	Source of war	Date	Geologic unit tables 1 and	Depth to top (ft)	Depth to bottom (ft)	Discharge (gal/min)	Temperature	Silica (SiO ₂)	Iron (Fe) (µg/L)	Calcium (Ca)	Magnesium	(sodium (Na)	Sodium plus Potassium as (Na)	Potassiun (X)
(D-19-13)12ddd-1W	Р	8-11-62 8-13-62	324PRDX 330MSSP	5,518 6,736	5,608 6,915	-	-	-	0		1,020 365	-	8,450 16,170	-
1366d-S1	S	5-20-79	221CRTS	-	-	5	18.5	8.4	50	200	250	2,900	-	120
21cbd-1	Т	6-27-80	220NVJO	120	310	30 e	15.5	8.3	20	56	52	14	-	6.1
(D-20-9)35ccd-S1	s	5-9-79	221CRML	-	-	3е	11.0	8.2	30	560	120	63	-	13
(D-20-10)6bdd-1	Т	F 8-14-80 P 7-14-80	220NVJO	152 147	475 475	10 e 2.8	13.0 13.0	8.4 8.5	1,100 <10		41 40	42 43	-	16 15
(D-20-11)3cab-S1	S	5-3-78 6-8-78	111ALVM	-	-	-	-	-	-	259 296	37 101	198 210	-	-
4aab-S1	S	10-31-58 5-3-78 6-8-78	231CHNL	-	-	20 e _ _	- -	12	-	329 263 444	124 85 218	- 180 576	194 - -	85_
11bcc-S1	S	5-3-78 6-8-78	111ALVM	-	-	. -	-	-	-	280 344	149 161	280 488	-	-
(D-20-13)15dad-S1	S	6-8-79	220NVJO	-	-	<5 e	13.5	7.3	20	86	110	43	-	8.5
(D-20-14)31cbd-1	W	6-8-79 10-31-79	221CRML	-	150	50 e	15.0 14.0	10	- 770	- 88	- 35	20	-	9.7
(D-20-16)17dab-1	W	8-8-58	112ALVM	-	30	-	-	18	-	147	60	-	234	-
(D-21 - 9)2666-1	Т	5-9-79 5-10-79 5-10-79 5-12-79	220NVJO 220GLNC	350 350 350 350	520 640 860 1,450	100 e >100 200 e	14.0	9.6 8.2 7.3 7.3	10 520 10 10	180 160 160 130	60 50 49 50	17 7. 10 22	5 - - -	6.9 6.5 8.1 16
(D-21-13)24cbb-S1	S	9-19-31	230MNKP	-	-	200 e	-	-	-	681	133	-	171	-
(D-21-14)4cbd-1	М	8-14-56	221CRML	-	-	-	-	-	-	-	-	1,000	-	-
5aab-S1	s	8-6-79	221CRML	-	-	<5 e	13.5	8.9	790	120	48	24	-	12
(D-21-15)24cca-1	P	461 461	330MSSP 330MSSP	9,555 9,705	9,652 9,752	-	-	-	101,000 3,400	4,370 10,120	1,600 1,410	-	121,000 86,830	Ξ
(D-21-16)9aac-1	W	9-21-60	111ALVM	12	16	-	-	14	-	377	150	-	472	-
34dda-1	Р	9-22-47 3-22-48 9-27-48 9-17-52	200MSZC	-	2,627	- 6,700_e	18.0 16.0	15 13 -	- - -	258 1,000 - 870	235 225 - 220	- - 3,180	4,180 4,070 - -	305
(D-21-17)26adc-1	Р	4-22-69	324HRMS	6,465	6,615	-	-	-	-	9,640	875	-	53,290	-
(D-22-8)11ccb-15	W	661	231 KYNT	1,400	2,246	-	-	-	-	-	-	-	-	-
23aad-S1	s	4-23-59	221CRML	-	-	.5 e	-	15	-	477	226	-	1,670	-
(D-22-9)8aca-S1	S	10-25-79	221 CRML	-	-	10 e	17.0	10	-	520	230	170	-	11
(D-22-10)23cbc-1	т	12-27-71	231 WNGT	-	83	-	-	7.0	0	68	31	11	-	18
30aca-1	Т	6-15-66 6-17-66 6-27-66	230MNKP	-	704 1,080 1,200	-	-	13 9.4 7.2	-	40 12 112	215 137 126	- -	292 247 316	-
(D-22-13)35bdc-2	т	7-17-80	220NVJO	-	310	20 e	17.5	12	10	160	74	23	-	10
35bcd-S1	s	7-6-79	111ALVM	-	-	<5 e	18.0	11	30	260	120	100	-	15
(D-22-14)6bbc-S1	S	10-28-58 2-1-68	220NVJO	-	-	5_e _	7 <u>.</u> 0	7.1 7.0	- 30	76 60	33 32	- 5.	16 0 -	3.0
28dba-1	W	5-21-80	221ENRD	-	515	<5 e	17.0	33	800	800	220	390	-	1.9
28ddd-1	W	10-28-58	221 CRTS	-	265	-	16.0	10	-	321	246	-	551	-
31ddb-1	W	1-9-36	221CRML	-	350	-	-	-	-	-	-	-	-	-
(D-22-16)2bba-1	Р	10-21-48	324PRDX	5,100	5,250	-	-	16	-	68,500	9,090	55,950	-	-
2bbd-1	Р	7-17-49	324PRDX	5,792	5,896	146	-	10	-	76,200	9,480	58,300	-	-

•

(HC03)	; {	03)	Dissolved constituents								lved solids	, Û	a a	Hardness as CaCO3		Τ	T
Bicarbonate (HC		alinity	Sulfate (SO4)	Chloride (Cl)	Fluoride (F)	Nitrate (NO3)	Nitrite plus Nitrate (N)	Orthophosphate	(P04) Boron (B) (µg/L)	Residue + 180°C	J 55	Specific conductance (umhos/cm at 25		rbonat	Sodium-adsorption	pH (units)	Analysis by
2,196 1,903	5 0 3 0		320 800	16,190 28,970	-	-	-	2	-	-	29,140 50,850	76,400	6,600 8,100		-		CL CL
-	-	190	8,000	520	1.0	-	-	-	460	-	12,100	14,300	1,500	1,300	32	6.5	
-	-	250	100	14	1.5	-	-	-	120	-	402	690	350	100	.3	7.8	
-	-	64	1,900	54	.5	-	-	-	870	-	2,760	2 ,86 0	1,900	1,800	.6	6.8	
-	-	110 250	260 260	16 13	1.0	-	-	-	190 170	-	552 631	870 968	420 410	310 160	.9 .9	7.0	
212 256	ō	174 210	970 1,300	38 30	-	-	-	-	-	1,600 2,070	-	2,480 3,190	800 1,200	630 950	3.0 2.7	-	VHA VHA
232 2,830 207	- (209 2,320 170	1,430 1,060 2,870	36 32 60	1.7 _ _	0.30			-	2,430 1,770 4,280	2,250	2,550 2,710 6,590	1,330 1,000 2,000	1,120 0 1,800	2.3 2.5 5.6	8. 4 - -	VHA VHA
256 402		210 330	1,520 2,140	80 30	2	-	2	-	-	2,455 3,385	-	3,770 5,200	1,300 1,500	1,100	3.4 5.4	-	VHA VHA
-	-	280	370	63	.4	-	-	-	100	-	857	1,120	620	390	.7	6.7	
-	-	- 260	160	- 9.9	1.7	-	-	-	110	-	- 492	680 767	- 360	- 100	- .5	6.4 7.2	
670	0	550	450	72	.2	-	-	-	-	1,310	1,310	1,870	612	62	4.1	7.7	
-		300 240 280 270	380 380 290 290	16 9.1 9.2 14	.2 .2 .4 .5		-	-	100 90 100 200		850 766 702 692	1,150 900 1,030 1,030	700 610 600 530	400 370 320 260	.3 .1 .2 .4	6.5 6.9 6.8 7.2	
1,170	-	960	1,310	208	-	-	-	-	-	3,180	3,080	-	2,250	1,300	-	_	
700	0	574	1,530	215	-	-	-	-	-	-	-	4,470	120	0	40	8.2	
-	-	290	240	12	1.7	-	-	-	140	-	642	992	500	210	.5	6.4	
1,452 366		1,190 300	2,400 300	196,400 155,000	-	-	-	-	-	-	327,300 254,500	250,000 250,000	18,000 31,000	16,000 31,000	-	5.5 5.0	
561	0	460	1,910	95		-	-	-	-	-	3,290	3,840	1,560	1,100	5.2	7.2	
2,010 4,400 2,900 3,720	0 0	1,650 3,610 2,380 3,050	2,360 2,410	4,670 4,370 -	-	-	-	-		-	12,700 14,300 -	18,200 19,400 18,800	1,610 3,420	- 00	30		
220		180	830	-	_	-	-	-	22,000	- 180,700	-	16,200 196,100	3,080 27,700	26 28,000	25	- 6.8	sha
-	-	-	-	935	-	-	-	_	-	-	-	6,460		-	-	-	3110
116	0	95	3,800	1,200	.8	5.8	-	-	1,500	-	7,450	8,990	2,120	2,020	16	7.4	
-	-	190	2,200	120	.4	-	-	-	-	3,580	3,380	3,660	2,200	2,100	1.6	7.7	
295	0	243	73	8	.4	.50	- (0.10	680	-	360	645	296	53	.3	7.6	UH
572 700 506	0	469 574 415	1,040 472 934	45 45 70	-	1.2 .90 .50	-		- -	1,970 1,260 1,950	1,930 1,270 1,820	2,420 1,750 2,460	982 592 800	513 18 385	4.4	7.4 7.4 7.8	
-	0	280	450	35	.5	-	-	-	120	-	933	1,290	700	420	.4	7.3	
-	-	250	980	59	•2	-	-	-	100	-	1,700	2,200	1,100	890	1.3	6.8	
267 248	6 0	229 206	112 86	8 11	.1 .3	.90 .00	-	.40	-90	388 -	5 ³⁹⁰ 355	607 540	324 282	95 75	.4 .1	8.3 8.2	UH
-	-	2,200	1,200	110	.1	-	-	-	540	-	4,080	5,300	2,900	700	3.2	6.6	
2,020	0	1,660	1,120	132	•0	.10	-	-	-	3,460	3,370	4,340	1,810	154	5.6	7.1	
-	-	-	2,380	86	-	-	-	-	-	5,100	-	-	-	-	-	-	
- 919	583 0	- 754	137 49	231,000 249,000	-	-	-	-	490,000 600,000	367,000 397,000	- 394,000	-	210,000 230,000	- 230,000	53 53	- 6.3	CTL CTL

Table 14.--Selected chemical analyses of water samples from water

	_н	Date	t (see	Sample I	E	Discharge (gal/min)	()°)	Dissolved constituents								
Location	Source of water		Geologic unit tables 1 and 2	Depth to top (ft)	Depth to botto (ft)		Temperature (Silica (Si02)	Iron (Fe) (µg/L)	Calcium (Ca)	Magnesium	Sodium (Na)	Sodium plus Potassium as (Na)	Potassium (K)		
D-22-16)25bbc-1	Р	3-21-73	310CCNN 310PRMN 321HKTL 330MSSP	2,585 3,442 4,175 9,225	2,605 3,480 4,232 9,280	- - -	-	- - -	- - -	515 2,450 1,470 9,560	120 598 598 1,200	5,700 24,400 86,600 64,400	- - -	170 620 770 2,700		
25ad-S	s	9-17-52	221 ENRD	-	-	-	-	-	-	-	-	-	-	-		
25dc-S	S	9-17-52	221BRSB	-	-	-	-	-	-	642	96	1,400	-	59		
D-22-17)34bda-1	Ρ	858	330MSSP	10,050	10,170	-	-	-	-	9,760		.1 -	66,730	-		
D-23-8)21bdc-S1	S	7-18-79	221CRML	-	-	5 e	-	-	-	~	-	-	-	-		
30bdb-S1	s	7-18-79	221CRML	-	-	10 e	-	-	-	-	-	-	-	-		
(D-23-9)2ccb-1	W	8-12-71	310CCNN	-	690	-	-	9.0	250	216	112	10	-	8.0		
(D-23-10)9bbd-S1	S	10-31-58	231WNGT	-	-	<1	-	7.5	-	127	112	-	39	-		
12ddd-1	W	10-31-58 7-19-79	230MNKP	-	217	4 e 7.2	11.0 12.5	4.6 6.9	- 540	238 270	400 350	170	204 -	53		
28dbb-1	Р	661 761	330MSSP 330MSSP	-	2,197 2,265	-	-	-	0 0	400 160	340 196	416 -	- 331	-		
(D-23-13)34dbd-S1	S	10-28-58	111ALVM	-	-	15 e	16.0	10	-	303	126	-	36	-		
(D-23-14)25bca-1		F 7-22-80 P 7-23-80	220NVJO	460 450	700 700	20 e 14	17.0 16.5	8.1 8.1	320 400	110 94	41 40	19 19	-	11 10		
36bdd-1	Т	7-19-80 7-19-80	221CRML 221CRML	-	110 205	30 e 100 e	15.0 15.0	10 -	- 80	500 -	170 -	120	-	20		
D-23-15)21bab-1	Р	8-31-59	330MSSP	7,500	7,702	-	-	-	-	1,440	208	7,290	-	-		
D-23-16)3bca-1	Р	8-23-61	330MSSP	8,530	8,715	-	-	-	-	9,590	1,260	55,900	-	-		
15dca-1	Р	961 1061	310WTRM 330MSSP	8,210	2,510 8,440	3.3	-	-	-	474 5,090	86 2,920	681 65,000	-	-		
(D-23-17)15cba-1	Р	361	330MSSP	8,678	8,768	-	-	-	-	3,469	752	-	84,660	-		
17ada-1	Р	1262	330MSSP	8,732	8,738	-	-	-	-	6,300	1,000	-	56,200	-		
17dbc-1	P	1262	330MSSP	8,709	8,716	-	-	-	-	5,780	1,450	-	56,850	-		
D-24-9)5bcb-1	W	7-19-79	231CHNL	-	-	10 e	14.5	5.5	1,000	230	1 30	150	-	100		
(D-24-13)11adb-15	W	5-14-80	220JRSC	-	1,508	10	17.0	6.9	60	110	66	16	-	11		
36dba-1	W	5-13-80	200MSZC	-	1,202	13	15.0	8.3	780	300	230	35	-	16		
D-24-14)21adb-1	W	6-7-79	220NVJO	-	-	8	15.0	7.6	270	78	47	5.	0 -	7.		
D-24-15)6caa-1S	W	6-7-79	220NVJO	230	-	10 e	15.5	7.1	2,800	170	60	62	-	17		
D-25-11)33dbd-1	Т	3-7-75	220NVJ0	380	400	60	-	3.4	50	150	66	46	-	8.3		
(D-25-15)32cac-1	W	7-11-56	220NVJO	-	720	-	-	-	-	125	86	-	28	-		
(D-26-11)9bbb-1	W	3-8-80	220NVJO	802	844	-	-	16	150	229	30	75	-	273		
R(D-25-17)20daa-1	Р	1-25-61	330MSSP	6,361	6,386	-	-	-	0	560	1,070	-	9,660	-		

1 Includes 3 μ g/L Li, 13 μ g/L Se, and 30 μ g/L Zn. 2 Includes 20 μ g/L Zn. 3 Includes 2 μ g/L As, 11 μ g/L Pb, 240 μ g/L Li, 10 μ g/L Se, and 20 μ g/L Zn. 4 Includes 2 μ g/L Pb, 70 μ g/L Li, 11 μ g/L Sr, and 240 μ g/L Zn. 5 Includes 80 μ g/L Mn, and 20 μ g/L Zn. 6 Includes 1.2 mg/L Ba, 200 μ g/L Mn. 7 Includes 3 mg/L H₂S.

wells, springs, petroleum-test wells, and other test holes.--Continued

(HC03)	1	(603)	1	Dissolved constituents							lved solid	ع 25°C)	Ha	rdness CaCO3	ption		
Bicarbonate (HC	Carbonate (CO3)	Alkalinity (CaCO3)	Sulfate (SO4)	Chloride (C1)	Fluoride (F)	Nitrate (NO3)	Nitrite plus Nitrate (N)	Orthophosphate (PO4)	Boron (B) (ug/L)	Residue	at 100 C Sum of constituents	Specific conductance (umhos/cm at 2	Total (Ca, Mg)	Noncarbonate	ium-adsor	PH (units)	Analysis by
1,840 207 73 451	0 0 0 0	1,510 170 60 370	1,550 2,850 3,500 1,200	8,000 42,000 136,000 121,000			-		- - -	- - -	17,000 73,000 229,000 200,000	24,400 95,700 224,000 200,000	1,800 8,600 6,100 29,000	270 8,400 6,100 28,000	59 115 481 165	7.5 7.4 8.1 6.6	MFS MFS
-	-	-	-	-	-	-	-	-	-	22,200	-	33,700	-	-	-	-	
495	0	406	-	-	-	-	-	-	-	-	-	7,980	2,000	1,590	14	-	
257	0	211	670	123,700	-	-	-	-	-	202,900	-	-	30,280	30,000	-	6.5	SO
-	-	-	-	-	-	-	-	-	-	-	-	3,000	-	-	-	-	
-	0	-	-	-	-	-	-	-	-	-	-	6,000	-	-	-	-	
700	0	576	412	14	.1	.00	-	.00	150	-	⁶ 1,214	1,650	1,000	430	.1	7.2	UH
648	0	531	285	24	•2	.2	-	-	-	943	914	1,380	778	247	.6	8.1	
465 -	0 -	381 530	2,100 1,800	81 93	$1.0 \\ 1.1$.40 -	-	-	1,000	3,570 -	73,260 73,060	3,650 3,670	2,240 2,100	1,860 1,600	1.9 1.6	8.2 6.7	
573 586	0 0	470 481	900 1,000	1,350 284	-	-	-	-	-	3,978	2,260	6,060 3,910	2,400 470	1,900 0	3.7 6.7	7.5 7.0	
191	6	167	1,120	14	.2	.20	-	-	-	1,820	1,840	1,960	1,280	1,110	.4	8.4	
-	-	200 220	280 230	5.7 6.0	•6 •9	-	-	-	130 100	-	596 541	927 842	440 400	240 180	.4	6.8 6.6	
-	-	550	1,600	-68	•5 -	-	-	-	270	-	2,820	3,230 3,060	1,900	1,400	1.2	6.7	
769	0	631	3,090	11,700	-	-	-	-	-	25,700	24,100	35,500	4,500	3,800	47	6.9	CGL
366	0	300	951	106,000	-	-	-	-	-	196,000	174,000	186,000	29,000	29,000	143	6.4	
720 465	0 0	591 381	1,780 2,090	410 116,000	-	-	-	-	-	3,790 197,600	3,780 191,300	4,230 220,000	1,500	950 24,000	7.6 180	7.1	CGL
793	-	650	3,025	136,200	-	-	-	-	-	_	228,500	220,000	12,000	11,000	-	7.7	
525	-	431	1,240	99,500	-	-	-	-	-	-	164,500	183,000	20,000	19,000	_	6.5	
378	-	310	1,275	101,000	-	-	-	-	-	-	166,500	183,000	20,000	20,000	-	6.5	
	-	320	990	93	.3	-	-	-	1,100	-	1,890	2,450	1,100	790	2.0	7.2	
-	-	200	360	2.9	.3	-	-	-	100	-	694	1,060	550	350	.3	8.0	
-	-	180	1,500	29	.4	-	-	-	220	-	2,230	2,530	1,700	1,500	.4	7.4	
-	-	180	230	4.7	.5	-	-	-	90	-	489	776	390	210	.1	6.7	
-	-	210	530	25	.6	-	-	-	150	-	1,000	1,430	670	460	1.0	6.4	
405	0	332	400	6.0	.2	.10	-	.16	<10	1,070	879	1,550	750	420	.8	7.0	FL
340	-	279	394	26	-	-	-	-	-	944	827	1,590	666	390	-	7.5 (CGL
273	0	224	615	4.0	.3	<.01	-	.00	195	1,099	1,120	1,300	696	470	1.2	7.1	FL
433	0	355	5,000	15,050	-	-	-	-	-	-	31,780	47,830	5,800	5,400	-	5.5 (CL

PUBLICATIONS OF THE UTAH DEPARTMENT OF NATURAL RESOURCES, DIVISION OF WATER RIGHTS

(*)-Out of Print

TECHNICAL PUBLICATIONS

- *No. 1. Underground leakage from artesian wells in the Flowell area, near Fillmore, Utah, by Penn Livingston and G. B. Maxey, U.S. Geological Survey, 1944.
- No. 2. The Ogden Valley artesian reservoir, Weber County, Utah, by H. E. Thomas, U.S. Geological Survey, 1945.
- *No. 3. Ground water in Pavant Valley, Millard County, Utah, by P. E. Dennis, G. B. Maxey and H. E. Thomas, U.S. Geological Survey, 1946.
- *No. 4. Ground water in Tooele Valley, Tooele County, Utah, by H. E. Thomas, U.S. Geological Survey, in Utah State Engineer 25th Biennial Report, p. 91-238, pls. 1-6, 1946.
- *No. 5. Ground water in the East Shore area, Utah: Part I, Bountiful District, Davis County, Utah, by H. E. Thomas and W. B. Nelson, U.S. Geological Survey, in Utah State Engineer 26th Biennial Report, p. 53-206, pls. 1-2, 1948.
- *No. 6. Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah, by P. F. Fix, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S. Geological Survey, in Utah State Engineer 27th Biennial Report, p. 107-210, pls. 1-10, 1950.
- No. 7. Status of development of selected ground-water basins in Utah, by H. E. Thomas, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S. Geological Survey, 1952.
- *No. 8. Consumptive use of water and irrigation requirements of crops in Utah, by C. O. Roskelly and W. D. Criddle, Utah State Engineer's Office, 1952.
- No. 8. (Revised) Consumptive use and water requirements for Utah, by W. D. Criddle, Karl Harris, and L. S. Willardson, Utah State Engineer's Office, 1962.
- No. 9. Progress report on selected ground water basins in Utah, by H. A. Waite, W. B. Nelson, and others, U.S. Geological Survey, 1954.
- *No. 10. A compilation of chemical quality data for ground and surface waters in Utah, by J. G. Connor, C. G. Mitchell, and others, U.S. Geological Survey, 1958.

- *No. 11. Ground water in northern Utah Valley, Utah: A progress report for the period 1948-63, by R. M. Cordova and Seymour Subitzky, U.S. Geological Survey, 1965.
- *No. 12. Reevaluation of the ground-water resources of Tooele Valley, Utah, by J. S. Gates, U.S. Geological Survey, 1965.
- *No. 13. Ground-water resources of selected basins in southwestern Utah, by G. W. Sandberg, U.S. Geological Survey, 1966.
- *No. 14. Water-resources appraisal of the Snake Valley area, Utah and Nevada, by J. W. Hood and F. E. Rush, U.S. Geological Survey, 1966.
- *No. 15. Water from bedrock in the Colorado Plateau of Utah, by R. D. Feltis, U.S. Geological Survey, 1966.
- *No. 16. Ground-water conditions in Cedar Valley, Utah County, Utah, by R. D. Feltis, U.S. Geological Survey, 1967.
- *No. 17. Ground-water resources of northern Juab Valley, Utah, by L. J. Bjorklund, U.S. Geological Survey, 1968.
- No. 18. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah, by J. W. Hood and K. M. Waddell, U.S. Geological Survey, 1968.
- No. 19. An appraisal of the quality of surface water in the Sevier Lake basin, Utah, by D. C. Hahl and J. C. Mundorff, U.S. Geological Survey, 1968.
- No. 20. Extensions of streamflow records in Utah, by J. K. Reid, L. E. Carroon, and G. E. Pyper, U.S. Geological Survey, 1969.
- No. 21. Summary of maximum discharges in Utah streams, by G. L. Whitaker, U.S. Geological Survey, 1969.
- No. 22. Reconnaissance of the ground-water resources of the upper Fremont River valley, Wayne County, Utah, by L. J. Bjorklund, U.S. Geological Survey, 1969.
- No. 23. Hydrologic reconnaissance of Rush Valley, Tooele County, Utah, by J. W. Hood, Don Price, and K. M. Waddell, U.S. Geological Survey, 1969.
- No. 24. Hydrologic reconnaissance of Deep Creek valley, Tooele and Juab Counties, Utah, and Elko and White Pine Counties, Nevada, by J. W. Hood and K. M. Waddell, U.S. Geological Survey, 1969.
- No. 25. Hydrologic reconnaissance of Curlew Valley, Utah and Idaho, by E. L. Bolke and Don Price, U.S. Geological Survey, 1969.

- No. 26. Hydrologic reconnaissance of the Sink Valley area, Tooele and Box Elder Counties, Utah, by Don Price and E. L. Bolke, U.S. Geological Survey, 1970.
- No. 27. Water resources of the Heber-Kamas-Park City area, north-central Utah, by C. H. Baker, Jr., U.S. Geological Survey, 1970.
- No. 28. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah, by R. M. Cordova, U.S. Geological Survey, 1970.
- No. 29. Hydrologic reconnaissance of Grouse Creek valley, Box Elder County, Utah, by J. W. Hood and Don Price, U.S. Geological Survey, 1970.
- No. 30. Hydrologic reconnaissance of the Park Valley area, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1971.
- No. 31. Water resources of Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Harr, U.S. Geological Survey, 1971.
- No. 32. Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah, by C. T. Sumsion, U.S. Geological Survey, 1971.
- No. 33. Hydrologic reconnaissance of Hansel Valley and northern Rozel Flat, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1971.
- No. 34. Summary of water resources of Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Harr, U.S. Geological Survey, 1971.
- No. 35. Ground-water conditions in the East Shore area, Box Elder, Davis, and Weber Counties, Utah, 1960-69, by E. L. Bolke and K. M. Waddell, U.S. Geological Survey, 1972.
- No. 36. Ground-water resources of Cache Valley, Utah and Idaho, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1971.
- No. 37. Hydrologic reconnaissance of the Blue Creek Valley area, Box Elder County, Utah, by E. L. Bolke and Don Price, U.S. Geological Survey, 1972.
- No. 38. Hydrologic reconnaissance of the Promontory Mountains area, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1972.
- No. 39. Reconnaissance of chemical quality of surface water and fluvial sediment in the Price River Basin, Utah, by J. C. Mundorff, U.S. Geological Survey, 1972.
- No. 40. Ground-water conditions in the central Virgin River basin, Utah, by R. M. Cordova, G. W. Sandberg, and Wilson McConkie, U.S. Geological Survey, 1972.

- No. 41. Hydrologic reconnaissance of Pilot Valley, Utah and Nevada, by J. C. Stephens and J. W. Hood, U.S. Geological Survey, 1973.
- No. 42. Hydrologic reconnaissance of the northern Great Salt Lake Desert and summary hydrologic reconnaissance of northwestern Utah, by J. C. Stephens, U.S. Geological Survey, 1973.
- No. 43. Water resources of the Milford area, Utah, with emphasis on ground water, by R. W. Mower and R. M. Cordova, U.S. Geological Survey, 1974.
- No. 44. Ground-water resources of the lower Bear River drainage basin, Box Elder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1974.
- No. 45. Water resources of the Curlew Valley drainage basin, Utah and Idaho, by C. H. Baker, Jr., U.S. Geological Survey, 1974.
- No. 46. Water-quality reconnaissance of surface inflow to Utah Lake, by J. C. Mundorff, U.S. Geological Survey, 1974.
- No. 47. Hydrologic reconnaissance of the Wah Wah Valley drainage basin, Millard and Beaver Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1974.
- No. 48. Estimating mean streamflow in the Duchesne River basin, Utah, by R. W. Cruff, U.S. Geological Survey, 1974.
- No. 49. Hydrologic reconnaissance of the southern Uinta Basin, Utah and Colorado, by Don Price and L. L. Miller, U.S. Geological Survey, 1975.
- No. 50. Seepage study of the Rocky Point Canal and the Grey Mountain-Pleasant Valley Canal systems, Duchesne County, Utah, by R. W. Cruff and J. W. Hood, U.S. Geological Survey, 1976.
- No. 51. Hydrologic reconnaissance of the Pine Valley drainage basin, Millard, Beaver, and Iron Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1976.
- No. 52. Seepage study of canals in Beaver Valley, Beaver County, Utah, by R. W. Cruff and R. W. Mower, U.S. Geological Survey, 1976.
- No. 53. Characteristics of aquifers in the northern Uinta Basin area, Utah and Colorado, by J. W. Hood, U.S. Geological Survey, 1976.
- No. 54. Hydrologic evaluation of Ashley Valley, northern Uinta Basin area, Utah, by J. W. Hood, U.S. Geological Survey, 1977.
- No. 55. Reconnaissance of water quality in the Duchesne River basin and some adjacent drainage areas, Utah, by J. C. Mundorff, U.S. Geological Survey, 1977.

- No. 56. Hydrologic reconnaissance of the Tule Valley drainage basin, Juab and Millard Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1977.
- No. 57. Hydrologic evaluation of the upper Duchesne River valley, northern Uinta Basin area, Utah, by J. W. Hood, U.S. Geological Survey, 1977.
- No. 58. Seepage study of the Sevier Valley-Piute Canal, Sevier County, Utah, by R. W. Cruff, U.S. Geological Survey, 1977.
- No. 59. Hydrologic reconnaissance of the Dugway Valley-Government Creek area, west-central Utah, by J. C. Stephens and C. T. Sumsion, U.S. Geological Survey, 1978.
- No. 60. Ground-water resources of the Parowan-Cedar City drainage basin, Iron County, Utah, by L. J. Bjorklund, C. T. Sumsion, and G. W. Sandberg, U.S. Geological Survey, 1978.
- No. 61. Ground-water conditions in the Navajo Sandstone in the central Virgin River basin, Utah, by R. M. Cordova, U.S. Geological Survey, 1978.
- No. 62. Water resources of the northern Uinta Basin area, Utah and Colorado, with special emphasis on ground-water supply, by J. W. Hood and F. K. Fields, U.S. Geological Survey, 1978.
- No. 63. Hydrology of the Beaver Valley area, Beaver County, Utah with emphasis on ground water, by R. W. Mower, U.S. Geological Survey, 1978.
- No. 64. Hydrologic reconnaissance of the Fish Springs Flat area, Tooele, Juab, and Millard Counties, Utah, by E. L. Bolke and C. T. Sumsion, U.S. Geological Survey, 1978.
- No. 65. Reconnaissance of chemical quality of surface water and fluvial sediment in the Dirty Devil River basin, Utah, by J. C. Mundorff, U.S. Geological Survey, 1978.
- No. 66. Aquifer tests of the Navajo Sandstone near Caineville, Wayne County, Utah, by J. W. Hood and T. W. Danielson, U.S. Geological Survey, 1979.
- No. 67. Seepage study of the West Side and West Canals, Box Elder County, by R. W. Cruff, U.S. Geological Survey, 1980.
- No. 68. Bedrock aquifers in the lower Dirty Devil River basin area, Utah, with special emphasis on the Navajo Sandstone, by J. W. Hood and T. W. Danielson, U.S. Geological Survey, 1980.
- No. 69. Ground-water conditions in Tooele Valley, Utah, 1976-78, by A. C. Razem and J. I. Steiger, U.S. Geological Survey, 1980.

- No. 70. Ground-water conditions in the Upper Virgin River and Kanab Creek basins area, Utah, with emphasis on the Navajo Sandstone, by R. M. Cordova, U.S. Geological Survey, 1981.
- No. 71. Hydrologic reconnaissance of the Southern Great Salt Lake Desert and summary of the hydrology of West-Central Utah, by Joseph S. Gates and Stacie A. Kruer, U.S. Geological Survey, 1980.
- No. 72. Reconnaissance of the quality of surface water in the San Rafael River basin, Utah, by J. C. Mundorff and Kendall R. Thompson, U.S. Geological Survey, 1982.
- No. 73. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water, by R. W. Mower, U.S. Geological Survey, 1982.
- No. 74. Seepage study of the Sevier River and the Central Utah, McIntyre, and Leamington Canals, Juab and Millard Counties, Utah, by L. R. Herbert, R. W. Cruff, Walter F. Holmes, U.S. Geological Survey, 1982.
- No. 75. Consumptive use and water requirements for Utah, by A. Leon Huber, Frank W. Haws, Trevor C. Hughes, Jay M. Bagley, Kenneth G. Hubbard, and E. Arlo Richardson, 1982.
- No. 76. Reconnaissance of the quality of surface water in the Weber River basin, Utah, by K. R. Thompson, U.S. Geological Survey, 1984.
- No. 77. Ground-water reconnaissance of the central Weber River area, Morgan and Summit Counties, Utah, Joseph S. Gates, Judy I. Steiger, and Ronald T. Green, U.S. Geological Survey, 1984.

WATER CIRCULARS

- No. 1. Ground water in the Jordan Valley, Salt Lake County, Utah, by Ted Arnow, U.S. Geological Survey, 1965.
- No. 2. Ground water in Tooele Valley, Utah, by J. S. Gates and O. A. Keller, U.S. Geological Survey, 1970.

BASIC-DATA REPORTS

- *No. 1. Records and water-level measurements of selected wells and chemical analyses of ground water, East Shore area, Davis, Weber, and Box Elder Counties, Utah, by R. E. Smith, U.S. Geological Survey, 1961.
- No. 2. Records of selected wells and springs, selected drillers' logs of wells, and chemical analyses of ground and surface waters, northern Utah Valley, Utah County, Utah, by Seymour Subitzky, U.S. Geological Survey, 1962.

- No. 3. Ground-water data, central Sevier Valley, parts of Sanpete, Sevier, and Piute Counties, Utah, by C. H. Carpenter and R. A. Young, U.S. Geological Survey, 1963.
- *No. 4. Selected hydrologic data, Jordan Valley, Salt Lake County, Utah, by I. W. Marine and Don Price, U.S. Geological Survey, 1963.
- *No. 5. Selected hydrologic data, Pavant Valley, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
- *No. 6. Ground-water data, parts of Washington, Iron, Beaver, and Millard Counties, Utah, by G. W. Sandberg, U.S. Geological Survey, 1963.
- No. 7. Selected hydrologic data, Tooele Valley, Tooele County, Utah, by J. S. Gates, U.S. Geological Survey, 1963.
- No. 8. Selected hydrologic data, upper Sevier River basin, Utah, by C. H. Carpenter, G. B. Robinson, Jr., and L. J. Bjorklund, U.S. Geological Survey, 1964.
- *No. 9. Ground-water data, Sevier Desert, Utah, by R. W. Mower and R. D. Feltis, U.S. Geological Survey, 1964.
- No. 10. Quality of surface water in the Sevier Lake basin, Utah, by D. C. Hahl and R. E. Cabell, U.S. Geological Survey, 1965.
- *No. 11. Hydrologic and climatologic data, collected through 1964, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.
- No. 12. Hydrologic and climatologic data, 1965, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.
- No. 13. Hydrologic and climatologic data, 1966, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1967.
- No. 14. Selected hydrologic data, San Pitch River drainage basin, Utah, by G. B. Robinson, Jr., U.S. Geological Survey, 1968.
- No. 15. Hydrologic and climatologic data, 1967, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1968.
- No. 16. Selected hydrologic data, southern Utah and Goshen Valleys, Utah, by R. M. Cordova, U.S. Geological Survey, 1969.
- No. 17. Hydrologic and climatologic data, 1968, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1969.
- No. 18. Quality of surface water in the Bear River basin, Utah, Wyoming, and Idaho, by K. M. Waddell, U.S. Geological Survey, 1970.

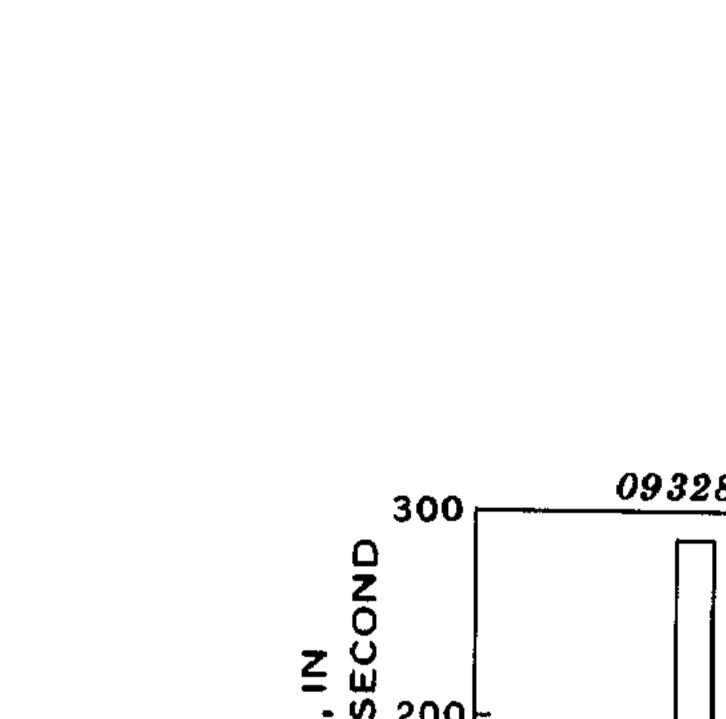
- No. 19. Daily water-temperature records for Utah streams, 1944-68, by G. L. Whitaker, U.S. Geological Survey, 1970.
- No. 20. Water-quality data for the Flaming Gorge area, Utah and Wyoming, by R. J. Madison, U.S. Geological Survey, 1970.
- No. 21. Selected hydrologic data, Cache Valley, Utah and Idaho, by L. J. McGreevy and L. J. Bjorklund, U.S. Geological Survey, 1970.
- No. 22. Periodic water- and air-temperature records for Utah streams, 1966-70, by G. L. Whitaker, U.S. Geological Survey, 1971.
- No. 23. Selected hydrologic data, lower Bear River drainage basin, Box Elder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1973.
- No. 24. Water-quality data for the Flaming Gorge Reservoir area, Utah and Wyoming, 1969-72, by E. L. Bolke and K. M. Waddell, U.S. Geological Survey, 1972.
- No. 25. Streamflow characteristics in northeastern Utah and adjacent areas, by F. K. Fields, U.S. Geological Survey, 1975.
- No. 26. Selected hydrologic data, Uinta Basin area, Utah and Colorado, by J. W. Hood, J. C. Mundorff, and Don Price, U.S. Geological Survey, 1976.
- No. 27. Chemical and physical data for the Flaming Gorge Reservoir area, Utah and Wyoming, by E. L. Bolke, U.S. Geological Survey, 1976.
- No. 28. Selected hydrologic data, Parowan Valley and Cedar City Valley drainage basins, Iron County, Utah, by L. J. Bjorklund, C. T. Sumsion, and G. W. Sandberg, U.S. Geological Survey, 1977.
- No. 29. Climatologic and hydrologic data, southeastern Uinta Basin, Utah and Colorado, water years 1975 and 1976, by L. S. Conroy and F. K. Fields, U.S. Geological Survey, 1977.
- No. 30. Selected ground-water data, Bonneville Salt Flats and Pilot Valley, western Utah, by G. C. Lines, U.S. Geological Survey, 1977.
- No. 31. Selected hydrologic data, Wasatch Plateau-Book Cliffs coal-fields area, Utah, by K. M. Waddell and others, U.S. Geological Survey, 1978.
- No. 32. Selected coal-related ground-water data, Wasatch Plateau-Book Cliffs area, Utah, by C. T. Sumsion, U.S. Geological Survey, 1979.
- No. 33. Hydrologic and climatologic data, southeastern Uinta Basin, Utah and Colorado, water year 1977, by L. S. Conroy, U.S. Geological Survey, 1979.

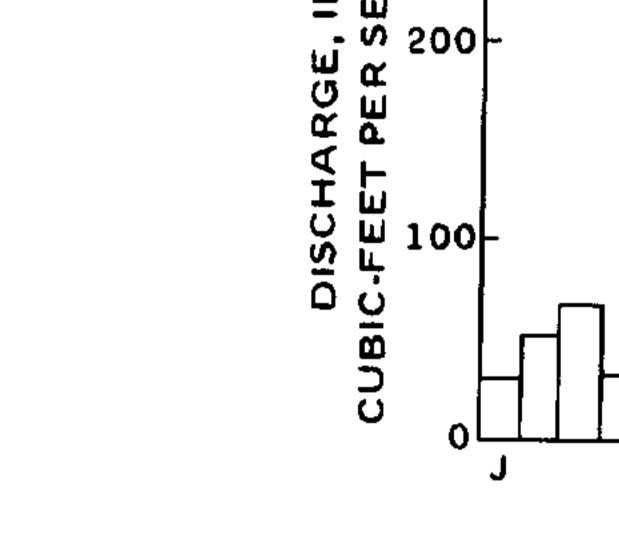
- No. 34. Hydrologic and climatologic data, southeastern Uinta Basin, Utah and Colorado, water year 1978, by L. S. Conroy, U.S. Geological Survey, 1980.
- No. 35. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah, by R. W. Mower, U.S. Geological Survey, 1981.
- No. 36. Surface-water and climatologic data, Salt Lake County, Utah, Water Year 1980, by G. E. Pyper, R. C. Christensen, D. W. Stephens, H. F. McCormack, and L. S. Conroy, U.S. Geological Survey, 1981.
- No. 37. Selected ground-water data, Sevier Desert, Utah, 1935-82, by Michael Enright and Walter F. Holmes, U.S. Geological Survey, 1982.
- No. 38. Selected hydrologic data, Price River Basin, Utah, water years 1979 and 1980, by K. M. Waddell, J. E. Dodge, D. W. Darby, and S. M. Theobald, U.S. Geological Survey, 1982.
- No. 39. Selected hydrologic data for Northern Utah Valley, Utah, 1935-82, by Cynthia L. Appel, David W. Clark, and Paul E. Fairbanks, U.S. Geological Survey, 1982.
- No. 40. Surface water and climatologic data, Salt Lake County, Utah, water year 1981, with selected data for water years 1980 and 1982, by H. F. McCormack, R. C. Christensen, D. W. Stephens, G. E. Pyper, J. F. Weigel, and L. S. Conroy, U.S. Geological Survey, 1983.
- No. 41. Selected hydrologic data, Kolob-Alton-Kaiparowits coal-fields area, south-central Utah, by Gerald G. Plantz, U.S. Geological Survey, 1983.

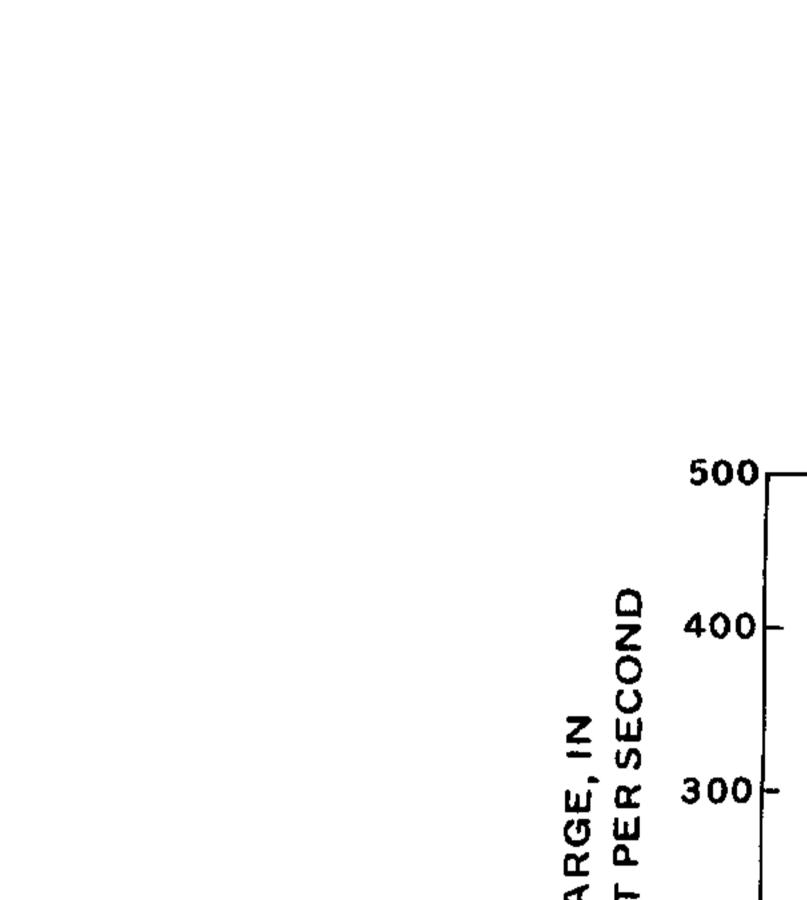
INFORMATION BULLETINS

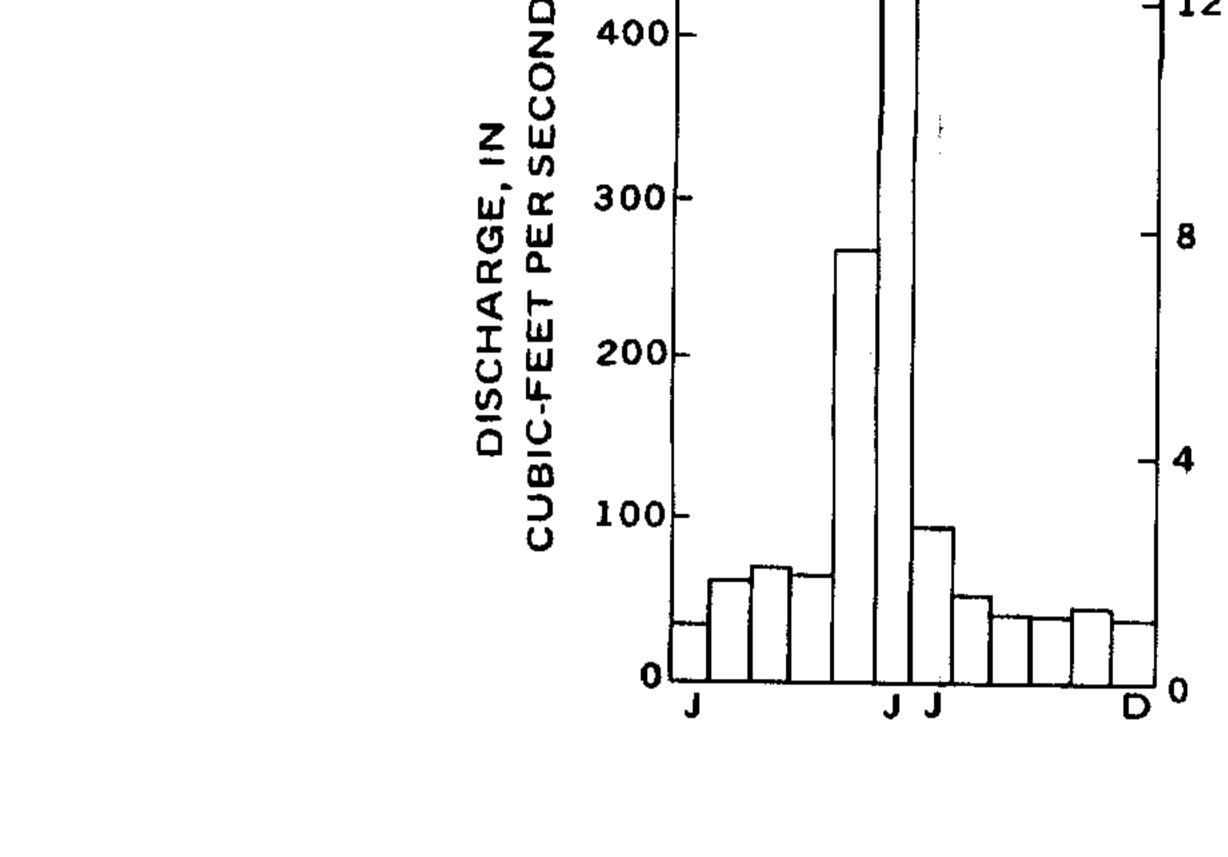
- *No. 1. Plan of work for the Sevier River Basin (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1960.
- *No. 2. Water production from oil wells in Utah, by Jerry Tuttle, Utah State Engineer's Office, 1960.
- *No. 3. Ground-water areas and well logs, central Sevier Valley, Utah, by R. A. Young, U.S. Geological Survey, 1960.
- *No. 4. Ground-water investigations in Utah in 1960 and reports published by the U.S. Geological Survey or the Utah State Engineer prior to 1960, by H. D. Goode, U.S. Geological Survey, 1960.
- *No. 5. Developing ground water in the central Sevier Valley, Utah, by R. A. Young and C. H. Carpenter, U.S. Geological Survey, 1961.

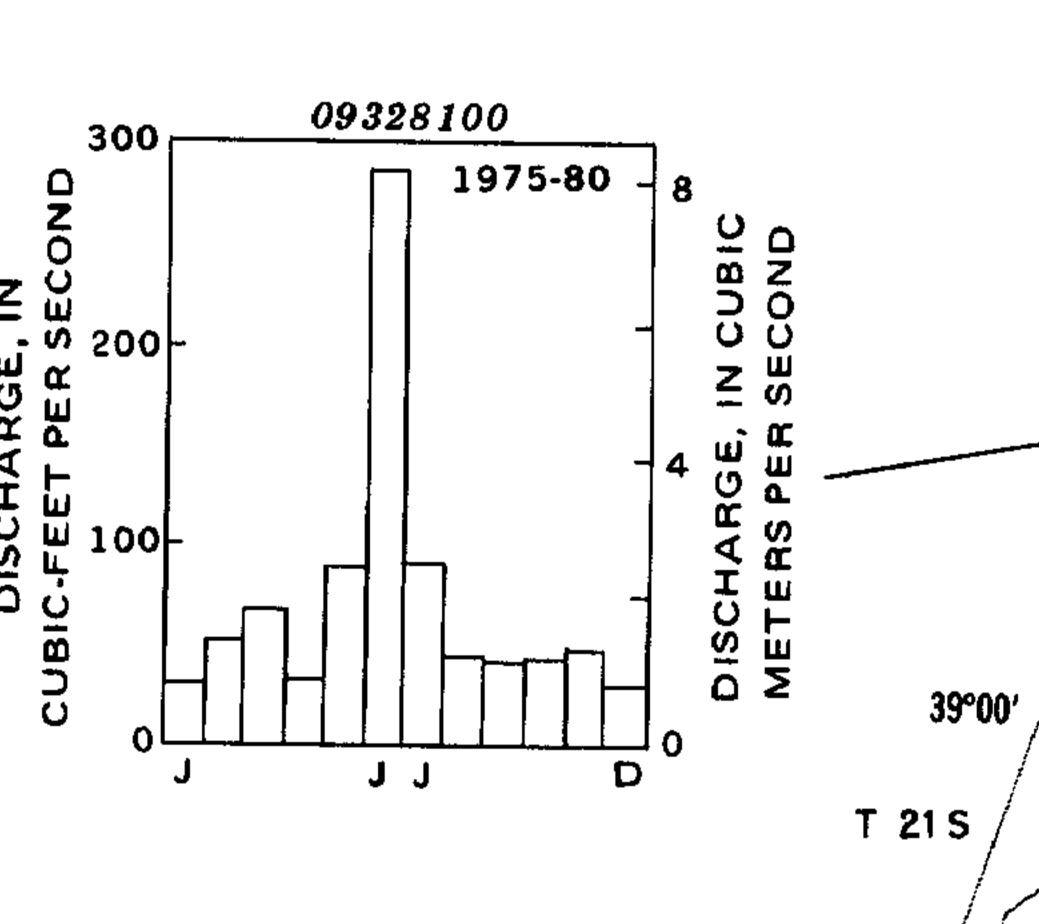
- *No. 6. Work outline and report outline for Sevier River basin survey, (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1961.
- *No. 7. Relation of the deep and shallow artesian aquifers near Lynndyl, Utah, by R. W. Mower, U.S. Geological Survey, 1961.
- *No. 8. Projected 1975 municipal water-use requirements, Davis County, Utah, by Utah State Engineer's Office, 1962.
- No. 9. Projected 1975 municipal water-use requirements, Weber County, Utah, by Utah State Engineer's Office, 1962.
- *No. 10. Effects on the shallow artesian aquifer of withdrawing water from the deep artesian aquifer near Sugarville, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
- *No. 11. Amendments to plan of work and work outline for the Sevier River basin (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1964.
- *No. 12. Test drilling in the upper Sevier River drainage basin, Garfield and Piute Counties, Utah, by R. D. Feltis and G. B. Robinson, Jr., U.S. Geological Survey, 1963.
- *No. 13. Water requirements of lower Jordan River, Utah, by Karl Harris, Irrigation Engineer, Agricultural Research Service, Phoenix, Arizona, prepared under informal cooperation approved by Mr. W. W. Donnan, Chief, Southwest Branch (Riverside, California) Soil and Water Conservation Research Division, Agricultural Research Service, U.S.D.A., and by W. D. Criddle, State Engineer, State of Utah, Salt Lake City, Utah, 1964.
- *No. 14. Consumptive use of water by native vegetation and irrigated crops in the Virgin River area of Utah, by W. D. Criddle, J. M. Bagley, R. K. Higginson, and D. W. Hendricks, through cooperation of Utah Agricultural Experiment Station, Agricultural Research Service, Soil and Water Conservation Branch, Western Soil and Water Management Section, Utah Water and Power Board, and Utah State Engineer, Salt Lake City, Utah, 1964.
- *No. 15. Ground-water conditions and related water-administration problems in Cedar City Valley, Iron County, Utah, February, 1966, by J. A. Barnett and F. T. Mayo, Utah State Engineer's Office.
- *No. 16. Summary of water well drilling activities in Utah, 1960 through 1965, compiled by Utah State Engineer's Office, 1966.
- *No. 17. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by O. A. Keller, U.S. Geological Survey, 1966.
- *No. 18. The effect of pumping large-discharge wells on the ground-water reservoir in southern Utah Valley, Utah County, Utah, by R. M. Cordova and R. W. Mower, U.S. Geological Survey, 1967.
- No. 19. Ground-water hydrology of southern Cache Valley, Utah, by L. P. Beer, Utah State Engineer's Office, 1967.

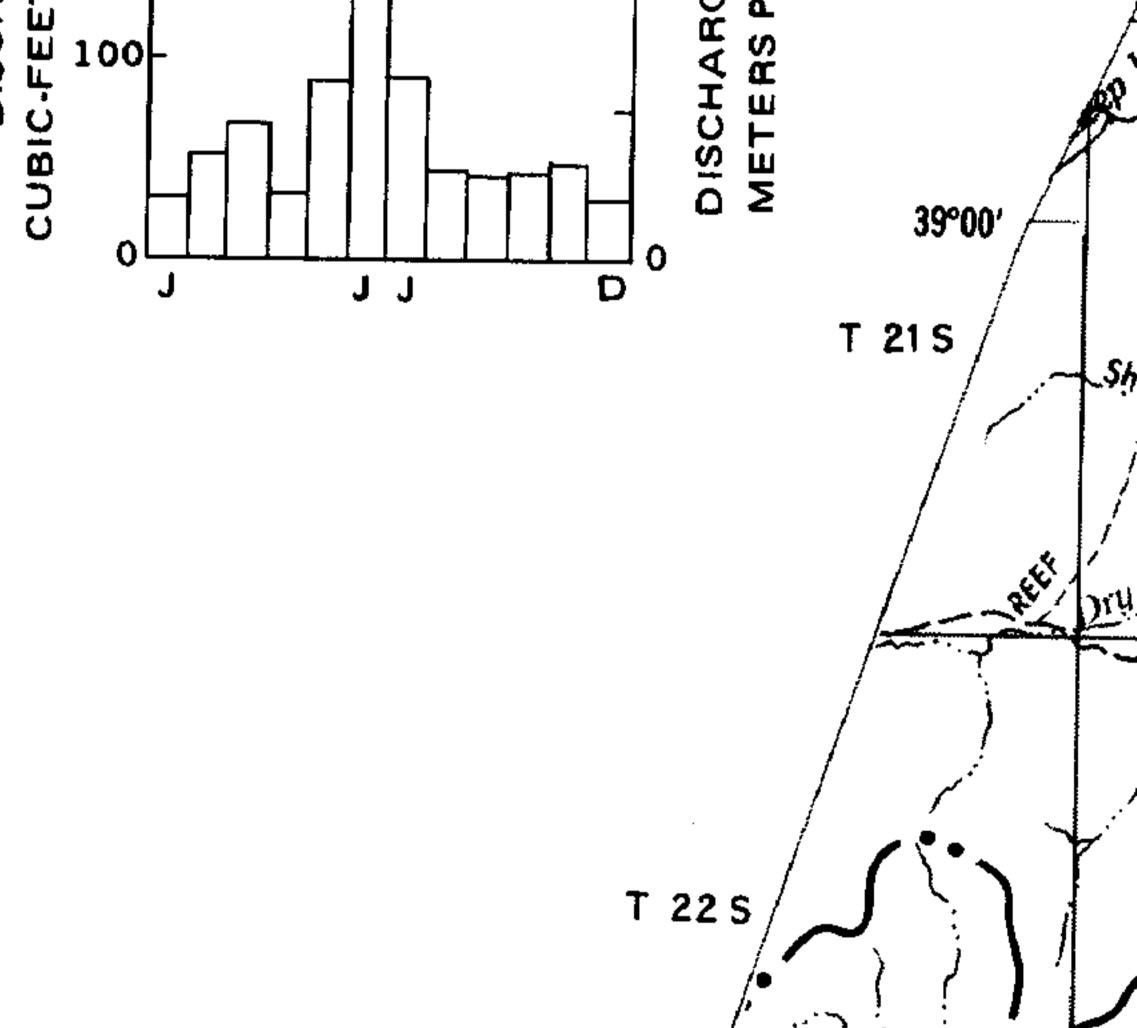

- *No. 20. Fluvial sediment in Utah, 1905-65, A data compilation by J. C. Mundorff, U.S. Geological Survey, 1968.
- *No. 21. Hydrogeology of the eastern portion of the south slopes of the Uinta Mountains, Utah, by L. G. Moore and D. A. Barker, U.S. Bureau of Reclamation, and J. D. Maxwell and B. L. Bridges, Soil Conservation Service, 1971.
- *No. 22. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by B. A. LaPray, U.S. Geological Survey, 1972.
- *No. 23. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by B. A. LaPray, U.S. Geological Survey, 1975.
- No. 24. A water-land use management model for the Sevier River Basin, Phase I and II, by V. A. Narasimham and Eugene K. Israelsen, Utah Water Research Laboratory, College of Engineering, Utah State University, 1975.
- No. 25. A water-land use management model for the Sevier River Basin, Phase III, by Eugene K. Israelsen, Utah Water Research Laboratory, College of Engineering, Utah State University, 1976.
- No. 26. Test drilling for fresh water in Tooele Valley, Utah, by K. H. Ryan, B. W. Nance, and A. C. Razem, Utah Department of Natural Resources, 1981.
- No. 27. Bibliography of U.S. Geological Survey Water-Resources Reports for Utah, compiled by Barbara A. LaPray and Linda S. Hamblin, U.S. Geological Survey, 1980.

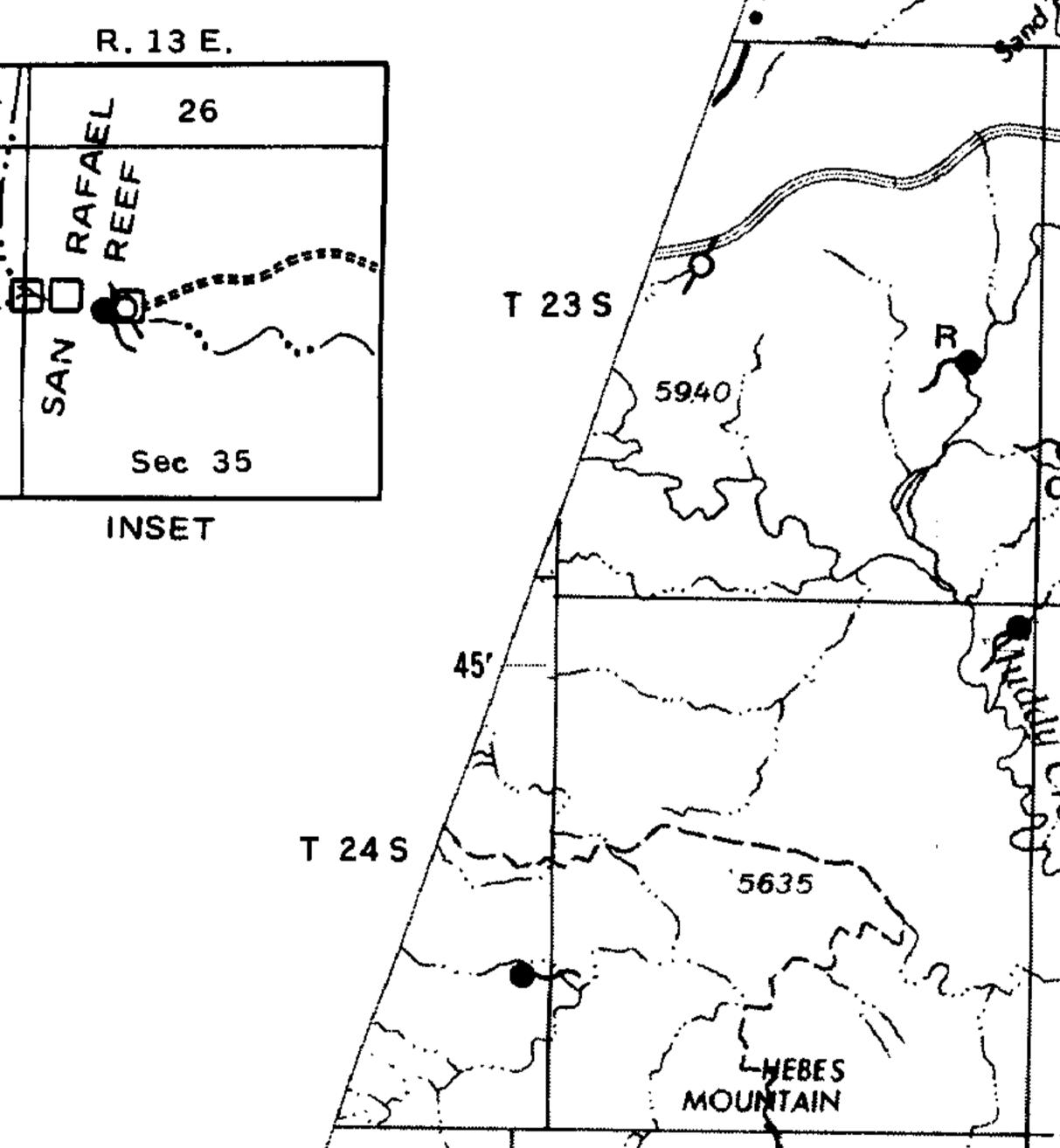










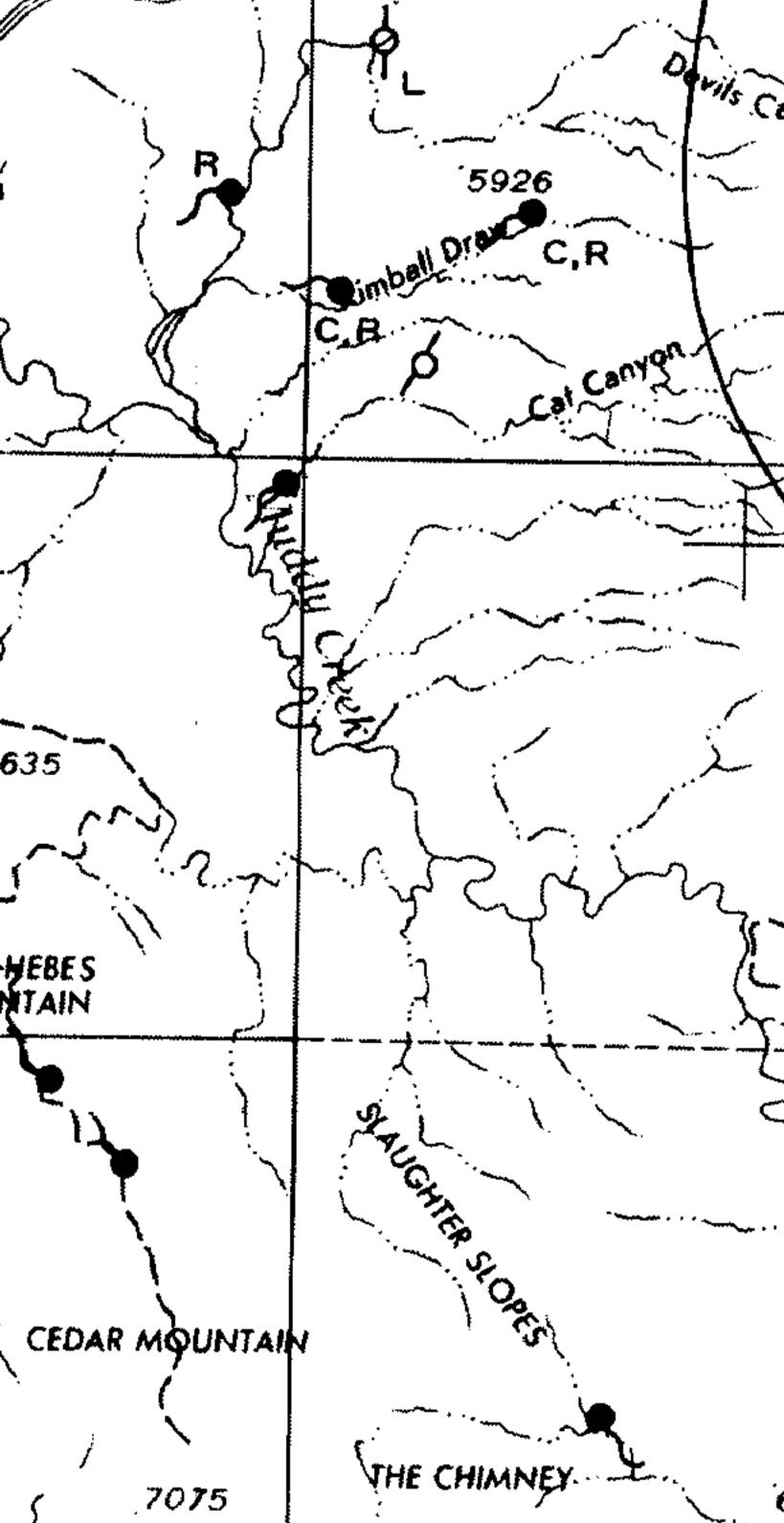


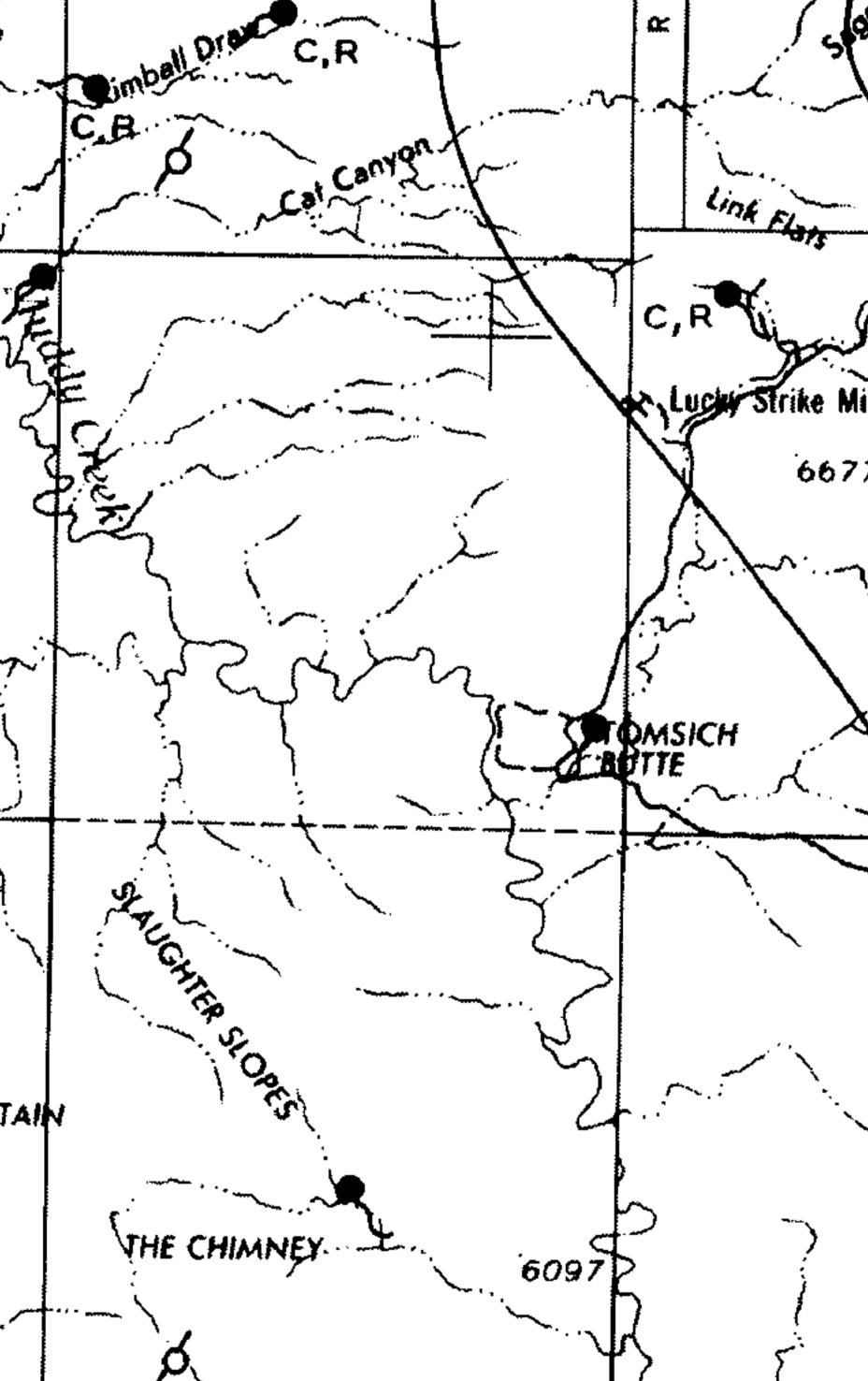
111°15′/ /

76445

·····

юн


FACTORY


6575

T 25 S 🕺

T 26 S /

لسكم

₩Ο

٥zā

1.00

.80

.60- |

09328000

1948-64

1972-80

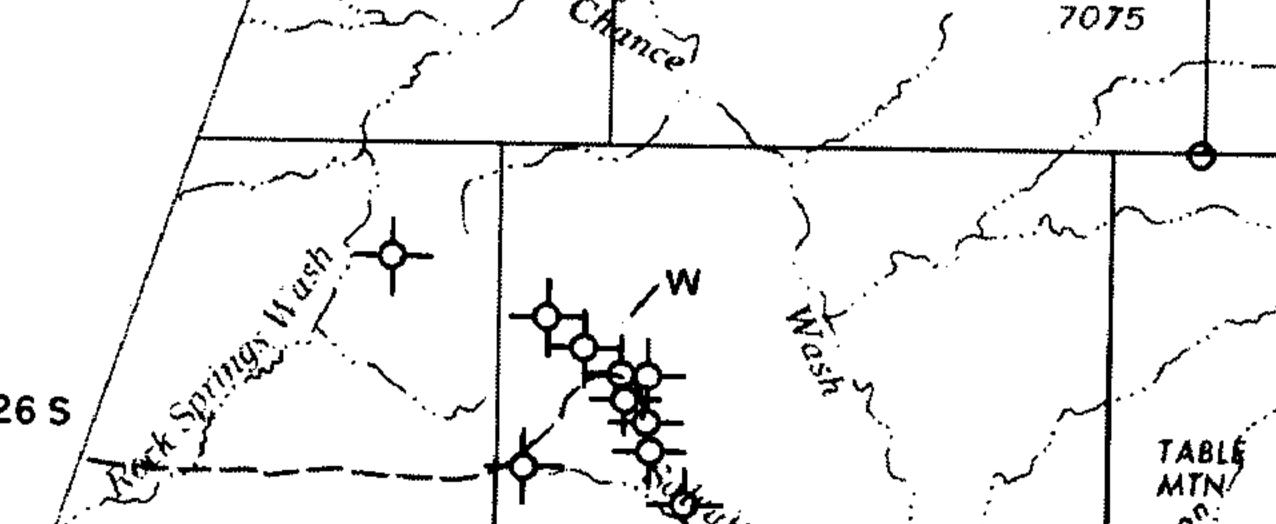
JJ

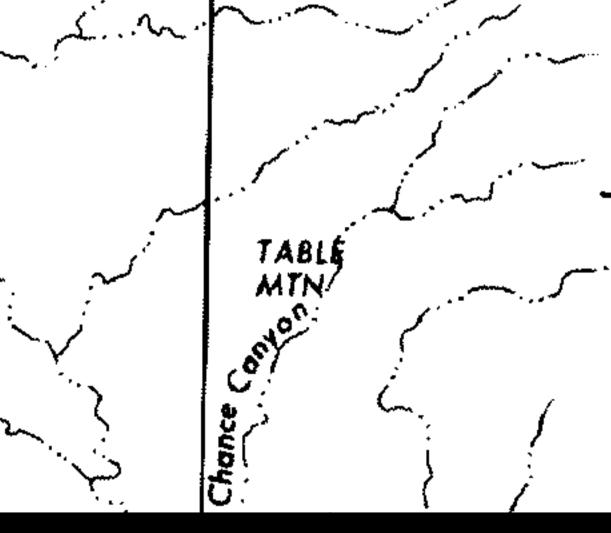
⊴∝

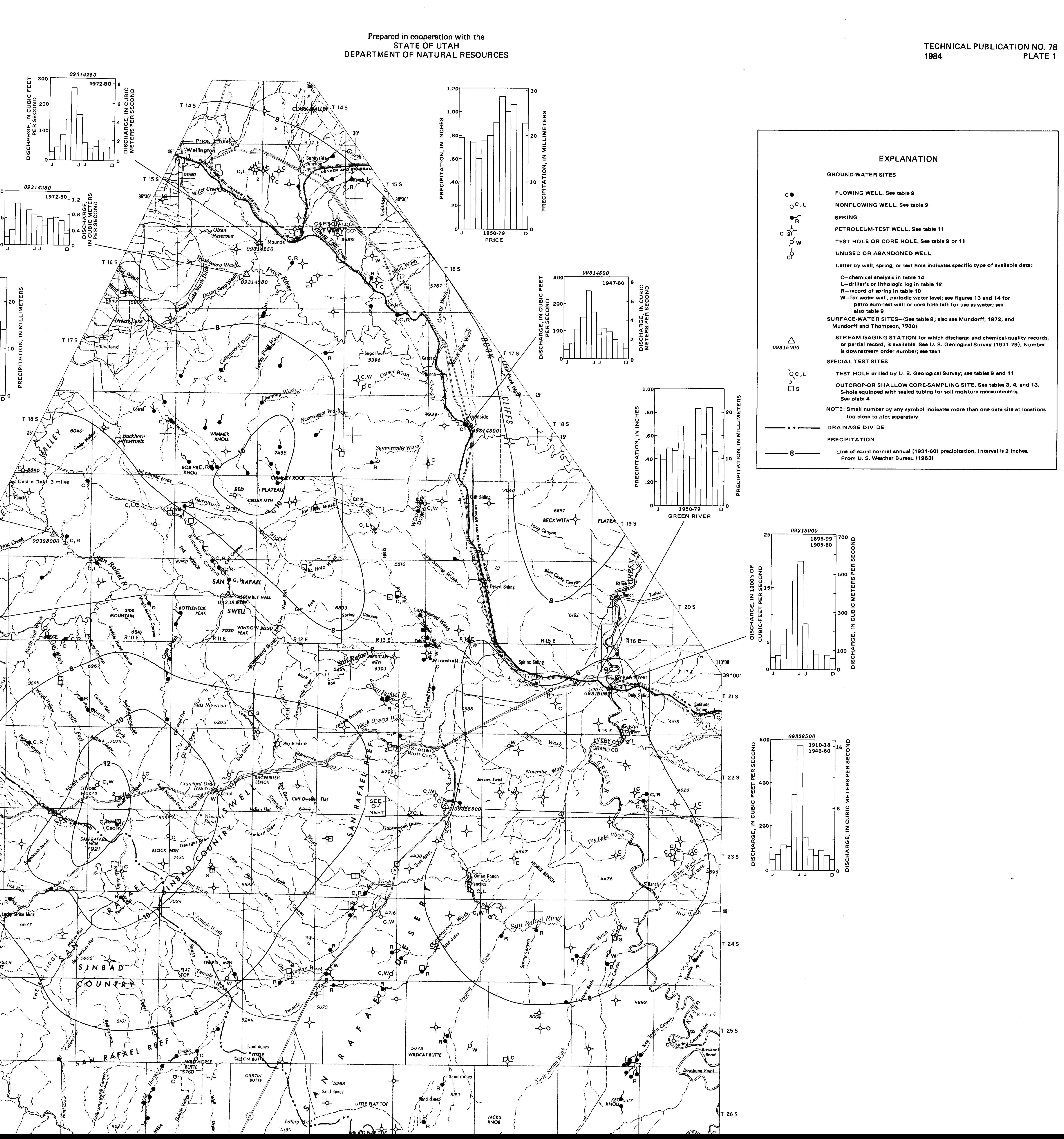
T 20 S 🗡

R 8 E

5924

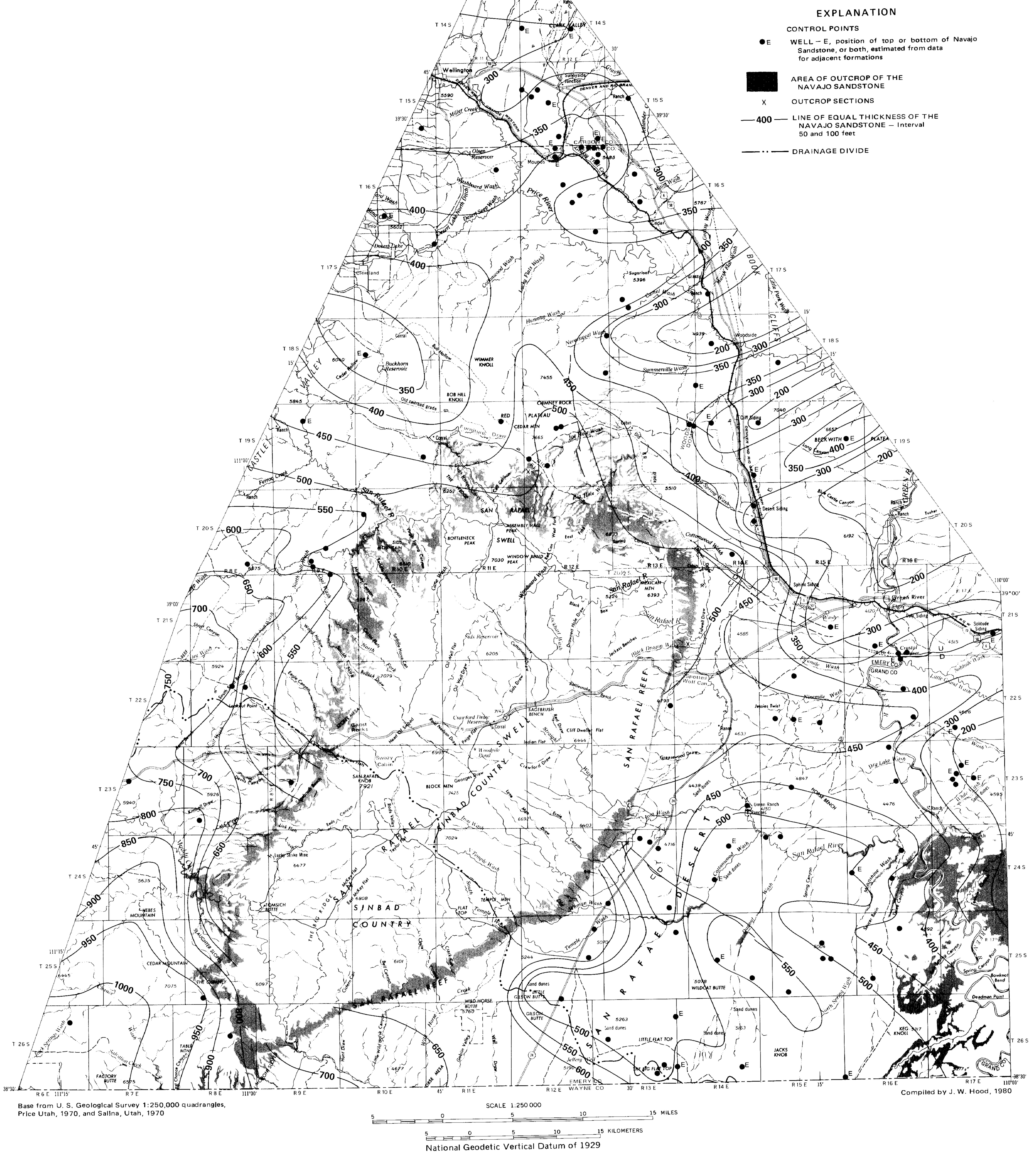

HDISCH METE


1**9**50-79


CASTLE DALE

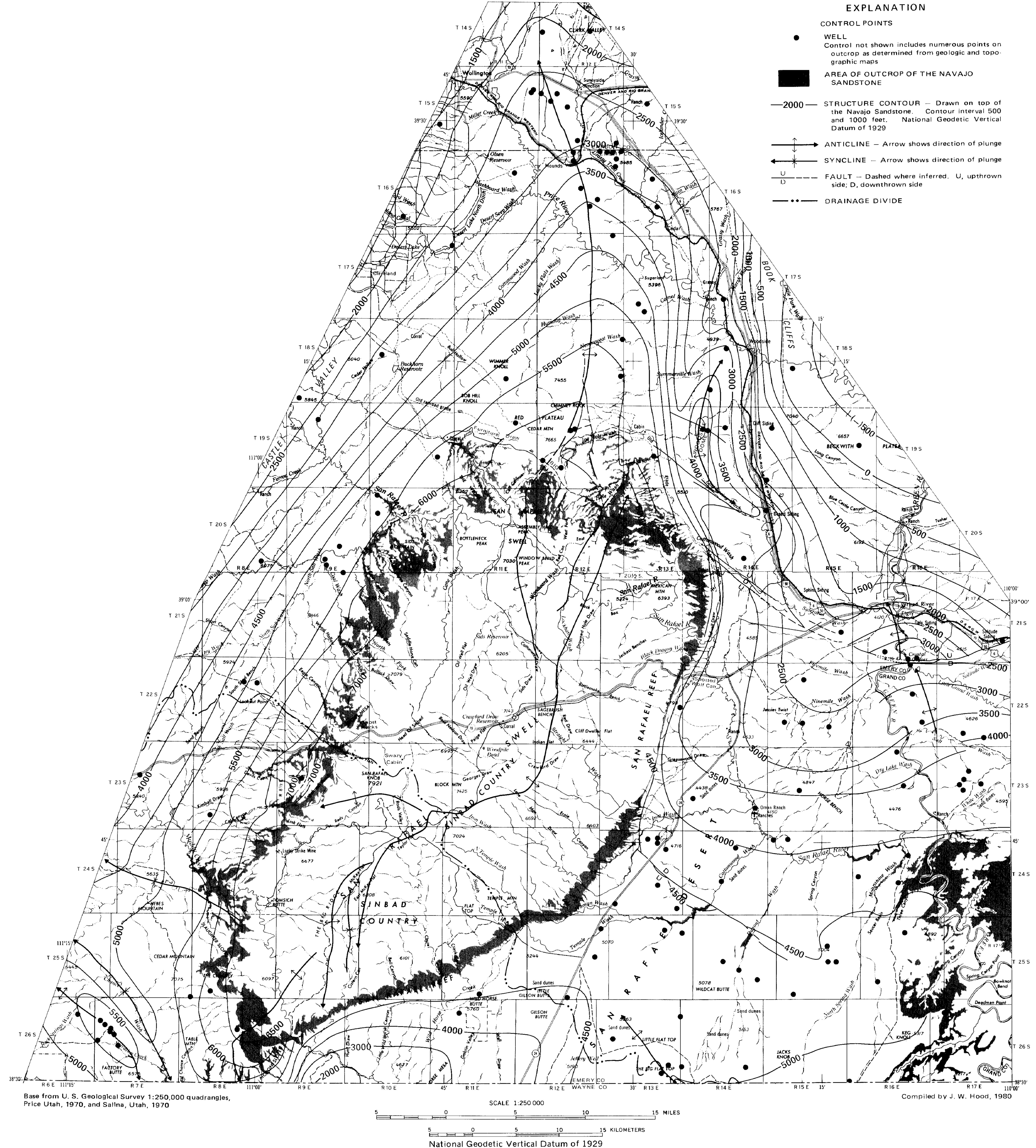
Γ19S/

111°00′


UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

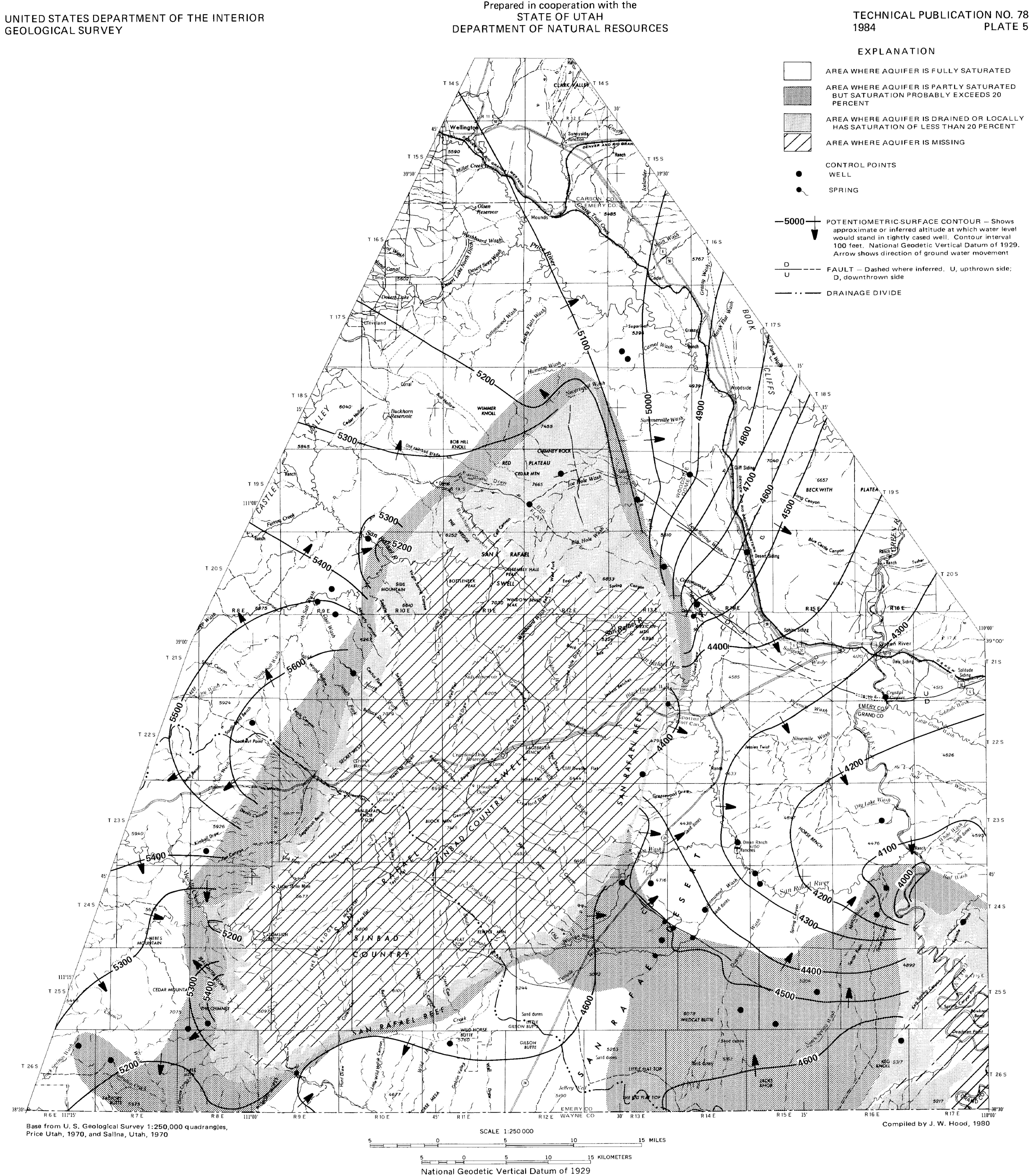
Prepared in cooperation with the STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES

TECHNICAL PUBLICATION NO 78 PLATE 3 1984


- Sandstone, or both, estimated from data
- NAVAJO SANDSTONE
- 50 and 100 feet

MAP SHOWING THICKNESS OF THE NAVAJO SANDSTONE IN THE NORTHERN SAN RAFAEL SWELL AREA, UTAH.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

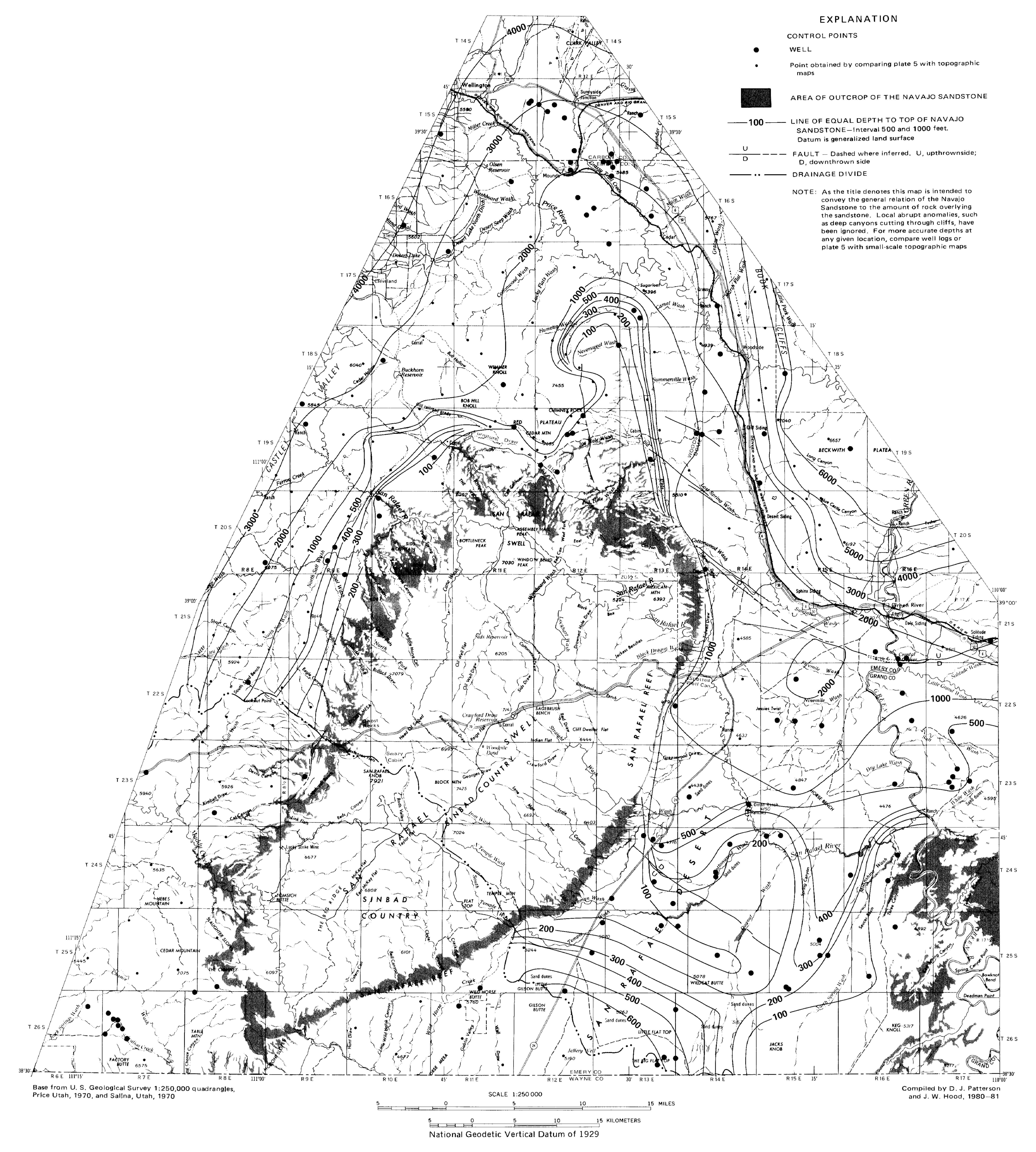

Prepared in cooperation with the STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES

TECHNICAL PUBLICATION NO. 78 PLATE 4 1984

MAP SHOWING STRUCTURE CONTOURS ON THE TOP OF THE NAVAJO SANDSTONE IN THE NORTHERN SAN RAFAEL SWELL AREA, UTAH.

GEOLOGICAL SURVEY

MAP SHOWING THE APPROXIMATE POTENTIOMETRIC SURFACE FOR THE NAVAJO SANDSTONE AQUIFER IN THE NORTHERN SAN RAFAEL SWELL AREA, UTAH.


UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

Prepared in cooperation with the STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES

TECHNICAL PUBLICATION NO. 78

1984

PLATE 6

MAP SHOWING THE GENERALIZED DEPTH TO THE NAVAJO SANDSTONE IN THE NORTHERN SAN RAFAEL SWELL AREA, UTAH.