STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES

Technical Publication No. 81

GROUND-WATER CONDITIONS IN THE KAIPAROWITS HLATEAU AREA, UTAH AND ARIZONA, WITH EMPHASIS ON THE NAVAJO SANDSTONE

by

Paul J. Blanchard Hydrologist, U.S. Geological Survey

Prepared by the United States Geological Survey in Cooperation with The Utah Department of Natural Resources Division of Water Rights

CONTENTS

Page

Abstract	1
Introduction	2
Purpose and scope of the study	2
Previous investigations	2
General description of the study area	4
Numbering system for hydrogeologic-data sites	5
Acknowledgments	7
Geology and its effects on hydrology	7
Stratigraphy	7
Structure	12
Hydrologic setting	14
Hydrologic budget of the Kaiparowits Plateau area	14
Precipitation	17
Surface-water conditions	17
Ground-water conditions	21
Hydrologic characteristics of the Navajo, Entrada, and Wingate Sandstones	22
Ground water in the Navajo Sandstone	27
Recharge	27
Movement	29
Discharge	29
Storage	39
Chemical quality	42
Effects of Lake Powell	45
Effects of large-scale withdrawal	50
Summary, conclusions, and recommendations for further study	51
References cited	54
Publications of the Utah Department of Natural Resources, Division	
of Water Rights	76

ILLUSTRATIONS

[Plates are in pocket]

Plate	1.	Map showing selected hydrogeologic information in the Kaiparowits Plateau area, Utah and Arizona.	
	2.		
Figure	1.	Map showing location of the Kaiparowits Plateau area	3
	2.	Diagram showing numbering system for hydrogeologic-data	
		sites in Utah	6
	3.	Photograph showing Navajo Sandstone overlain by Carmel Formation	13
	4.	Photograph showing fractured Navajo Sandstone in the East	
		Kaibab monocline	13
	5.	Map showing approximate potentiometric surface and general direction of movement of water in the Navajo Sandstone	
		and related formations	28

ILLUSTRATIONS--Continued

Page

Figure	6.	Photograph showing seep from the Navajo Sandstone in wall	
	_	of canyon of Fiftymile Creek	33
		Map showing subdivisions of the Escalante River basin used in wetland consumptive-use determination	37
	8.	Map showing approximate altitude of the top of the Navajo Sandstone	40
	9.	Map showing approximate thickness of the Navajo Sandstone and the Glen Canyon Group, undivided	41
	10.	Graphs showing water levels in selected observation wells completed in the Navajo Sandstone	43
	11.	Graphs showing water levels of Lake Powell and in several nearby observation wells	46
	12.	Map showing water levels of Lake Powell (1963-80) and in selected wells near Lake Powell at selected times	47
	13.	Map showing major ion chemistry of water in wells in the Wahweap Bay area, in Lake Powell, and in the Colorado	
	14.	River at Lees Ferry at selected times Graph showing theoretical effect on water levels caused	49
		by withdrawals from the Navajo Sandstone	52

TABLES

Table	1.	Description of geologic formations in the Kaiparowits	
		Plateau area	8
	2.	Selected springs that discharge from the Carmel Formation	
		above basal siltstone of low permeability	14
	3.	Hydrologic and physical characteristics of shallow core and	
		outcrop samples determined from laboratory analyses	15
	4.	Hydrologic budget of the Escalante River, Paria River, and	
		Wahweap Creek basins	16
	5.	▲	18
	6.	Miscellaneous surface-water measurements in the Escalante	
		River and Paria River basins	20
	7.		
		Navajo Sandstone and results of aquifer tests in the	
		Kaiparowits Plateau area with those in the lower Dirty Devil	
		River basin, the upper Virgin River and Kanab Creek basins,	
		and the central Virgin River basin	24
	8.	Results of aquifer tests in and near the Kaiparowits	
	_	Plateau area	24
	9.	Records of selected springs discharging from the Navajo	
		Sandstone or overlying alluvium	31
	10.	Seepage to tributaries of the Colorado River in Glen Canyon	
		from the Navajo Sandstone, Kayenta Formation, and Wingate	25
	11	Sandstone	35
	11.	Drillers' logs of selected wells	57
	12.	Records of selected water wells	60

TABLES--Continued

Page

.

13.	Water levels in selected observation wells	62
14.	Chemical analyses of major constituents in ground and	
	surface water at selected sites	70
15.	Water levels of Lake Powell at Glen Canyon Dam, 1963-82	72
16.	Chemical analyses of trace elements in ground and	
	surface water at selected sites	74

CONVERSION FACTORS

For readers who prefer to use metric units, conversion factors for inchpound units used in this report are listed below:

Multiply inch-pound units	<u>By</u>	To obtain
acre	0.4047	square hectometer
acre-foot (acre-ft)	0.004047 0.001233	square kilometer cubic hectometer
cubic foot per second (ft^3/s)	0.02832	cubic meter per second
foot (ft)	0.3048	meter
foot per day (ft/d)	0.3048	meter per day
foot squared per day (ft ² /d) gallon per minute (gal/min)	0.0929 0.06308	meter squared per day liter per second
inch (in)	25.40	millimeter
	2.540	centimeter
mile (mi)	1.609	kilometer
square mile (mi ²)	2.590	square kilometer

Water temperature is given in degrees Celsius (°C), which can be converted to degrees Fahrenheit (°F) by the following equation: °F = 1.8(°C) + 32

DEFINITION OF TERMS

Chemical Classification of Ground Water

Water quality in terms of concentrations of dissolved solids has been classified as follows:

<u>Classification</u>	<u>Concentration, in milligrams per liter</u>
Fresh	Less than 1,000

rresn	Less than 1,000
Slightly saline	1,000-3,000
Moderately saline	3,000-10,000
Very saline	10,000-35,000
Briny	More than 35,000

Hydrologic Properties of Water-Bearing Materials

Lohman (1972) and Hood and Danielson (1981) have defined hydrologic properties of water-bearing materials. Porosity (N) is defined by Lohman (1972, p. 3) as the ratio of the volume of interstices to the total volume of a rock or soil, expressed as a fraction or percentage. Hood and Danielson (1981, p. 5) define hydraulic conductivity (K) of a water-bearing material as the volume of water that will move through a unit cross section of the material in unit time under a unit hydraulic gradient.

Transmissivity (T) is defined by Lohman (1972, p. 6) as the rate at which water of the prevailing kinematic viscosity is transmitted through a unit width of the aquifer under a unit hydraulic gradient, and is equal to the average hydraulic conductivity of the aquifer times the thickness of the aquifer. Units are feet squared per day. Lohman (1972, p. 8) defines storage coefficient (S) as the volume of water an aquifer releases from or takes into storage per unit surface area of the aquifer per unit change in head. The storage coefficient is dimensionless.

GROUND-WATER CONDITIONS IN THE KAIPAROWITS PLATEAU AREA, UTAH

AND ARIZONA, WITH EMPHASIS ON THE NAVAJO SANDSTONE

By Paul J. Blanchard Hydrologist, U.S. Geological Survey

ABSTRACT

The Kaiparowits Plateau area is located in central Garfield and eastern Kane Counties of Utah and north-central Coconino County of Arizona. The area covers about 4,850 square miles and includes the drainages of the Escalante and Paria Rivers, and several smaller drainages to the Colorado River between the Escalante and Paria River drainages.

The consolidated-rock aquifer that has the most potential for groundwater development is the Navajo Sandstone of Triassic(?) and Jurassic age. The Entrada Sandstone of Jurassic age is a secondary aquifer, and the Wingate Sandstone of Triassic age presently is not developed but potentially is a significant aquifer. The top of the Navajo Sandstone ranges in depth from the surface near Boulder, on the Paria Plateau, west of the East Kaibab monocline, and in the canyons of the Escalante and Paria Rivers, to as deep as 4,500 feet below land surface in the center of the Kaiparowits Plateau. The aquifer is confined naturally under the Kaiparowits Plateau and near where U.S. Highway 89 crosses the Paria River, and artificially along the shores of Lake Powell.

Annual recharge to and discharge from the Navajo Sandstone is estimated to be between 8,300 and 16,900 acre-feet. The majority of recharge occurs by infiltration of precipitation into the Navajo Sandstone outcrop, especially from snowpack at higher altitudes on Boulder Mountain, and where the Navajo is extensively fractured, for example, west of the East Kaibab monocline. The amount of recoverable water in storage in the Navajo Sandstone is estimated to be about 190 million acre-feet.

In areas where water table conditions exist in the Navajo Sandstone, water is generally fresh (contains less than 1,000 milligrams per liter of dissolved solids). In areas where water in the Navajo is confined, water is generally slightly saline (contains 1,000-3,000 milligrams per liter of dissolved solids). Dominant ions in areas of water-table conditions are calcium, magnesium, and bicarbonate. In areas of confined conditions, sodium and sulfate are the dominant cation and anion in the water.

Inundation of Glen Canyon and tributary canyons by Lake Powell has caused a large increase in the altitude of the potentiometric surface near the lake, as much as 357 feet at well (A-41-8)4dda-1, about 2.2 miles from the lake. Some increase in the altitude of the potentiometric surface has occurred as far as 11 miles from the shoreline of the lake.

Inundation has caused changes in the chemistry of ground water near Lake Powell, primarily where the ground-water level has increased to an altitude higher than that of the Navajo Sandstone-Carmel Formation contact. Major ion chemistry has been altered, the most notable change being an increase in sulfate concentration and a decrease in bicarbonate plus carbonate concentration. Analyses of water from three water-supply wells in the Glen Canyon National Recreation Area have shown arsenic concentrations in excess of the maximum recommended for drinking water.

The Kaiparowits Plateau area contains large quantities of energy resources. Because of the small amount of recharge to and natural discharge from the Navajo Sandstone in the study area, large withdrawals, such as those required for continued exploration for and development of those energy resources, primarily would be from storage rather than from diverted discharge.

INTRODUCTION

Purpose and Scope of the Study

This report presents results of investigation of ground-water conditions in the Kaiparowits Plateau area of south-central Utah and north-central Arizona (fig. 1). The area is under investigation for development of its large quantities of energy resources, primarily coal. Production and transportation of those energy resources would require attendant development The purpose of this study was to determine the of water resources. availability and quality of ground water in major aquifers in the area--namely aquifers in the Entrada, Navajo, and Wingate Sandstones; emphasis was on the Navajo Sandstone. The study was made by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Field work was done intermittently during July through October 1979, Rights. and October 1980 through October 1981.

Previous Investigations

Several workers have made reconnaissance appraisals of ground water in the Kaiparowits Plateau area prior to this study. Gregory and Moore (1931) reported on a geographic and geological reconnaissance of the Kaiparowits area in which they briefly described ground water in the area. Goode made two hydrologic reconnaissances (1964, 1966) in western Kane County, Utah, which included parts of the Wahweap Creek and Paria River drainages, and one reconnaissance (1969) in the upper Escalante River drainage. Cooley (1965) made a detailed spring inventory in Glen Canyon and tributary canyons, most of which are now occupied by Lake Powell. Feltis (1966) compiled information about wells and springs in the Colorado Plateau, including most of the Kaiparowits Plateau area. Price (1977a, 1977b) compiled two maps dealing with the ground-water availability and quality in the Kaiparowits coal-basin area. The Kaiparowits coal basin includes much of the Kaiparowits Plateau area described in this report. Levings and Farrar (1978) investigated ground-water conditions in the House Rock area of Arizona, which includes all of Arizona under consideration in this study. The information collected by Levings and Farrar has been used extensively for the Arizona part of this report.

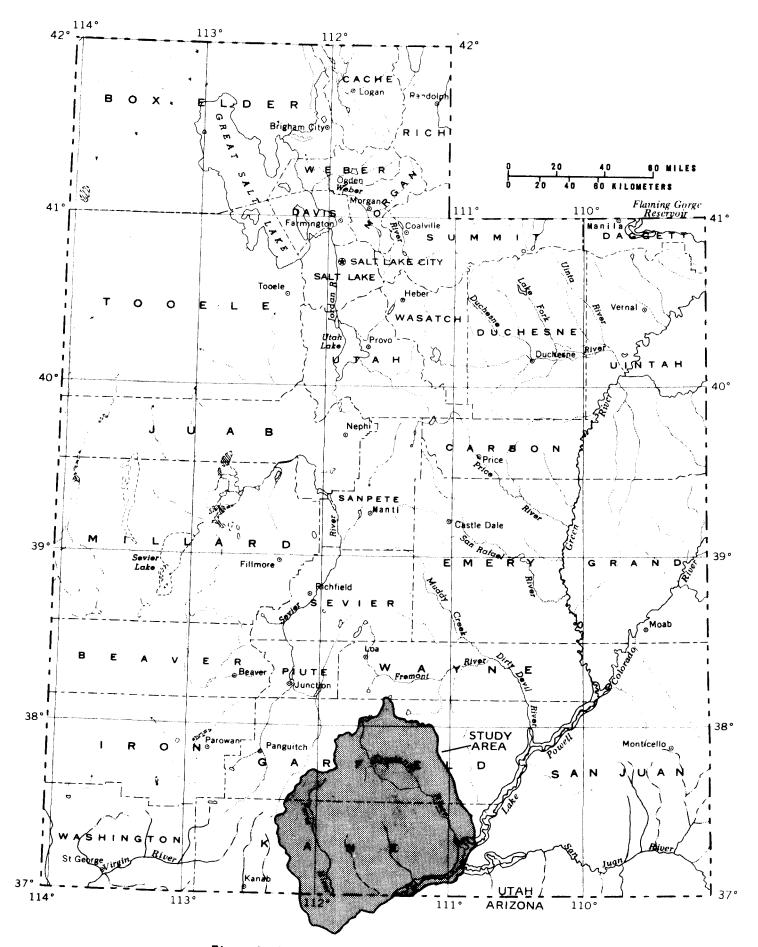


Figure 1.-Location of the Kaiparowits Plateau area.

General Description of the Study Area

The Kaiparowits Plateau area is in central Garfield and eastern Kane Counties, Utah, and north-central Coconino County, Arizona. The area includes the drainages of the Escalante and Paria Rivers, and of several smaller tributaries to the Colorado River located between the Escalante and Paria Rivers: Wahweap (the largest), Warm, Padre, Last Chance, and Rock Creeks (pl. 1). The entire study area covers about 4,850 square miles.

The Kaiparowits Plateau area is part of the Colorado Plateaus physiographic province (Fenneman, 1931, p. 274-325). The province generally consists of nearly flat-lying sedimentary strata that are deeply incised by major stream systems and interrupted by generally north-south trending monoclines and structural domes. Extrusive and intrusive igneous features are found intermittently throughout the province.

The Kaiparowits Plateau consists of nearly flat-lying sedimentary rocks and overlies much of the Kaiparowits structural basin. It is bounded on the west by the Cockscomb, a hogback formed along the East Kaibab monocline, and on the east by the Straight Cliffs, a cuesta formed along the west limb of the Circle Cliffs upwarp. The area, about 1,670 square miles in extent, all drains to Lake Powell on the Colorado River.

The Paria River basin is west of the Kaiparowits Plateau and includes about 1,410 square miles. Kaibab Gulch and Paria Canyon are significant erosional features that have been incised into the Navajo Sandstone. The maximum depth of Kaibab Gulch is about 700 feet, and that of Paria Canyon is about 1,000 feet. Paria Canyon separates the Kaiparowits Plateau to the northeast from the Paria Plateau to the southwest.

The Escalante River basin lies north and east of the Kaiparowits Plateau and includes about 1,770 square miles. The canyons of the Escalante River and its tributaries are cut primarily in Navajo Sandstone, and the river is incised in places as much as about 1,000 feet. The southern flank of Boulder Mountain, the only igneous feature in the Kaiparowits Plateau area, is in the northernmost part of the Escalante River basin.

Altitudes in the Kaiparowits Plateau area range from 3,116 feet at Lees Ferry, Arizona, to 11,328 feet on Boulder Mountain. The altitude of the Kaiparowits Plateau ranges from about 5,000 feet in the south to about 7,000 feet in the north, and the altitude of the Paria Plateau ranges from about 5,000 feet in the north to about 7,000 feet in the south.

The climate of the study area is dry according to the classification of Trewartha (1968, p. 358-369, 370-381), with annual evapotranspiration exceeding annual precipitation. Trewartha's classification indicates that the study area's lower altitudes are arid or desert and the middle to upper altitudes are semiarid or steppe. The uppermost altitudes have a highland climate. According to Strahler (1970, p. 166-168, 227-244), vegetation types vary from sagebrush-scrub in the lower altitudes to pinyon-juniper forest in the middle altitudes to needle-leaf forest in the uppermost altitudes.

Much of the land in the study area is administered by the Federal Government, primarily by the U.S. Bureau of Land Management (BLM). Included in BLM-administered lands are the Paria Canyon Primitive Area and several areas near the towns of Escalante and Boulder designated as Outstanding Natural Areas. Two areas under jurisdiction of the National Park Service lie partly in the study area: Bryce Canyon National Park in the northwest and Glen Canyon National Recreation Area in the southeast (pl. 1).

Community centers in the area and their 1980 populations are: Boulder (112), Cannonville (135), Escalante (654), Henrieville (167), and Tropic (335). All are located along Utah State Highway 12, which crosses the northern part of the study area. The primary economic activity in Cannonville, Henrieville, and Tropic is agriculture. Boulder is involved chiefly with agriculture and forestry, and primary economic activities in Escalante are agriculture, forestry, and oil exploration.

Numbering System for Hydrogeologic-Data Sites

The system of numbering hydrogeologic-data sites in Utah is based on the cadastral land-survey system of the U.S. Government. The number, in addition to designating a well, spring, or related site, describes its position in the land net. By the land-survey system, the State is divided into four quadrants by the Salt Lake base line and meridian, and these quadrants are designated by the uppercase letters A, B, C, and D, indicating, respectively, the northeast, northwest, southwest, and southeast quadrants (fig. 2). Numbers designating the township and range (in that order) follow the quadrant letter, and all three are enclosed in parentheses. The number after the parentheses indicates the section, and is followed by three letters indicating the quarter section, the quarter-quarter section, and the quarter-quarter-quarter section-generally 10 acres¹. The letters a, b, c, and d indicate, respectively, the northeast, northwest, southwest, and southeast quarters of each subdivision. The number after the letters is the serial number of the well or spring within the 10-acre tract. The letter S preceding the serial number denotes a spring. For half townships and ranges, the letter "T" or "R", respectively, precedes the parentheses. If a well or spring cannot be located within a 10-acre tract, one or two location letters are used and the serial number is omitted.

Thus (D-33-4)35bbd-1 designates the first well constructed or visited in the SEl/4NW1/4NW1/4 Sec. 35, T. 33 S., R. 4 E., and (C-40-1)23bba-S1 designates the first spring inventoried in the NE1/4NW1/4NW1/4 Sec. 23, T. 40 S., R. 1 W. Hydrogeologic-data sites in Arizona are numbered in the same manner except the numbering system is based on the Gila and Salt River base line and meridian.

The numbering system without serial numbers also is used to show the location of data sites other than wells and springs. Such data sites include locations where geologic cores and outcrop samples were collected.

¹Although the basic land unit, the section, is theoretically 1 square mile, many sections are irregular. Such sections are subdivided into 10-acre tracts, generally beginning at the southeast corner, and the surplus or shortage is taken up in the tracts along the north and west sides of the section.

Sections within a township

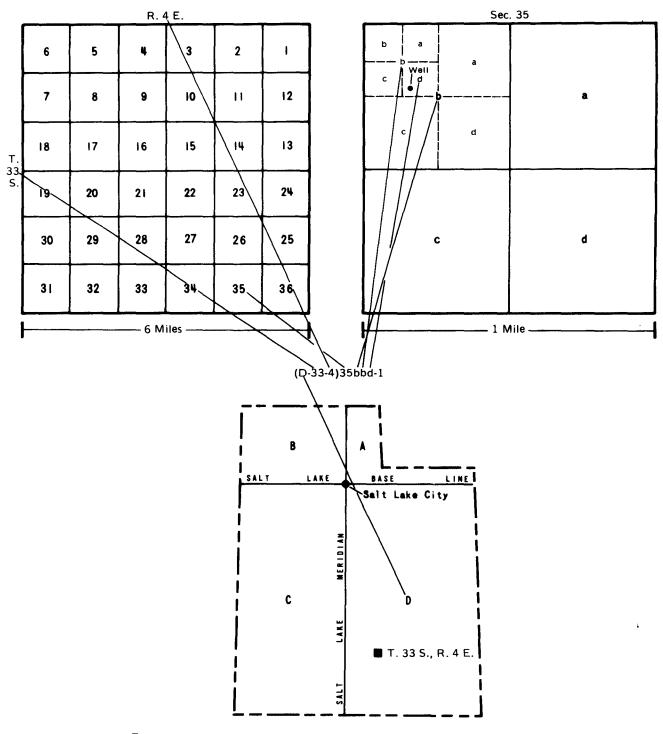


Figure 2.-Numbering system for hydrogeologic-data sites in Utah.

Locally, there is some conflict between locations based on geographic features and those based on the land-survey system, because of the small scale of the maps used. Where such conflicts exist, data sites have been plotted with reference to the local geography, resulting in apparent mislocation with reference to the land-survey system.

Acknowledgments

Several individuals and agencies have assisted in obtaining data for this study. Thanks go to the U.S. Bureau of Reclamation and the National Park Service for access to supply and observation wells in the Glen Canyon National Recreation Area, to the Arizona Department of Transportation for access to supply and observation wells, and to the U.S. Bureau of Land Management at Cedar City for overall assistance. Thanks also are extended to well owners who allowed access to their wells and particularly to Mark and Kim Nelson of Boulder who allowed use of their well for aquifer testing. Thanks also are due to Sam and Vivian Crosby and to Grant and Cathie Johnson for sharing their knowledge of the Boulder area.

GEOLOGY AND ITS EFFECTS ON HYDROLOGY

Stratigraphy

The age of consolidated rocks exposed in the study area ranges from Permian to Tertiary. Those rock units are shown on plate 2 and described in table 1.

From oldest to youngest, the formations under consideration in this report are: the Wingate Sandstone of Triassic age, the Kayenta Formation of Triassic(?) age, the Navajo Sandstone of Triassic(?) and Jurassic age, and the Page Sandstone, Carmel Formation, and Entrada Sandstone of Jurassic age. Of these, the Wingate Sandstone, the Navajo and Page Sandstones combined, and the Entrada Sandstone are the three principal aquifers in the area. Drillers' logs of selected wells (table 11, at back of report) give descriptions, thicknesses, and depths to the surface of the formations at selected well sites.

The Lukachukai Member is the only member of the Wingate Sandstone present in the study area. It generally is a pale reddish-brown, light-brown, or grayish-orange, very fine to fine-grained, crossbedded, aeolian quartzose sandstone. Crossbedding is large scale and high angle. The sandstone erodes to form prominent vertical cliffs that commonly are coated with dusky-red desert varnish. The Wingate Sandstone presently is unused but potentially is a significant aquifer.

The Kayenta Formation is a reddish-brown, reddish-orange, pale-gray, greenish-gray, and lavender fluvial sandstone, siltstone, and shale, with minor shale pellet conglomerate and freshwater limestone. Generally the Kayenta retards water movement between the Wingate and the Navajo Sandstones; however, Cordova (1978, p. 23) and Hood and Danielson (1979, p. 34) indicate that there are instances of leakage through the Kayenta, either where sandy facies are predominant or where the formation is fractured. There is evidence of leakage through the Kayenta in the Kaiparowits Plateau area as well, specifically under the Paria Plateau.

Erathem	System	Series	Geologic unit	Principal locations of outcrop	Geologic characteristics	Hydrologic characteristics
			Undifferentiated alluvium	Chiefly on southern flank of Boulder Mountain, small areas along southern margin of Vermillion (liffs and south- western margin of the Kaiparo- wits Plateau.	Sand, silt, and gravel.	Unknown.
	Quaternary		Relatively younger alluvium	Chiefly in upper reaches of the Paria and Escalante Rivers and their tributaries, significant area in Alvey Wash.	Do.	Yields water to wells in and near Boulder, Cannon- ville, Escalante, and Henriewille for domestic use, stock watering, and irrigation.
			Gravel surfaces	Small areas in North Creek drainage.	Mainly terraces and pediments undergoing erosion. May or may not be associated with active streams.	Unknown
			Landslide and other gravity deposits	Chiefly on southeastern flank of Boulder Mountain.	Surficial masses moved chiefly by gravity.	Do.
			Duneschiefly quartz sand	Chiefly along the northern margin of the Paria Plateau.	Chiefly quartz sand. Includes both active and inactive accu- mulations.	Do.
enozoic			Covering deposits	Chiefly along the eastern mar- gin of the Kaiparowits Plateau.	Chiefly windblown silts lacking dune form. Some patches of allurium and soil are included.	Do.
			Undifferentiated Tertiary volcanics Late Tertiary andesite trachyte- latite flows Late Tertiary basalt and andesite flows	Chiefly in the northern part of the study area—Boulder Mountain.	Extrusive igneous material.	Unknown, but most likely a good recharge medium.
	Tertiary	Eoœné	Wasatch Formation	Northwestern part of study areaPink Cliffs, Table Cliffs, and Canaan Peak.	Mostly light-gray to pink, thick-bedded, fine-grained, fluvial or lacustrime clastic silty limestone, containing thin interbeds of red or gray mudstone and light-gray cal- careous sandstone; conglom- eratic and less limy in upper 300 feet. Weathers and erodes to badlands, notched cliffs, and ledgy talus-littered slopes. As much as 1,700 feet thick.	Yields fresh water to springs in amounts as much as 450 gallons per minute.
			Kaiparowits Formation	Extensive outcrop east of the East Kaibab monocline and northeast of Henrieville.	Predominantly grayish-green to olive, friable, lenticular, arkosic and biotitic silty sandatone; sparse thin inter- beds of light-gray mudstone, lenticular pelletal gray limestone, and brown resis- tant sandstone; sparsely foe- siliferous; continental; erodes to gentle slopes. 2,000 to 3,000 feet thick.	Provides base flow to streams and yields small amounts of water to springs, generally less than 40 gallons per minute. Water is generally fresh to slightly saline.
esozoic	Cretaœous	Upper	Wahweap Sandstone	Extensive outcrop in the center of the Kalparowits Plateau, flanking the outcrop of the Kalparowits Formation on the west, south, and east.	Alternating thin to thick flurial beds of yellowish- gray mudstone and pale- yellowish-gray to buff well- cemented sandstone; mudstone more abundant near base; per- sistent thick conglemeratic sandstone in upper 300 feet; erodes to ledgy cliffs and alopes. As much as 1,500 feet thick.	Yields small amounts of wate to springs, generally less than 5 gallons per minute. Water is generally fresh to alightly saline.
			Straight Cliffs Formation	Extensive outcrop in the southern and eastern parts of the Kaiparowits Plateau. Forms the Straight Cliffs, a nearly-vertical cliff face on the eastern margin of the Kaiparowits Plateau.	Light-yellow-gray to white, fine to coarse-grained lo- cally conglomeratic crossbed- ded sandstone in thick sub- parallel cliff-forming beds; thinner slope-forming beds of yellowish-gray, greenish-gray to dark-gray shale and mud- stone; thin to thick beds of bituminous coal. 1,000 to 1,500 feet thick, thickening northwestward.	Yields small amounts of water to springs, generally less than 30 gallons per minute.
			Tropic Shale	Significant outcrop in the Cannowille-Henrieville- Tropic area and along the southern and eastern margins of the Kaiparowits Plateau.	Dark-gray calcareous marine shale; thin sandstone and siltstone beds near top and base; sparse white bentonite beds and nodular fossili- ferous limestone in lower part. Weathers to slopes, intertongues with Straight Cliffs Formation. 500 to 900 feet thick.	Generally does not yield water.

Erathem	System	Series	Geol	ogic unit	Principal locations of outcrop	Geologic characteristics	Hydrologic characteristics		
	Cretaœous		Dakot	a Sandstone	Thin band of outcrop, gener- ally less than 1 mile wide, along the southern and east- ern margins of the Kaiparo- wits Plateau.	Cliff-forming layers of len- ticular fluvial and littoral, crossbedded, reddish-brown, pale-brown, coarse-grained sandstone and quartzite, in- terbedded slope-, bend-, or niche-forming yellowish-gray to olive mudstone; dark-gray or brown carbonaceous shale and coal; local besal quartz-, quartzite-, and chert-pebble conglomerate. 0 to 250 feet thick.	Generally does not yield water.		
			Morri	son Formation	Significant outcrop along the southeastern margin of the Kaiparowits Plateau; thin band of outcrop along the eastern margin of the Kai- parowits Plateau.	Variegated continental beds of sandstone, conglomeratic sand- stone, and bentonitic mud- stone; coarser grained in lower part. 0 to 700 feet thick.	Do.		
		Upper	Bluff	Sandstone	Small area of outcrop east of the Kaiparowits Plateau. See footnote on plate 2.	Gray to red continental sand- stone. Probably equivalent to the Salt Wash Member of the Morrison Formation.	Unknown.		
		opper	Winso	r Formation	Significant outcrop south- west of Cannonville.	Gray to red continental sand- stone and siltstone. Byuiva- lent in places to Upper San Rafael Group and possibly Morrison Formation.	Do.		
Mesozoic	Jurassic		lc Middle	Middle		Summerville Formation	Small aree of outcrop east of the Kaiparowits Plateau.	Reddish- to pale-brown sand- stone and dark-reddish-brown shaly siltstone in even, thin, alternating beds in northern part of area, becoming sandier and paler hued south of Collet Canyon. In the Straight Cliffs area the Summerville includes a tongue of greenish-gray to reddish- brown fine- to medium- grained, gritty, generally flat-bedded sandstone and mudstone, 0 to 140 feet thick. Erodes to ribbed cliffs, slopes, and niches. 0 to 200 feet thick, thinning south- westward by erosion.	Do.
		Jurassic			Middle	San Rafael Group	Entrada Sandetone	Significant outcrop east and southeast of the Kaiparowits Plateau.	Generally composed of three intergrading informal units of littoral origin and sub- equal thickness. Upper sandy unit: pale-gray yellowish-gray, and reddish- brown, fine-grained aeolian sandstone; thickly cross- bedded in high-angle sets bounded by flat-truncation planes; cliff former. Niddle silty unit: alternating thick sets of pale- to moder- ate-reddish-brown silty sand- stone and dusky-red siltstone beds; marginal marine; slope former. Lower sandy unit: reddish-brown to pale-gray, fine-grained aeolian sandstone, commonly alumped at base in pipelike forms into underlying Carmel Formation. Porms cliffs and isolated buttes. The entire formation is more than 900 feet thick in northern part of area, thin- ning radially southward and eastward to 400 feet or less.
						Carmel Formation	Significant outcrop south and east of the Kaiparcwits Plateau, and south of the Cannonville-Henrieville area.	Thin beds of dusky-red limy siltstone, reddish-brown fine-grained friable aand- stone, gray to pink lime- stone, and thin to thick beds of gypeum, all of marginal marine origin. Forms ledgy slopes, Limestone and gypsum content increases westward, as does total thickness, from about 200 feet to more than 900 feet.	Yields water to springs at contact of 1 imestone-silt- stone units near base of formation. Siltstone unit perches water in the 1 ime- stone unit of the Carmel Formation, and severely inhibits downward move- ment of water to the Navajo Sandstone.

Erathem	System	Series	Geolo	ogic unit	Principal locations of outcrop	Geologic characteristics	Hydrologic characteristics															
		Middle	San Rafael Group	Page Sandstone	Combined with Nævajo Sandstone.	Reddish-brown, moderate red- dish-orange, and locally very light gray or grayish- pink fine-grained, well sorted sandstone, character- ized by large-scale crossbed- ding, Crossbed sets generally range from 3 to 20 feet thick. Persistent layer of chert pebbles at the base or in the basal 6 inches.	Combined with Navajo Sandstone.															
	Jurassic	Lower																	Navajo Sandstone	Extensive outcrop both east and west of the Escalante River, on the southern margin of Boulder Mountain, in the middle reaches of the Paria River west of the East Kaitab monocline, in the lower reaches of the Paria River drainage, and on the Paria Plateau.	Gray and yellowish-gray, local- ly reddish-orange, thickly crossbedded, medium-to fine grained aeolian sandstone containing a few thin lenses, each less than 1 square mile in area, of dark-gray partly chertified magnesian lime- stone; consplicuous large- scale, trough-type cross- bedding. Erodes to massive cliffs and domes. 0 to 1,900 feet thick, thickening uni- formly from northeast to southwest.	Principal aquifer in study area. Yields generally less than 10 gallons per minute to seeps and springs, usually at the base of crossbed sets, where forma- tion is unfractured. Yields up to 200 gallons per minute where formation is fractured or faulted. Water is fresh except where artesian condi- tions exist, either naturally or as a result of raised water levels caused by the filling of Lake Powell. In those areas water is fresh to slightly saline.
				Kayenta Formation	Significant outcrop in the Escalante River drainage, particularly in tributary drainages east of the Esca- lante mainstem. Limited out- crop in the middle and lower reaches of the Paria River and in Paria River tributary drainages west of the East Kaibab monocline.	Red-brown, reddish-orange, pale-gray, greenish-gray, and lavender fluvial sandstone, siltstone, shale, and minor shale-pellet conglomerate and freshwater limestone; erodes to cliffs and benches. Interfingers with overlying and underlying formations. Averages about 200 feet thick.	Generally less permeable than the overlying Navajo Sand- stone and underlying Moenave Formation and Wingate Sand- stone. Perches water in the Navajo Sandstone resulting ir springs and seeps at the Navajo-Kayenta contact in parts of the canyon of the Escalante River.															
Mesozoic	Triassic (?)	?) (?)		Canyon	Moenave Formation	Limited outcrop in middle and lower reaches of the Paria River, and in tributary drain- ages to the Paria River west of the East Kaibab monocline.	Composed of two fluvial members: Springdale Sandstone Member; pale-redisib-brown, medium-grained, micaceous, cliff-forming sandstone and minor siltstone; and the underlying Dinosaur Canyon Sandstone Member; reddish- orange, coarse to fine- grained, parallel-bedded, ledge- and slope-forming friable sandstone, siltstone, and mudstone. The Moenave thinks from nearly 400 feet thick in the southwest part of the study area to a wedge of irregular trace in the vicinity of The Rincon.	Yields water to wells on the Paria Plateau.														
							Wingate Sandstone	Limited outcrop in the Esca- lante River drainage, parti- cularly in tributary drainages east of the Escalante main- stem.	Reddish-brown, light-brown, grayish-orange, fine-grained, thickly crossbedded, calcar- eous aeolian sandstone. Erodes to vertical cliffs commonly coated with dusky- red desert varnish. About 275 feet thick in most of study area; thins to a wedge edge mear southwest corner of study area.	No wells utilize the Wingate and only one spring dis- charges from the Wingate in the study area.												
	Triassic	Upper	Chinle	e Formation	Limited outcrop on the flanks of the Circle Cliffs, on the southern margin of the Ver- million Cliffs, and in the middle and lower reaches of the Paria River.	Varicolored beds of fluvial and lacustrine origin; gener- ally sandy at top; limy, muddy, and bentonitic in the middle; sandy and conglemera- tic near base. 500 to 900 feet thick, thickening south- ward.	Unknown.															
				Shinarump Conglomerate	Limited outcrop on the south- ern, western, and northeast- ern flanks of the Circle Cliffs, and on the southern margin of the Vermillion Cliffs.	Yellowish-gray, pale-brown, or gray-green medium-grained to conglomeratic fluwial sand- stone; contains guartz peb- bles, carbonized plant de- bris, and fragmental silici- fied wood; erodes to cliffs. 0 to about 200 feet thick in some deep channels.	Do.															
		Middle (?) and Lower	Moenko	ppi Formation	Extensive outcrop in the Circle Cliffs, significant outcrop at the southern margin of the Vermillion Cliffs.	Fine-grained red beds and thin marine limestone and evapor- ite tongues. 250 to 1,000 feet thick, thickening uni- formly northwestward.	Do.															

Table 1.--Description of geologic formations in the Kaiparowits Plateau area--Continued

Erathem	System	Series	Geologic unit	Principal locations of outcrop	Geologic characteristics	Hydrologic characteristics
<u></u>			Kaibab Limestone	Significant outcrop at south- ern margin of the Vermillion Cliffs.	Grayish-yellow, fossiliferous, cherty, thir to thick-bedded dolomitic limestone and inter- bedded light-gray to brown siltstone and sandstone. 0 to 60 feet thick in Circle Cliffs, 100 to 400 feet thick in remainder of study area, thinning southward.	Unknown.
Paleozoic	Paleozoic Permian	rmian Lower	Toroweap Formation	Minor outcrop in Kaibab Gulch west of the East Kaibab monocline.	Yellowish-gray, white, and reddish-brown fine- to me- dium-grained crossbedded and gnarly-bedded sandstone, dark-red siltstone, and light-gray cherty limestone. Conditions of deposition si- milar to Kaibab Limestone. 200 to 400 feet thick.	Do,
			Hermit Shale	Minor outcrop in Kaibab Gulch west of the East Kaibab monocline.	Deep-red shale, siltstone, and shaly siltstone, sparse len- ticular sandstone near base; locally shale contains mud cracks and ripple marks. 125 to 250 feet thick.	Do.

The generally small permeability of the Kayenta Formation is illustrated in the Escalante Canyon, where water discharges from the canyon wall at the Navajo Sandstone-Kayenta Formation contact at general location (D-36-6). A further illustration is spring (D-36-6)27bab-S1 in Harris Wash, which discharges approximately 7.5 gallons per minute at the Navajo-Kayenta contact.

The Navajo Sandstone is a very fine- to fine-grained, aeolian, crossbedded, quartzose sandstone. The Navajo is characterized by large-scale, high-angle crossbedding in sets generally from 20 to 50 feet thick, and is a cliff-forming formation. Color varies from nearly white to deep reddishbrown. An outcrop of Navajo Sandstone near Boulder is shown in figure 3.

The Page Sandstone is a moderate reddish-brown, moderate reddish-orange, and locally very light gray or grayish-pink, fine-grained, well-sorted sandstone (Peterson and Pipiringos, 1979, p. 21). It is characterized by large-scale crossbedding, with sets generally ranging from 3 to 20 feet thick. Angular chert pebbles generally less than 0.5 inch long commonly are present at the base or in the basal 6 inches of the formation. The Page Sandstone is hydrologically connected to the Navajo Sandstone, and is informally grouped with the Navajo in this report.

The Carmel Formation is of marginal marine origin, consisting of thin beds of dusky-red limy siltstone, reddish-brown friable sandstone, gray to pink limestone, and beds of gypsum. A siltstone bed at the base of the Carmel generally effectively inhibits movement of water between the Carmel and the underlying Navajo Sandstone. At several locations in the Kaiparowits Plateau area, water seeping down through the Carmel is diverted laterally by this siltstone bed and is discharged as springs--usually within about 10 feet of the top of the Navajo. Examples of such springs are listed in table 2.

The Entrada Sandstone is divided into three informal units. The upper and lower units are pale-gray to reddish-brown, fine-grained, cliff-forming aeolian sandstones. The middle unit consists of alternating thick beds of pale to reddish-brown, silty sandstone and dusky-red siltstone.

Structure

The major structural features in the Kaiparowits Plateau area are the Kaiparowits basin in the center of the area, the Kaibab upwarp to the west of the Kaiparowits basin, and the Circle Cliffs upwarp to the east (pl. 2).

The East Kaibab monocline separates the Kaibab upwarp and the Kaiparowits basin. The monocline dips steeply to the east, as much as 86 degrees. To the west in the Kaibab upwarp, the Navajo Sandstone is either absent (older rocks are at the surface) or at the surface. To the east in the Kaiparowits basin, the Navajo is buried by as much as 4,500 feet of younger sedimentary rocks, and rocks of Cretaceous age are at the surface. The Kaiparowits basin is asymmetrical, with a steeply eastward-dipping limb on the west--the East Kaibab monocline--and a much more gently westward-dipping east limb.

The Navajo Sandstone is intensely fractured along the East Kaibab monocline (fig. 4). The secondary porosity resulting from the fracturing probably enables the Navajo to accept a large percent of precipitation in the area as recharge. For open fractures, Craft and Hawkins (1959, p. 283) report

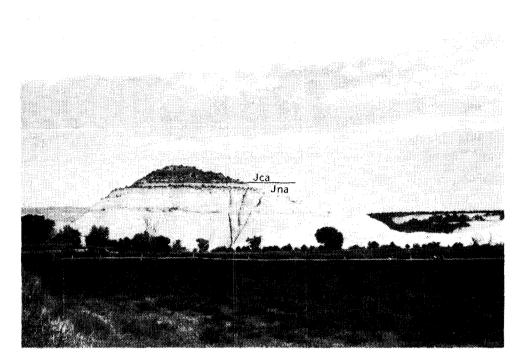


Figure 3.—Navajo Sandstone (Jna) overlain by Carmel Formation (Jca) at location (D-33-4)36, 1.5 miles south of town of Boulder, Utah.

Figure 4.– Fractured Navajo Sandstone in the East Kaibab monocline at location (C-42-2)25.

Table 2.--Selected springs that discharge from the Carmel Formation above basal siltstone of low permeability

Number	Drainage	Name of spring	Altitude of land surface (feet)
(C-40-3) 5bab-Sl	Park Wash	Adams Spring	6,270
(D-39-7) 8ddd-s1	Big Hollow Wash tributary	Liston Seep	4,550
16abd-SL	Coyote Gulch		4, 560
(D-40-8) 17dca-Sl	Sooner Wash	Sooner Water	4,250
27cbc-Sl	Willow Gulch		4,210
(D-41-8) 2dab-S1	Fiftymile Creek	Soda Spring	4,270

Number: See "Numbering system for hydrogeologic-data sites", p. 5, and figure 2.

that a 0.001-inch wide fracture will have a permeability of 54,000 millidarcies, or a hydraulic conductivity of about 132 feet per day. This value is in the range of two orders of magnitude greater than the hydraulic conductivity of unfractured Navajo Sandstone determined from laboratory analyses of Navajo cores (table 3).

The Circle Cliffs upwarp is an asymmetrical, elongate structural dome that has a gently westward-dipping west limb and a much more steeply eastwarddipping east limb. Near the axis of the Circle Cliffs upwarp, northeast of the Escalante River, the Navajo Sandstone has been removed by erosion and older rocks are at the surface. To the west of the axis of the upwarp, however, the Navajo is widely exposed.

HYDROLOGIC SETTING

Hydrologic Budget of the Kaiparowits Plateau Area

Ronald L. Jensen (U.S. Bureau of Reclamation, written commun., 1972) estimated a hydrologic budget for the Escalante River, Paria River, and Wahweap Creek basins as part of a regional reconnaissance of water resources in south-central Utah. Jensen's Wahweap Creek basin includes all of the drainages between the Escalante and Paria Rivers, and Jensen's three-basin area coincides with the area described in this report. Estimations by Jensen include precipitation, runoff, evapotranspiration, and potential ground-water recharge for each basin. Values for each of the three basins and for the entire study area are given in table 4.

Table 3.--Hydrologic and physical characteristics of shallow core and outcrop samples Abbreviations used in column headings are as follows: ft/d, feet per day; mm, millimeters; ft, feet; ft2/d, feet squared per day.]

Location: See "Numbering system for hydrogeologic-data sites", p. 5, and figure 2. Hydraulic conductivity: See p. vi. Distilled water used in hydrologic analyses Porosity: See p. vi. Grain-size distribution: Median diameter = d_{50} . Sorting coefficient = $\sqrt{Q_3/Q_1}$, where Q_3 = 25 percent quartile, Q_1 = 75 percent quartile. Total or saturated thickness of Navajo Sandstone: Saturated thickness of Navajo Sandstone used where information is available, otherwise total thickness used.

Estimated transmissivity: ft^2/d rounded to nearest 1,000; determined by multiplying horizontal hydraulic conductivity times saturated thickness of the Navajo Sandstone, or total thickness where saturated thickness is unknown.

	Hydraulic conductivity (K)		Ratio			n-size ibution	Total (T) or saturated (S) thickness of Navajo		
Location	Horizontal (ft/d)	Vertical (ft/d)	horizontal/ vertical K	Porosity (percent)	Median diameter (mm)	Sorting coefficient	Sandstone at site (ft)	Estimated transmissivity (ft2/d)	
<u> </u>			N	avajo Sands	tone				
(C-39-2) 5dc1	0.64	0.41	1.56	23.2	0.144	1.534	2,300(T)	1,500	
(D-34-3)32ac ¹	.38	.22	1.72	25.6	.104	1.093	1,200(T)	500	
(D-35-4) 1da1		1.36		20.9	.112	1.140	1,200(T)	22,200	
(D-36-6)18bbb		4.66		26.5	.178	1.638	<600(T)	23,700	
(D-39-8)23ac	2.12	2.10	1.01	28.3	.155	1.266	<1,200(T)	2,500	
(A-41-8)23dcd (Arizona)	9.57	8.86	1.08	30.8	.208	1.209	1,200(S)	11,500	
			E	ntrada Sandı	stone				
(D-35-3) 8aaa	0.67	0.27	2.48	22.2	0.188	1.408			
(D-40-8) 7aca	1.20	.79	1.52	26.0	.151	1.430			
(D-43-3)30dac	.01	.09	.11		.183	1.483			
			Wd	ingate Sands	stone				
(D-34-5)12dbc	1.25	0.27	4.63	31.4	0.084	1.323			
(D-36-7) 7aba3	1.17	.39	3.00	20.5	.099	1.250			

¹Outcrop sample collected and cored by Uygur (1980). Core directions are parallel and perpendicular to bedding planes. All other cores were obtained parallel and perpendicular to land surface. ²Horizontal hydraulic conductivity is unknown but is estimated by multiplying vertical hydraulic conductivity times 1.34.

3 Outcrop sample (not shallow core).

Table 4.--Hydrologic budget of the Escalante River, Paria River, and Wahweap Creek basins (from Ronald L. Jensen, U.S. Bureau of Reclamation, written commun., 1972)

	Acre-feet								
Basin	Precipitation	Runoff	Evapotrans- piration	Potential ground-water recharge					
Escalante River	1,389,500	86,000	1,271,000	32,500					
Paria River	866,500	20,000	838,000	8,500					
Wahweap Creek	709,000	16,000	690,000	3,000					
Total	2,965,000	122,000	2,799,000	44,000					

Estimation of the amount of precipitation falling in each basin was made by use of the State of Utah normal annual precipitation map (U.S. Weather Bureau, 1963). Areas between lines of equal normal annual precipitation were determined in each basin. The average value of adjacent isolines was then multiplied by the area between the lines, and all such determinations were summed for each basin.

Runoff was defined as the average annual flow at the mouth of each mainstem plus the amount of water diverted for irrigation, minus the amount of irrigation diversion return flow. Evapotranspiration, or consumptive use, was estimated by identification of plant communities and their areal extent and densities. The estimation was made from U.S. Geological Survey quadrangle maps and U.S. Forest Service timber-survey maps. Summer evapotranspiration (May-September) was defined as the sum of summer precipitation plus soilmoisture depletion minus summer runoff. Winter evapotranspiration (October-April) was defined as sublimation of any snowpack present.

Potential ground-water recharge was estimated as total precipitation minus the sum of total evapotranspiration plus runoff. The value is not limited to the Navajo Sandstone, but is for recharge to all ground-water reservoirs, both consolidated and unconsolidated. The annual amount of water available for recharge in the study area was estimated to be about 44,000 acre-feet.

<u>Precipitation</u>

Normal annual precipitation varies widely in the study area, from less than 6 inches along the Colorado River near Page, Arizona, to greater than 30 inches on the summit of Boulder Mountain. Normal May through September precipitation ranges from less than 3 inches near Page to more than 10 inches at the summit of Boulder Mountain (pl. 1).

Precipitation amounts increase with altitude. For example, at Boulder the normal annual precipitation is 12 inches and normal May through September precipitation is 6 inches, compared with 30 inches and 10 inches at the summit of Boulder Mountain. Boulder is located only 12 miles south-southeast of the Boulder Mountain summit. The altitude at Boulder is about 6,400 feet, whereas the altitude at the summit of Boulder Mountain is 11,328 feet. The temporal distribution of precipitation also changes with altitude. Only one-third of the total annual precipitation falls in the summer at the summit of Boulder Mountain, while 50 percent falls during May through September at the town of Boulder. This relationship of an increased percentage of total precipitation falling from October through April at higher altitudes exists throughout the study area.

Summer precipitation characteristically is in the form of intense and very localized thunderstorms of short duration. The intensity and short duration allows little time for precipitation to enter the ground-water system. Most of the water moves overland and becomes part of the surfacewater system.

Winter precipitation occurs over larger areas, is much less intense, and of longer duration. It primarily falls in the form of snow and at higher altitudes may remain as snowpack for several months. Gradual warming and slow melting of the snowpack in the spring allows much more time for infiltration than is the case for summer precipitation. Runoff and infiltration characteristics resulting from spring and fall precipitation are transitional between those of summer and winter.

Surface-Water Conditions

Three stream-flow gaging stations are presently (1982) in operation in the Kaiparowits Plateau area--Pine Creek near Escalante, Escalante River near Escalante, and Paria River at Lees Ferry. Formerly several additional continuous-discharge measurement stations as well as annual peak-discharge measurement stations were in operation. All stream-flow gaging stations in the study area, both active and discontinued, are shown on plate 1 and listed in table 5.

Average annual discharge of surface water from the Escalante River basin for 5 years of record (October 1950-September 1955) at station 09339500, Escalante River at mouth, was 61,670 acre-feet. The majority of discharge originates in the upper basin near Boulder Mountain. Two areas that comprise only 331.4 square miles of the 1,770 square miles in the basin contributed 28,030 acre-feet, or about 45 percent of the annual discharge to the Escalante River basin. The areas are the upper reaches of the Escalante River upstream from station 09337500, comprising 310 square miles, and the East Fork of Boulder Creek upstream from station 09338000, comprising 21.4 square miles.

acro-ft/yr, acro-feet per year.]												
Station		Approximate		Ave	erage discharge	•		Extremes	(ft ³ /s)			
number	Station name	drainage area (mi ²)	Period of record	ft ³ /s	Acre-ft/yr	Years	Maximum	Date	Minimum	Date		
0 93 35500	North Creek near Escalante	90	July 1950-Sept. 1955	7.64	5,530	5	3,610	8-21-52	0	(1)		
09836000	Birch Creek near Escalante	36	July 1950-Sept. 1951; water years 1959-74 ²	.54	3 90	1	3,400	8-19-63	0	(1)		
0 93 36 400	Upper Valley Creek near Escalante	53	Water years 1959-74 ²				5,560	8- 2-59	0	(1)		
0 9336 500	Birch Creek at mouth, near Escalante	, 100	Oct. 1951-July 1955	3.26	2,360	3	1,010	7-12-54	0.1	7-13-55; 7-14-55		
0 93 3 7000	Pine Creek near Escalante	78	July 1950-Sept. 1955; July 1957-Sept. 1982	4.55	3,330	30	1,010	8- 2-67	0	(1)		
09337500	Escalante River near Escalante	310	Aug. 1909-Apr. 1913; Oct. 1942-Sept. 1955; Dec. 1971-Sept. 1982	15.0	10, 870	26	3,450	853	0.07	12-24-78		
0 93 3 80 00	East Fork Boulder Creek near Boulder	21.4	July 1950-Sept. 1955; July 1957-Sept. 1972	23.7	17, 160	20	483	5-20-64	8.2	11- 5-51		
0 93 3 8500	East Fork Deer Creek near Boulder	1.9	July 1950-Sept. 1955; water years 1959-74 ²	1.39	1,010	5	224	8-3-61	0	2-10-53		
09338900	Deer Creek near Boulder	63	Water years 1959-74 ²				3,820	8-3-61	0	(1)		
0 93 3 90 0 0	Boulder Creek near Boulder	175	July 1950-Sept. 1955	23.0	16,650	5	4,650	7-25-55	6.1	6-26-53		
09339200	Twentymile Wash near Escalante	1 40	Water years 1959-682				4,620	8-27-63	0	(3)		
0 93 3 9500	Escalante River at mouth, near Escalant	1,770 Ce	April 1950-Sept. 1955	85.2	6 1,6 70	5	14,600	8- 4-51	4.4	8-20-50; 7-11-51		
09879800	Coyote Creek near Kanab	89	Water years 1959-73 ²				4,590	6-22-72	0	(3)		
09379820	Buck Tank Draw near Kanab	5.3	Water years 1959-68 ²				190	7-30-67	0	(3)		
0 93 803 80	Bryce Creek at Park Boundary, near Tropi	2.7 ic	Water years 1965-662				330	9-5-65	0	(3)		
0 93 80 400	Paria River at Cannonville	96	Water years 1959-62 ²				4,830	8-3-61	0	(1)		
0 93 81000	Henrieville Creek nes Henrieville	ur 29	Aug. 1950-July 1955	5.17	3,740	4	3,360	7-31-53		1 1-22-52 ; 12-22-52		
0 93 81 100	Henrieville Creek at Henrieville	34	Water years 1959-74 ²				7,360	8-4-61	0	(1)		
0 93 81500	Paria River near Cannonville	220	Dec. 1950-Sept. 1955; water years 1959-74 ²	9.70	7,020	4	11,600	8-31-63	0	(1)		
0 98 815 90	Sheep Creek at Park Boundary, near Cannonville	3.6	Water years 1955-662				9.6	8- 2-66	0	(3)		
0 98 816 00	Sheep Creek near Cannonville	17	Water years 1959-642				1,260	8- 4-61	0	(3)		
09381700	Sheep Creek Reservoir	31.1	Water years 1961-682				4,620	8-31-63	0	(3)		
95 81 800	Paria River near Kanab	668	Water years 1959-73 ²				15,400	8-31-63	0	(1)		
0 93 82 00 0	Paria River at Lees Ferry	1, 410	Oct. 1923-Sept. 1982	29.9	21,660	59	16,100	10- 5-25	1	(4)		
10184000	Tropic and East Fork Canal (transmountain diversion from East Fork Sevier River)		Water years 1950-61	3.40	2,464	11	29	5-12-52	0	(5)		

Table 5.--Selected streamflow data in the Kaiparowits Plateau area [Abbreviations used in column headings are as follows: mi², square miles; ft³/s, cubic feet per second; acre-ft/yr, acre-feet per year.]

¹Some flow throughout most years, but dry on occasions. ²Only annual-peak discharges gaged. ³Only intermittent or ephemeral flow. ⁴Most years prior to 1931. ⁵No flow for several months in each year.

Several ungaged tributaries on the southern flank of Boulder Mountain also contribute significant quantities of surface water to the Escalante River. Streamflow in Mamie, Sand, and Calf Creeks on October 21, 1981 were, respectively, 7.2, 10.0, and 6.4 cubic feet per second (table 6). Streamflow in the Escalante River just downstream from Calf Creek was 43.9 cubic feet per second.

Average annual discharge of surface water from the Paria River basin for 59 years of record (October 1923-September 1982) at station 093 & 2000, Paria River at Lees Ferry, is 21,660 acre-feet. Two annual peak-discharge gaging stations are the only stations that have been installed in the Wahweap Creek basin. Both stations have been discontinued. The maximum recorded peaks during the respective periods of record are given in table 5.

A series of streamflow measurements was made along reaches of both the Escalante and Paria Rivers where the streambeds are incised in the Navajo Sandstone. The data were collected to determine whether the Navajo Sandstone contributes water to or receives water from the rivers. The measurements were made during October 21-23, 1981. Locations of the measurement sites are shown on plate 1, and the data are presented in table 6.

In the Escalante River basin, the reach just downstream from Pine Creek to Mamie Creek showed a gain in streamflow of 2.0 cubic feet per second, or an 11.9 percent increase, and the adjacent reach just downstream from Mamie Creek to Sand Creek showed a gain in streamflow of 1.5 cubic feet per second, or a 5.7 percent increase. For both reaches the total net gain was 3.5 cubic feet per second. This would be 2,500 acre-feet per year, assuming the net gain to be constant. No other reach of the Escalante River from Pine Creek to south of Harris Wash showed a change in streamflow of greater than 5 percent.

In the Paria River basin, streamflow in two reaches of the Paria River was measured. The first reach was from about 3 miles south of U.S. Highway 89 to the mouth of Kaibab Gulch. It showed a loss in streamflow of 2.0 cubic feet per second, or a 13.7 percent decrease. The second reach, from just below Kaibab Gulch south to the end of Navajo Sandstone outcrop (about 13 miles downstream from Kaibab Gulch) showed a gain in streamflow of 4.4 cubic feet per second, or a 33.9 percent increase. The net gain for both reaches was 2.8 cubic feet per second. This would be about 2,000 acre-feet per year, assuming the net gain to be constant.

The above measurements were made when the streamflow exceeded base flow for each stream, and the results need to be repeated at conditions nearer to base flow before they can be considered totally reliable. These data, however, indicate that in the area of potential recharge to the Navajo Sandstone in the upper reaches of the Escalante River, the Navajo also is discharging water to the river. In the Paria River basin, the adjacent reaches indicate opposite directions of movement; however, based on the data collected, the overall movement of water is from the Navajo Sandstone to the Paria River.

Gerald Plantz (U.S. Geological Survey, oral commun., 1982) made three streamflow measurements on the Paria River at U.S. Highway 89 on April 22 and August 25, 1981, and on March 4, 1982. These measurements were compared with recorded streamflow of the Paria River at Lees Ferry (station 093 82000) for

Table 6.--Miscellaneous surface-water measurements in Escalante River and Paria River basins [Abbreviations used in column headings are as follows: ft³/s, cubic feet per second; umho/cm at 25°C, micromhos per centimeter at 25 degrees Celsius; mg/L, milligrams per liter.]

Dissolved solids: L, laboratory determination; other values calculated from specific conductance, (specific conductance times 0.61 in the Escalante River basin, and specific conductance times 0.73 in the Paria River basin)

		Disc	harge		
Measurement location	Discharge (ft ³ /s)	Gain (+) or loss (-) (ft ³ /s)	Percent gain (+) or loss (-)	Specific conductance (umho/cm at 25 ^o C)	Dissolved solids (mg/L)
<u>10-21-81</u>					
Escalante River near Escalante	16.8				
Escalante River above Mamie Creek	18.8	+2.0	+11.9	850	484L
Mamie Creek at mouth	7.2			420	255
Escalante River above Sand Creek	27.5	+1.5	+5.7	6 80	415
Sand Creek at mouth	10.0			80 0	490
Escalante River above Calf Creek	36.2	-1.3	-3.5	730	450
Calf Creek at mouth	6.4			6 80	415
Escalante River above Boulder Creek	43.9	+1.3	+3.1	6 80	436 L
Boulder Creek at mouth	41.2			280	172L
Escalante River above The Gulch	88.8	+3.7	+4.3	500	305
The Gulch	1.0			520	315
<u>10–22–81</u>					
Escalante River below The Gulch	78.9				
Escalante River above Harris Wash	73.3	-6.6	-8.4	500	305
Harris Wash at mouth	5.9			700	425
Escalante River above unnamed tributary	78.9	3	4	510	3 18L
<u>10-23-81</u>					
Paria River 3 miles south of U.S. Highway 89	14.6		980 AND	1,800	1,310L
Paria River above Kaibab Gulch	12.6	-2.0	-13.7	1,750	1,280L
Kaibab Gulch at mouth	.1				-
Paria River at mouth of Paria Canyon (south of terminous of Navajo Sandstone)	17.4	+4.7	+37.0	1,400	1,020
Paria River at Lees Ferry	16.6	8	-4.6		
<u>1-22-81</u>					
Paria River at U.S. Highway 89	17.0				
Paria River at Lees Ferry	29.2	+12.2	+71.8		
-25-81	0.1				
Paria River at U.S. Highway 89 Paria River at Lees Ferry	9.1				
	20.0	+10.9	+119.8		
1 <u>-4-82</u> Paria River at U.S. Highway 89	22.0				
Paria River at Lees Ferry	33.6	+11.6	+52.7		

the same dates. The Paria River gained 12.2, 10.9, and 11.6 cubic feet per second in the reach between U.S. Highway 89 and Lees Ferry on these dates, indicating substantial discharge from bedrock (mostly Navajo Sandstone) in the reach. Annual ground-water discharge from this reach, based on the average of the above measurements, is 8,400 acre-feet.

Water-quality samples were collected during the streamflow measurements made on October 21-23, 1981. The general trend of dissolved-solids concentration in the Escalante River was a decrease in a downstream direction to the mouth of Boulder Creek (table 6). The range was from 4.84 milligrams per liter upstream from Mamie Creek to 318 milligrams per liter about 5 miles downstream from Harris Wash.

The reaches of the Escalante River upstream from the section investigated flow over rocks younger than the Navajo Sandstone, primarily of Cretaceous age. Most contain soluble materials and contribute most of the dissolved solids in the Escalante River upstream from the Navajo outcrop area. Downstream from that point the water in the Escalante mainstem is diluted by tributary water with smaller dissolved-solids concentrations. The tributary waters have flowed across or through the Navajo or other formations that generally contain less soluble material than the rocks of Cretaceous age.

Boulder Creek significantly dilutes the dissolved-solids concentration of the Escalante River. During the October 21, 1981 streamflow measurements, Boulder Creek had a flow of 41.2 cubic feet per second into the Escalante River, which had a flow of 43.9 cubic feet per second just upstream from Boulder Creek. The dissolved-solids concentrations in Boulder Creek was 172 milligrams per liter; that of the Escalante mainstem was 436 milligrams per liter. Downstream from Boulder Creek, the concentration of dissolved solids in the Escalante River was 318 milligrams per liter, a 27 percent decrease.

There were no tributaries having a streamflow of greater than 0.1 cubic foot per second to the investigated reaches of the Paria River; however, the lower reach, from Kaibab Gulch to the southernmost extent of Navajo Sandstone outcrop, showed a gain in streamflow from 12.7 to 17.4 cubic feet per second, which indicates that the bedrock discharges water to the river in that reach. This indication is substantiated by dilution of Paria River water by fresher water from the Navajo Sandstone. The dissolved-solids concentration in the investigated reaches of the Paria River ranges from 1,310 milligrams per liter 3 miles south of U.S. Highway 89 to 1,020 milligrams per liter at the southernmost area of Navajo Sandstone outcrop.

Ground-Water Conditions

The Navajo Sandstone ranges from completely saturated and confined to completely unsaturated. Confined conditions exist in the Kaiparowits basin under the Kaiparowits Plateau and near the Paria River where it is crossed by U.S. Highway 89. The Navajo also is completely saturated in the lower Wahweap Creek area because of flow from Lake Powell into the aquifer. Unsaturated conditions are present along the southern margin of the Paria Plateau. Principal areas of withdrawal of water from the Navajo are in the Boulder, Paria Plateau, and Wahweap Bay areas. In the Boulder area, the unsaturated thickness of the Navajo Sandstone ranges from 0 to nearly 450 feet, depending on the topography. Generally, less than 200 feet of the Navajo is unsaturated. The Navajo generally is at the surface except in canyons where it underlies stream-valley alluvium that was eroded and transported from Boulder Mountain. The total thickness of the formation in the area is unknown, but probably varies considerably as a result of differential erosion in canyons and uplands. The altitude of the base of the Navajo in the Boulder area also is unknown and difficult to infer because of tectonic activity associated with Boulder Mountain.

At well (D-35-4)20cca-1, near Escalante, the upper 550 feet of the Navajo is unsaturated. At well (D-40-8)7bdc-1, near Fortymile Creek in the Escalante River basin, only the upper 100 feet is unsaturated.

Information about water levels in the Navajo Sandstone under the Kaiparowits Plateau is scarce. Drillers' reports for 22 oil-test wells note that water is present in the Navajo; however, most of the 22 reports simply indicate "damp sand", "sand and water", or a similar indication of water, without reference to where in the Navajo section the condition was first penetrated. Generally, no water levels are given in the reports.

Less information is available about water in the Entrada Sandstone than in the Navajo. Water is withdrawn for irrigation or domestic use from several wells completed in the Entrada near the towns of Cannonville, Escalante, and Glen Canyon City. The Entrada is slightly less than 600 feet thick in the Glen Canyon City area, and about 400 feet of that thickness is saturated. Water levels have increased subsequent to the filling of Lake Powell, which began in 1962.

No water wells penetrate the Wingate Sandstone in the study area, and virtually no information exists regarding presence of water in that formation. Except on the flanks of the Circle Cliffs, the Wingate is overlain by the Kayenta Formation and the Navajo Sandstone. Generally, wells are not drilled into the Wingate because the Navajo or less deep aquifers yield water of adequate quantity and quality.

Hydrologic Characteristics of the Navajo,

Entrada, and Wingate Sandstones

Hydrologic characteristics of the Navajo, Entrada, and Wingate Sandstones were determined from laboratory analyses of shallow core and outcrop samples. In addition, short-term aquifer tests were conducted using wells completed in the Navajo Sandstone at several locations in the study area.

Laboratory analyses of porosity, hydraulic conductivity, and grain-size distribution were conducted on 10 shallow core samples and on one outcrop sample. The results of the analyses are presented in table 3. For three samples collected and analyzed by Uygur (1980), (C-39-2)5dc, (D-34-3)32ac, and (D-35-4)1da, hydraulic conductivity was determined in directions parallel and perpendicular to bedding planes in the Navajo Sandstone. All other samples were collected by the author and analyzed by Core Laboratories, Inc., and hydraulic conductivity was determined in directions parallel and perpendicular to the land surface.

Comparison of the results of analyses for the Navajo, Entrada, and Wingate Sandstones (table 3) indicates, based on the small number of samples available, that hydraulic conductivity in the horizontal direction is about the same for all three formations. Hydraulic conductivity in the vertical direction is smaller in both the Entrada and Wingate than in the Navajo. The ratios of horizontal to vertical hydraulic conductivity for the Navajo, Entrada, and Wingate are, respectively, about 0.8 to 1, 1.5 to 1, and 3.6 to 1. The small differences between horizontal and vertical hydraulic conductivity of the formations, especially the Navajo and Entrada, indicates a strong tendency towards isotropism, and illustrates the small effect that bedding planes within cross-bed sets have on hydraulic conductivity.

Porosity is similar for all three formations, but the Wingate is finer grained than either the Navajo or Entrada. The Navajo is very fine- to finegrained, the Entrada is fine-grained, and the Wingate is very fine-grained. The sorting coefficient is about the same for all three formations.

Similar analyses were performed on samples collected to the northeast in the lower Dirty Devil River basin (Hood and Danielson, 1981, p. 121), to the southwest and west in the upper Virgin River and Kanab Creek basins (Cordova, 1981, p. 22), and farther west in the central Virgin River basin (Cordova, 1978, p. 25). The results of analyses on samples from these areas and from the Kaiparowits Plateau area are summarized in table 7.

Horizontal and vertical hydraulic conductivity and median grain size all increase significantly from the northeast to the southwest. Porosity is about the same in all areas except in the central Virgin River basin, where it is markedly less. Sorting-coefficient values show no geographical trend.

Three short-term aquifer tests were conducted in the Kaiparowits Plateau area to determine transmissivity (T) and storage coefficient (S) of the Navajo Sandstone. The first test was near U.S. Highway 89 about 5 miles south of the Utah-Arizona border, the second was near the shore of Wahweap Bay, and the third was near the town of Boulder. The results of the tests are shown in table 8, and records of the wells used are given in table 12 (at back of report).

The test near U.S. Highway 89 was a two-well test, and determinations of transmissivity and storage coefficient were made from drawdown in the observation well by the type-curve matching method (Lohman, 1972, p. 15-18). The tests near Wahweap Bay and near the town of Boulder were both single-well tests, and transmissivity was determined by the straight-line solution method (Lohman, 1972, p. 19-21). Transmissivity for the three tests ranged from 5,700 to 7,000 feet squared per day. Storage coefficient determined from the test near U.S. Highway 89 was 0.0067.

In addition to the three short-term aquifer tests discussed above, a fourth longer-term aquifer test was conducted for Utah International Inc. by Bingham Engineering. The location is near Bald Knoll, 6 miles west of the western border of the Kaiparowits Plateau area. The results of the test are included because no aquifer-test data were collected within the boundaries of the study area near the test location, and the test is a 30-day test with a pumped well, (C-40-5)2labc-1, that is screened in about 83 percent of the Navajo. The transmissivity and storage coefficient values were determined by

Table 7.--Comparison of hydrologic and physical characteristics of the Navajo Sandstone and results of aquifer tests in the Kaiparowits Plateau area with those in the lower Dirty Devil River basin, the upper Virgin River and Kanab Creek basins, and the central Virgin River basin [Abbreviations used in column headings are as follows: ft/d, feet per day; mm, millimeters; ft²/d, feet squared per day.]

Hydraulic conductivity: See p. vi. Porosity: See p. vi. Median grain size = d_{50} . Sorting coefficient = $\sqrt{Q_3/Q_1}$, where Q_3 = 25 percent quartile, Q_1 = 75 percent quartile. Transmissivity: See p. vi. Storage coefficient: See p. vi.

	Hydraulic conductivity (ft/d)										Aq	uifer-tes	t results	
Des for an	Horizontal		Vertical		Porosity (percent)		Median grain size (mm)		Sorting coefficient		Transmissivity (ft ² /d)		Storage coefficient	
Basin or study area	mean	median	mean	median	mean	median	mean	median	mean	median	mean	median	mean	median
Lower Dirty Devil River	0.16	0.05	0.56	0.052	25.6	24.8	0.15	0.12	1.4	1.5	1,580	1,540	0.0013	0.0015
Kaiparowits Plateau area	3.18	1.38	2.94	1.73	25.9	26.1	.15	.15	1.3	1.3	9,050	6,850	.0044	.004
Jpper Virgin River and Kanab Creek	3.35	3.84	3.06	3.38	25.7	27.2	.19	. 16			7,200	5,600	.0016	.0012
Central Virgin River					32	34	.18	.17	1.4	1.4	4,100	5,000	.04	.04

Table 8.--Results of aquifer tests in and near the Kaiparowits Plateau area [Abbreviations used in column headings are as follows: gal/min, gallons per minute; ft, feet; ft²/d, feet squared per day; gal/min/ft of drawdown, gallons per minute per foot of drawdown.]

Well number: See "Numbering system for hydrogeologio-data sites", p. 5, and figure 2. Tranamissivity: See p. vi. Storage coefficient: See p. vi.

General area	۰	Length	Test well		Pumping	saturat	ation of ed Navajo e thickness			24-hour
	Date	of test (hours)	Number	Use	rate (gal/min)	Depth (ft)	Percent	Transmissivity (ft ² /d)	Storage coefficient	apecific capacity (gal/min/ft of drawdown)
U.S. Highway 89, 5 mi south of Utah-	Feb. 9-10,	24	(A-41-8)14bca-1	pumped	57	300	18			10.0
Arizona border	1981		14beb-1	observation	ı	1,005	62	6,700	0.0067	
Near Wahweap Bay	Apr. 1, 1981	¹ 3.75	(A-42-8)35dab-2	pumped	730	36 0	2 ₂₀	7,000		
Near the town of Boulder	Apr. 23-24, 1981	24	(D-33-4)35bbd-1	pumped	410	340	² 25 - 35	5,700		
Near Bald Knoll3	Dec. 29, 1980	151.5	(C-40-5)21abc-1	pumped	1,260	1,412	83	5,900		415.4
	Jan. 4, 1981		16 edo- 1	observation	l I	1,455	86	12,900	.0021	
			21abb-1	observation		56 4	33	16,100	.0045	

¹Test scheduled for 24 hours, but pump shut down at 3.75 hours. ²Estimated. ³About 6 mi west of study area. Not shown on plate 1. ⁴Specific capacity calculated from drawdown after 49.7 hours of pumping.

•

the author of this report from data collected by Bingham Engineering. The saturated thickness of the Navajo is about 1,705 feet, and the pumped well is screened in 1,412 feet of that thickness. Analysis of the test was conducted using data from the first 151.5 hours. At that time, an unscheduled pump shutdown occurred for a period of 16 hours.

Two observation wells were used, one 300.77 feet and the other 1,671.16 feet from the pumped well. Transmissivity for the pumped well was determined from drawdown data by the straight-line solution method (Lohman, 1972, p. 19-21), and transmissivity and storage coefficient for the observation wells were determined from drawdown data by the type-curve matching method (Lohman, 1972, p. 15-18). Results are shown in table 8. Transmissivity ranged from 5,900 to 16,100 feet squared per day and storage coefficient ranged from 0.0021 to 0.0045.

The values obtained for transmissivity and storage coefficient from the aquifer tests are subject to a degree of inaccuracy because of deviation from established test criteria. The most significant deviation is a lack of complete penetration of the aquifer by the pumped wells. The percent penetration of the pumped wells in the three tests conducted in the study area ranges from 18 to 35 percent, and the pumped well in the test conducted near Bald Knoll is open to 83 percent of the saturated thickness of the Navajo. No attempt was made to adjust values of transmissivity to account for partial penetration of the saturated thickness of t

Other factors affect the results of individual tests. The test near Wahweap Bay had a constant head-boundary because Lake Powell is approximately 0.25 mile northeast of the pumped well. In addition, the accuracy of waterlevel measurements obtained in the pumped well during pumping in both the tests near Wahweap Bay and Boulder is questionable because of possible leakage from the pump column. Precise measurements could not be obtained with a steel tape and measurements with an electric tape were erratic. Because of this problem, drawdown curves could not be plotted, and hence recovery data is based only on relative changes in water levels during recovery, and not on recovery from a measured drawdown.

The result of the inability to base recovery from a measured drawdown curve is a less-than-actual amount of recovery; and a larger-than-actual value for transmissivity is obtained if steady-state conditions have not been reestablished. Steady-state conditions probably had not been re-established by the conclusion of pumping because even 24 hours of pumping, as in the test near Boulder, usually is insufficient time to re-establish equilibrium in the Navajo Sandstone ground-water system, and the calculated transmissivity probably is too large.

The test near Bald Knoll produced transmissivity values at the two observation wells in reasonably good agreement with each other; however, the value obtained at the pumped well was only one-third to one-half of those obtained at the observation wells. A possible cause for the smaller transmissivity of the pumped well is a variation in the local geology. Stokes (1964) indicates a significant fault with considerable offset in the general area of the test. Because of the scale (1:250,000) of the geologic map by Stokes, precise location of the fault is difficult; however, it appears to pass directly through the location of the pumped well and the proximal observation well. On a 1:24,000 scale map, Goode (1973) shows a fault about 0.5 mile east and another less than 2 miles west of the three wells used in the aquifer test.

Results of aquifer tests outside the study area indicate a less clear northeast-to-southwest increase in transmissivity and storage coefficient than is the case for hydraulic conductivity and grain size determined from shallow cores and outcrop samples (table 7). Transmissivity in the lower Dirty Devil River basin (Hood and Danielson, 1979, p. 22-23) is less than that in the Kaiparowits Plateau area; however, transmissivities in the central Virgin River basin (Cordova, 1978, p. 27) and in the upper Virgin River and Kanab Creek basins (Cordova, 1981, p. 24) also are less than in the Kaiparowits Plateau area. Storage coefficient is less in the lower Dirty Devil River basin and greater in the central Virgin River basin than in the Kaiparowits Plateau area, but it is about the same in the upper Virgin River and Kanab Creek basins as in the Kaiparowits Plateau area.

In addition to transmissivity values obtained from aquifer tests, values for transmissivities of the Navajo Sandstone in the Kaiparowits Plateau area have been estimated from the laboratory hydraulic conductivities of the six shallow core samples. This estimation was made by multiplying the laboratory horizontal hydraulic conductivity by the saturated thickness of the Navajo in the area where each core sample was collected. Results are shown in table 3.

Where the horizontal hydraulic conductivity is unknown, it has been estimated by multiplying the vertical hydraulic conductivity by 1.34, the average ratio of horizontal-to-vertical hydraulic conductivity for the sites where both values are known. Where the saturated thickness is unknown, the total thickness of the Navajo has been assumed to be saturated. This assumption leads to overestimates of transmissivity, but indicates possible maximum values.

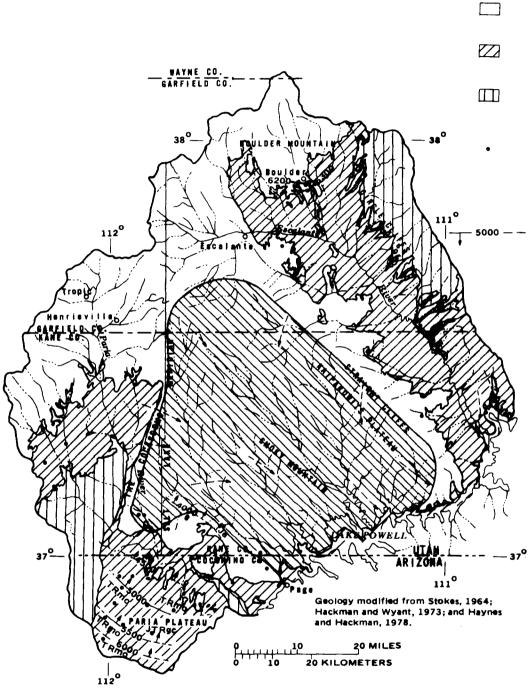
Except at location (A-41-8)23dcd, the estimated values for transmissivity were less than any of the values calculated from aquifer tests. Smaller values are to be expected because the transmissivity values determined from core samples exclude the effects of secondary porosity resulting from fracturing of the aquifer. The core samples are integral rock specimens, whereas the aquifer tests are a direct, in situ evaluation of the aquifer's gross hydrologic characteristics.

The results of the core analyses and aquifer tests as well as the estimated transmissivities from core analyses all indicate a wide range in hydraulic conductivity and transmissivity in the Navajo Sandstone in the Kaiparowits Plateau area. The values given in this report need to be used with caution: they indicate a general range of values in the area and may not be applicable to specific locations. The actual hydrologic properties of the Navajo in any given area can be determined only from detailed site-specific investigations.

GROUND WATER IN THE NAVAJO SANDSTONE

Recharge

Recharge to the regional ground-water system of the Navajo Sandstone primarily takes place in three areas—the southern flank of Boulder Mountain, the Paria Plateau, and the outcrop area west of the Kaiparowits Plateau. Recharge in these areas primarily is by infiltration of precipitation directly into the fractured Navajo outcrop or into the Navajo from overlying unconsolidated deposits.


The hydraulic gradient in the Boulder Mountain area is to the south away from Boulder Mountain, and the hydraulic gradient in the Paria Plateau area is to the northeast away from the Paria Plateau (fig. 5). In both locations the area of Navajo Sandstone outcrop is large, and on the Paria Plateau additional areas of Navajo Sandstone are covered by a veneer of dune sand. The southern flank of Boulder Mountain is covered by thick deposits derived from both glacial and fluvial activity. Most of the precipitation on Boulder Mountain occurs in winter, and the combination of the thick unconsolidated deposits and slow rate of runoff from melting snowpack allows sufficient time for water to percolate into the Navajo.

The hydraulic gradient in the Navajo outcrop area west of the Kaiparowits Plateau could not be determined because of insufficient water-level data; however, the outcrop area is large and is in an area of intense fracturing (fig. 4). The fracturing probably has caused significant secondary porosity. Goode (1966, p. 28) characterizes the area as a "tremendous recharge area".

In the Paria Plateau area, the Navajo Sandstone also is recharged by upward leakage from the underlying Kayenta Formation. At the southwestern margin of the Paria Plateau, the water table is in the Kayenta and the underlying Moenave Formation, and the Navajo is unsaturated. To the north, the lower part of the Navajo is saturated, and farther north where the Paria River is crossed by U.S. Highway 89, the Navajo is fully saturated and confined. The hydraulic gradient to the northeast is less than the regional northeast dip of the geologic strata.

Probable methods of recharge to the Navajo Sandstone in other parts of the study area are by downward leakage from the overlying Carmel Formation or from overlying saturated alluvium. Recharge also may occur by seepage into the Navajo from streams where the altitude of the water table is lower than the streambed, but this condition could be confirmed in only one reach of the Paria River.

Areas of downward leakage from the Carmel Formation into the Navajo (Page) Sandstone have not been located, but it is likely that the process takes place in the western part of the study area, most probably in areas where structural deformation has caused fracturing in the Carmel, or where ground-water movement has caused dissolution of salts in the Carmel. Either of the above situations could allow water to move from the Carmel into the Navajo.

EXPLANATION

 ∇

GENERAL AREA OF COMPLETE SATURATION OF NAVAJO SANDSTONE

GENERAL AREA OF OUTCROP OF ROCKS YOUNGER THAN GLEN CANYON GROUP

GENERAL AREA OF OUTCROP OF ROCKS OF GLEN CANYON GROUP

GENERAL AREA OF OUTCROP OF ROCKS OLDER THAN GLEN CANYON GROUP

CONTROL POINTS

WATER WELL—Symbol next to well indicates principal aquifer in which well is completed: Je, Entrada Sandstone, JTRgc, Gien Canyon Group, TRmo, Moenave Formation, no symbol, Navajo Sandstone

POTENTIOMETRIC-SURFACE CONTOUR—Shows approximate attitude at which water would stand in tightly cased wells. Contour interval 500 feet except near Boulder, where it is 100 feet. Datum is sea level. Arrow shows general direction of ground-water movement, dashed where inferred

Figure 5.—Approximate potentiometric surface and general direction of movement of water in the Navajo Sandstone and related formations.

Several locations indicate that the permeability of the undisturbed basal siltstone unit of the Carmel Formation is sufficiently small to effectively perch ground water and greatly inhibit downward leakage into the Navajo Sandstone. Five springs along the Hole-in-the-Rock Road in the Escalante River basin as well as Adams Spring in the Paria River basin all discharge from a limestone unit in the Carmel directly above the basal siltstone (table 2). These examples indicate that where the basal siltstone unit of the Carmel is present and unfractured, downward leakage into the Navajo is greatly inhibited.

Downward leakage from overlying saturated alluvium takes place in canyon bottoms of tributaries of both the Escalante and Paria Rivers. A number of springs in the canyons discharge from alluvium and are the result of the inability of the Navajo Sandstone to accept all the available water from the alluvium. Commonly the alluvium has been derived from the Navajo, is sandy in nature, and has a large porosity. Todd (1959, p. 16) indicates a porosity of 30 to 40 percent for such material. Because of the large porosity, the sand provides an effective "holding reservoir" to retain runoff for eventual seepage to the Navajo.

Areas where sandy alluvium overlies the Navajo Sandstone are numerous, but most are small compared with the outcrop area of the Navajo; however, they probably contribute a significant part of the recharge in the southern part of the study area. The precipitation there is primarily in the form of summer storms, and direct infiltration of water into Navajo outcrop is limited because of its small permeability.

Movement

Movement of ground water in the Navajo Sandstone generally is toward the central part of the Kaiparowits Plateau from the principal recharge areas--to the northeast from the Paria Plateau, to the south from the Boulder Mountain area, and to the east from the area west of the Kaiparowits Plateau (fig. 5). Subsequent movement of ground water under the Kaiparowits Plateau is to the southeast toward Glen Canyon and Lake Powell. There probably are some local variations in the direction of movement caused by local geologic structure and by discharge to the Escalante and Paria Rivers.

Presently (1982) there is a reversal of the pre-Lake Powell gradient for several miles inland from the lake. The original gradient toward Glen Canyon still exists regionally, however, and when equilibrium is re-established in the ground-water system, the reversed gradient along the lake shore probably will no longer exist (see section on Effects of Lake Powell).

Discharge

Discharge from the Navajo Sandstone occurs by springs and seeps (including seepage to stream reaches), wells, evapotranspiration, upward leakage into the overlying Carmel Formation, and downward leakage into the underlying Kayenta Formation. During this study, an on-site inventory was made of most springs shown on U.S. Geological Survey 7 1/2- and 15-minute quadrangle maps and that appear to discharge from the Navajo Sandstone. The water sources identified as springs on the maps generally fall into three categories: (1) Natural surface-water impoundments caused by depressions in the surface of the Navajo (these are not really springs); (2) water discharging from alluvium overlying the less-permeable Navajo; and (3) seeps discharging from perched zones in the Navajo. Few springs discharge from the main zone of saturation in the Navajo Sandstone. Records of selected springs from categories 2 and 3 are given in table 9.

The natural surface-water impoundments caused by depressions in the surface of the Navajo Sandstone create small reservoirs which provide water for limited local use, but the water in the impoundments is not discharged from the Navajo. Where alluvium overlies the less-permeable Navajo, the Navajo cannot accept water from the alluvium as rapidly as the alluvium gains water during precipitation, and water is discharged at the alluvium-Navajo contact. Discharge is from the alluvium, not from the Navajo, and water is perched in the alluvium by the Navajo. Seeps discharging from perched zones in the Navajo mainly are present along canyon walls in the southern reaches of the Escalante River drainage. Water usually oozes rather than flows and generally the discharge is at the contact between cross-bed sets in the Navajo. The amount of discharge typically is large enough to support some plant life, and at the larger seeps some water moves down the canyon walls. Typically, the seeps are located high on canyon walls, and the water is evaporated prior to reaching the canyon floors. A seep in the canyon of Fiftymile Creek at location (D-40-8)24 is shown in figure 6.

Cooley (1965) conducted a reconnaissance of Glen Canyon and tributary canyons prior to inundation of the area by Lake Powell. The reconnaissance included canyons of the lower reaches of the Escalante River and of streams tributary to the Colorado River between the Escalante and Paria Rivers. In the Kaiparowits Plateau area, Cooley located 76 springs discharging from the Glen Canyon Group (the Navajo Sandstone, the Kayenta Formation, and the Wingate Sandstone). The total discharge from the 76 springs was estimated to be 924 gallons per minute. Assuming constant discharge, total annual discharge would have been 1,490 acre-feet per year.

Presently (1982), 40 of the 76 springs are below the surface of Lake Powell. These 40 springs accounted for 681.5 gallons per minute, or 74 percent of the 924 gallons per minute reported by Cooley (1965). The remaining 36 springs had a discharge of 242.5 gallons per minute.

Of the 36 springs in the Glen Canyon Group above the water level of Lake Powell, only 6 had estimated discharges of greater than 5 gallons per minute, and only 1 had an estimated discharge of greater than 10 gallons per minute. The six springs with discharges of greater than 5 gallons per minute were inventoried during this study. Springs (D-41-9) &cdc-Sl and (D-41-9)29aaa-Sl appear to be discharging from sandy alluvium overlying the Navajo Sandstone. This water probably was originally recharged to the alluvium and not to the Navajo. Springs (D-41-9)21aab-Sl and (D-42-8)26cdd-Sl discharge at contacts between cross-bed sets. The discharge point for (D-41-9)21aab-Sl is about 20 feet above the level of Lake Powell, and the discharge point for (D-42-8)26cdd-Sl is about 150 feet above the reservoir surface. They are both more accurately described as seeps and apparently discharge from perched zones.

Number: See "Numbering system for hydrogeologic-data sites", p. 5, and figure 2. Discharge: E, estimated; M, measured. Dissolved solids: C, calculated from specific conductance (specific conductance times 0.63).

		Subdrainage	surface (ft)	toried	charge (gal/min)	ature (°C)	solids (mg/L)	Remarks
(C-38-1)33dea-S1	Round Valley Seep	Round Valley draw	6,140	5-28-74 6-19-81	0.25M No flow	16.0	310	Price, 1977b. Damp alluvium, small amount of standing water.
(C-40-1)11ddb-S1	Pump Canyon Spring	Cottonwood Creek	5,360	7-23-64 5-29-74 10-23-80	8M 15E 7.5M	16.5 15.0 9.0	165 140 285	Goode, 1956, table 2, no. 83. Price, 1977b.
14cbd-S1		do.	5,220	7-22-64 6-19-81	63M 60M	15.5 15.5	1 95 16 0	Goode, 1956, table 2, no. 85. Discharges from alluvium. Water probably originates from underlying Navajo Sandstone.
16 cba-S1		Hackberry Canyon	5,260	7-21-64	10E			Goode, 1966, table 2, no. 81.
20ddd~S1		do.	5,210	7-21-64 11-15-81	2E No flow			Goode, 1966. table 2, no. 82. Damp alluvium and standing water. Prob- ably perched by underlying Navajo Sandstone.
22ddb-S1		Cottonwood Creek	5,140	7-23-64 6-19-81	1-2E No flow			Goode, 1956, table 2, no. 88. Damp alluvium and large cottonwoods.
23bb a- S1	Cottonwood Spring	do.	5,120	7-20-64 9-25-79	58M 60E	15.5 16.0	200 175	Goode, 1956, table 2, no. 85. Discharges from alluvium. Water probably originates from underlying Navajo Sandstone.
23bcb-S1		do.	5,180	7-23-64 6-19-81	2E No flow	18.5		Goode, 1956, table 2, no. 87. Damp alluvium and large cottonwoods.
23dbd-81		do.		10-30-79	12M	10.5	2 80	Discharges from Thousand Pockets Tongue of Page Sandstone.
(C-40-2)29deb-S1		Kitchen Canyon	5,430					Saturated alluvium. Water probably perched by underlying Navajo Sandstone. No access to spring. Located at bottom of Kitchen Canyon. Spring appears to be source of streamflow in Kitchen Canyon.
30cc a -S1		Nipple Lake	5,550	6-12-81	No flow			Saturated alluvium at lake shore. Spring discharges to Nipple Lake.
30ccd-S1		do.	5,550	6-12-81	1 E			Water seeping from saturated alluvium at lake shore. Spring discharges to Nipple Lake.
30cdo-81		do.	5,550	6-12-81				Discharge forms 200 ft by 500 ft pool. Spring discharges to Nipple Lake.
33baa~51		Kitchen Canyon	5,320					Saturated alluvium. Water probably perched by underlying Navajo Sandstone. No access to spring. Located at bottom of Kitchen Canyon. Spring appears to be source of streamflow in Kitchen Canyon.
(C-41-3)18aco-S1	Wildoat Spring	Deer Spring Wash	5,760	10- 9-81	111	15.5	380C	Discharges from alluvium. Water pro- bably perched by underlying Navajo Sandstone.
(C-41-4) 1bac-S1	Sand Spring	do.	5,920	6 - 14 - 81	1.5M			Do.
(D-34-3)13do -S		Death Hollow	5,790	10 - 16 - 6 7	10E	16.5	230	Goode, 1969, table 1, no. 27. South side of canyon bottom, discharge spurts from Navajo Sandstone.
13dc -8		do.	5,790	10-16-67	8-10E	15.5	260	Goode, 1959, table 1, no. 28. North side of canyon bottom.
(D-35-6)21cca-S1		Horse Canyon	5,300	10-22-81	<1₩	11.0	2400	Discharges from alluvium. Water probab- ly perched by underlying Navajo Sandstone.
21cod-S1		do.	5,250	10-22-81	<1₩			Do.
D-36-4) 16 dbb-\$1	Tenmile Spring	Harris Wash	5,320	10-14-67	Damp			Goode, 1969, table 1, no. 29.
D-36-5)35aac-S1		do.	4,950	10-14-67	2 - 3E			Goode, 1969, table 1, no. 31. Seep from bedding planes.
D-36-6)27bab-S1		do.	4,790	10-22-81	7.5M	10.0	140C	Discharge probably at Navajo Sandstone- Kayenta Formation contact.
D-38-6)21ddd-81	Cat Well	Dry Fork Coyote Gulch	4,840		1 E			Potable. Reported by U. S. Gardner, U.S. Bureau of Land Management, June 18, 1976.

Table 9 Records of selected spring:	discharging from the	Navajo Sandatone or overlying	alluviumContinued
TABLE 3' Herolins of selected abitude	atheun Brug 11 om and	Nerujo semetrono or croregang	

Number	Name of spring	Subdrainage	Altitude of land surface (ft)	Date inven- toried	Dis- charge (gal/min)	Tem- per- ature (°C)	Dis- solved solids (mg/L)	Remarks
(D-39-8)18ccd-S1		Hurricane Wash	4,190	10-21-81				Air reconnaiasance. Water in alluvium. Probably perched by underlying Navajo Sandstone.
(D-39-9)34aaa-S1		Explorer Canyon	3,850	9-17-59 6-16-81	5-10E 5-10E		 	Cooley, 1965, table 3, GJ-322. Air reconnaissance. Multiple sources of discharge from the
								Navajo Sandstone.
34cbc-S1		do.	3,700	6 - 16 - 81	2-4E			Discharge from Navajo Sandstone.
(D-40-8)23bdb-S1		Willow Gulch	3,950	10- 7-81				Water in alluvium. Probably perched by underlying Navajo Sandstone.
(D-40-9)32bao-S1		Davis Gulch	3,400	9-17-59	50E			Cooley, 1955, table 3, GJ-316. Air reconnaissance. Head of perennial flow. Inundated by Lake Powell.
34aco-S1		Clear Creek	3,525	9-17-59	25-50E			Cooley, 1955, table 3, GJ-315. Air reconnaissance. Head of perennial flow. Inundated by Lake Powell.
35ade- 51		Indian Creek	3,550	9-17-59	25-50E			Cooley, 1965, table 3, GJ-314. Air reconnaissance. Head of perennial flow. Discharges from joint. Inundated by Lake Powell.
R(D-40-9) 1adb-S1		Long Canyon	3,650	9-17-59	50E			Cooley, 1965, table 3, GJ-340. Air reconnaissance. Inundated by Lake Powell.
(D-41-9) 3acc-S1		Glen Canyon	3,500	4-22-58	10-15M			Cooley, 1965, table 3, GJ-103. At Hole in the Rock. Discharges from bedding planes and faults. Inundated by Lake Powell.
8ode-\$1		Llewellyn Gulch	3,740	9-17-59	10E			Cooley, 1965, table 3, GJ-298. Head of
				6 - 16 - 81				flow in Llewellyn Gulch. No spring found. Flow begins about 2 miles upstream from lake shore (when lake elevation is 3,677 ft), and steadily gains flow in downstream direction. Flow is about 30 gal/min 0.5 mile upstream from lake. Several seeps in canyon.
21aab-S1		Glen Canyon	3,800	8-13-58	5 E			Cooley, 1965, table 3, GJ-210. Discharges from bedding planes in Navajo Sandstone.
				6 - 17 - 81	5E			bischarges from contact between cross- bed sets. Less than 1 gal/min discharges into lake. Remainder supports plant life at discharge site or evaporates from bedrock surface.
30aaa- S1	-	Tributary to Cottonwood Gulch	3,700	9-17-59	10E			Cooley, 1955, table 3, GJ-295. Discharges from joint in Navajo Sandstone. Head of perennial flow.
				6-17-81				No spring found. Water begins flow out of alluvium about 0.5 mile upstream from lake shore, and steadily gains flow in downstream direction.
(D-42-7)36 dad-\$1		Dangling Rope Canyon	3,360	8-14-58	158			Cooley, 1965, table 3, GJ-219. Combinatio spring, discharges from large joints. Inundated by Lake Powell.
(D-42-8)26 odd-S1		Glen Canyon (small side canyon)	3,920	8-13-58	5-10E			Cooley, 1955, table 3, GJ-215. Discharges
		ares (anyon)		6-17-81	5-10E			from joints and bedding planes. Discharges from contact between cross- bed sets high on canyon wall, about 150 feet above lake level.
₹(D-42-8)25dba-S1		Navajo Valley	3,300	4-24-58	15M			Cooley, 1965, table 3, GJ-105. Bed of was in amphitheater. Inundated by Lake Powel
(D-43-5)13cdo-81		Padre Creek	3,280	9- 1-58	200M			Cooley, 1955, table 3, GJ-248. Combination spring at head of small canyon. Inundated by Lake Powell.
24daa-S1		Glen Canyon	3,280	9- 1-58	80 M			Cooley, 1965, table 3, GJ-249. Discharges from joints and bedding planes. Inundated by Lake Powell.
35d aa- S1		Gunsight Canyon	3,280	9- 1-58	15M			Cooley, 1955, table 3, GJ-250. Discharges from large joint in bottom of canyon. Inundated by Lake Powell.
(A-41-9) 8ada-S1 (Arizona)		Glen Canyon	3,170	9- 1-58	25E			Cooley, 1955, table 3, GJ-244. Discharges from bedding planes on side of cliff. Inundated by Lake Powell.

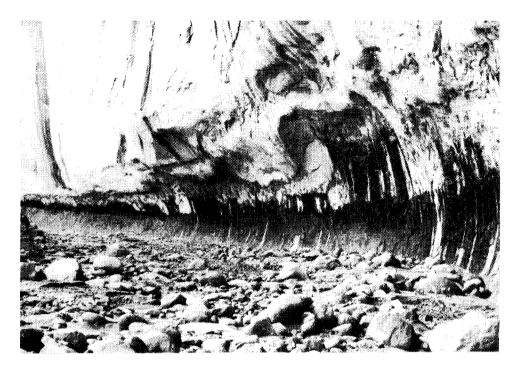


Figure 6.—Seep from the Navajo Sandstone in wall of canyon of Fiftymile Creek at location (D-40-8)24. Seepage occurs near top of dark staining on canyon wall, about 6 feet above bed of creek.

Spring (D-39-9)34aaa-S1 is in Explorer Canyon and may discharge from the main zone of saturation in the Navajo Sandstone. A second spring in Explorer Canyon, (D-39-9)34cbc-S1, not previously reported but inventoried during this study, also appears to discharge from the main zone of saturation in the Navajo. Discharge of (D-39-9)34aaa-S1 was 5 to 10 gallons per minute, about the same as Cooley's estimate (1965, table 3), and discharge of (D-39-9)34cbc-S1 was about 5 gallons per minute.

Spring (D-40-9)19bba-Sl was observed by Cooley (1965, table 3) from an aircraft, and he estimated the spring to have a discharge of 50 gallons per minute. The location coordinates given for the spring place it in the canyon of Fiftymile Creek, but the general location is stated by Cooley as Davis Gulch, which is several miles south of the canyon of Fiftymile Creek. Cooley's description of the spring source (a fault or large joint) indicates that the site is in the canyon of Fiftymile Creek, but no discharge was found when the site was inventoried during this study. The fault or large joint has caused a small side canyon to be formed but no water flowed from the canyon during the inventory.

Of the 40 springs discharging from formations in the Glen Canyon Group that have been inundated by Lake Powell, 17 had discharges estimated to be more than 5 gallons per minute, and 11 had discharges estimated to be more than 10 gallons per minute. The springs with discharges of more than 10 gallons per minute are shown on plate 1 and listed in table 9. The maximum estimated discharge was 200 gallons per minute from (D-43-5)13cdc-Sl. Although investigation of the ll springs with discharges of more than 10 gallons per minute is impossible, their locations indicate that the discharge is from the main zone of saturation. Eight are located within a mile of the original Colorado River channel and three are located in side canyons of the Escalante River basin near the river's original mouth. The total estimated discharge from the ll springs was between 510 and 565 gallons per minute, or between 823 and 911 acre-feet per year, assuming constant discharge.

In addition to discharge from specific springs, Cooley (U.S. Geological Survey, written commun., 1982) estimated the streamflow of tributaries of the Colorado River in Glen Canyon. The tributaries and their estimated streamflows are listed in table 10. The streamflows represent ground-water seepage from all the formations into which the tributary canyons are cut and, therefore, are maximum values for discharge from the Navajo Sandstone. In addition, some of the estimates were made in April and May and may include streamflow from snowmelt or in response to precipitation, and some were made in August and may not include all of the ground-water seepage because of losses to evapotranspiration. The total streamflow estimated from the tributaries was between 5.3 and 8.2 cubic feet per second, or between 3,800 and 5,900 acre-feet per year, assuming constant flow.

As noted in the surface-water section of this report, the Navajo Sandstone also discharges water to some reaches of the Paria River. The minimum discharge was determined to be about 2.8 cubic feet per second, or 2,000 acre-feet per year, from streamflow measurements made on October 23, 1982 (table 6). The maximum discharge was determined to be 11.6 cubic feet per second, or 8,400 acre-feet per year, as determined from the average of three streamflow measurements made on April 22 and August 25, 1981, and March 3, 1982. The smaller value is only for the reach where the floor of Paria Canyon is in the Navajo Sandstone. The larger value includes interaction of the stream with the Carmel Formation on the upper end of the reach from U.S. Highway 89 to Lees Ferry, and interaction with the Kayenta, Moenave, and Chinle Formations on the lower end of the reach. The majority of the discharge probably is from the Navajo, Kayenta, and Moenave. Upward leakage from the Moenave to the Kayenta and from the Kayenta to the Navajo occurs near the southwestern margin of the Paria Plateau (see Recharge section). Downward leakage from the Navajo into the underlying Kayenta and Moenave probably occurs prior to discharge into the canyon cut by the Paria River in the northeastern part of the Paria Plateau, and part of the water discharged by the Kayenta and Moenave probably has been discharged previously by the Navajo. The 8,400 acre-feet per year thus represents a maximum value for both direct and indirect discharge from the Navajo to the Paria River.

Five springs discharge from the Navajo Sandstone along a 2.5-mile section of the East Kaibab monocline (pl. 1), including Pump Canyon and Cottonwood Springs, (C-40-1)11ddb-S1 and (C-40-1)23bba-S1 (table 9), but the springs are not discharging from the main zone of saturation in the Navajo. Rather they are discharging from a perched zone in the Navajo, caused by intertonguing between the Navajo and the less permeable Carmel Formation. Several springs have been reported in the Boulder-Escalante area by residents and by Goode (1969, p. 15), particularly in the Mamie Creek and Calf Creek drainages. These springs are in areas of recharge to the Navajo and probably represent rejected recharge from the main zone of saturation in the Navajo. Table 10.--Seepage to tributaries of the Colorado River in Glen Canyon from the Navajo Sandstone, Kayenta Formation, and Wingate Sandstone [Abbreviation used in column headings: gal/min, gallons per minute.]

Tributary	Date measured	Gross discharge in stream channel (gal/min)	Date measured	Discharge from individual springs (gal/min)	Net discharge by seepage (gal/min)
Long Canyon	8-12-58	1 50	9-17-59	50	0
Llewellyn Gulch	8-12-58	1 25	9-17-59	10	15
Hidden Passage	4-23-58	2 25	9-17-59	<10	15 - 25
Driftwood Canyon	8-13-58	15	8-13-58	5-10	5-10
Dangling Rope Canyon	8-14-58	10	8-14-58	20e	0
Rock Creek	4-22-58	75	4-25-58	25-35	40-50
Last Chance Creek	8-14-58	³ 200			0–200
Kane Creek	8-15-58	50 100	9- 1-58	10	40-90
Padre Canyon	10- 1-58	200	9- 1-58	200	0
0.5 mile downstream from Padre Canyon	10- 1-58	80	9- 1 - 58	80	0
Gunsight Canyon	9- 1-58	15	9- 1 - 58	15	0
Warm Creek	9-1-58	300	9-18-59, 1259	5–15	285-295
Wahweap Creek	4-26- 58	2,000- 3,000		0	2,000- 3,000

Discharge from individual springs: e, estimated.

1 2Discharge from Wingate Sandstone. 3Discharge from Kayenta Formation.

Discharge reported to be summer runoff--water reported to be muddy.

Based on the foregoing discussion, total annual discharge of springs and seepage from the regional ground-water system (main zone of saturation) in the Navajo Sandstone is estimated to be between 6,600 and 15,200 acre-feet. Included in this value is the 823 to 911 acre-feet from inundated springs, the 3,800 to 5,900 acre-feet from tributary discharge in drainages other than the Paria River, and the 2,000 to 8,400 acre-feet from discharge in the Paria River drainage. The assumptions that discharge from inundated springs is continuing at pre-inundation rates, and that all flow in tributary canyons is ground-water discharge from the Navajo and has not been affected by evapotranspiration, runoff, or ground-water discharge from other formations, contribute to possible inaccuracy of the estimate; nevertheless, the estimate gives an order-of-magnitude estimate of discharge from springs and seepage.

The quantity of discharge from wells completed in the Navajo Sandstone in the Kaiparowits Plateau area is estimated to be about 1,500 acre-feet per year. In recent years, about 300 acre-feet per year have been withdrawn in the Wahweap Bay area to supply water to the Glen Canyon National Recreation Area. Three other wells supply water from the Navajo Sandstone for domestic use in the Wahweap Bay area: two wells supply water to small groups of mobile homes, and the third well supplies water to a motel. Total annual discharge from these three wells is estimated to be no more than 100 acre-feet.

Three wells in the Paria River-U.S. Highway 89 area supply water from the Navajo Sandstone for domestic use. Two wells supply small groups of residences and the third supplies the visitors' center at the Paria Canyon Primitive Area. Total annual discharge from these three wells is estimated to be no more than 30 acre-feet.

Four irrigation wells and five domestic wells withdraw water from the Navajo Sandstone in the Boulder area. About 300 acres, nearly all of which are in alfalfa, are irrigated with water from the Navajo. The U.S. Soil Conservation Service (Verl Matthews, oral commun., May 1982) has estimated annual consumptive use in the Boulder area for alfalfa to be 25.96 inches, which indicates a total maximum discharge from the irrigation wells of approximately 650 acre-feet annually at 100-percent irrigation efficiency. The estimated efficiency of the sprinkler systems in use is 65 to 70 percent. The 65-percent value gives a total annual water requirement of 1,000 acrefeet. Annual discharge from the five domestic wells in the Boulder area is estimated at 5 acre-feet.

Evapotranspiration in the Kaiparowits Plateau area is difficult to estimate, but probably is small. The Utah Division of Water Resources (1976, p. 47-55) has estimated annual wetland consumptive use in the Escalante River basin to be 1,440 acre-feet. The definition of consumptive use by the Utah Division of Water Resources (1976, p. 41) is similar to the definition of evapotranspiration by Langbein and Iseri (1960, p. 9).

In the estimate by the Utah Division of Water Resources, the Escalante River basin is subdivided into three subbasins (fig. 7). Of the 1,440 acrefeet of wetland consumptive use in the Escalante River basin, 720 acre-feet are estimated to be consumed in subbasin 1 and 680 acre-feet are estimated to be consumed in subbasin 2. The Navajo Sandstone is at or near the surface in only a small part of these subbasins. Outcrop of Navajo Sandstone in subbasin 1 comprises less than 10 percent of the subbasin area; therefore,

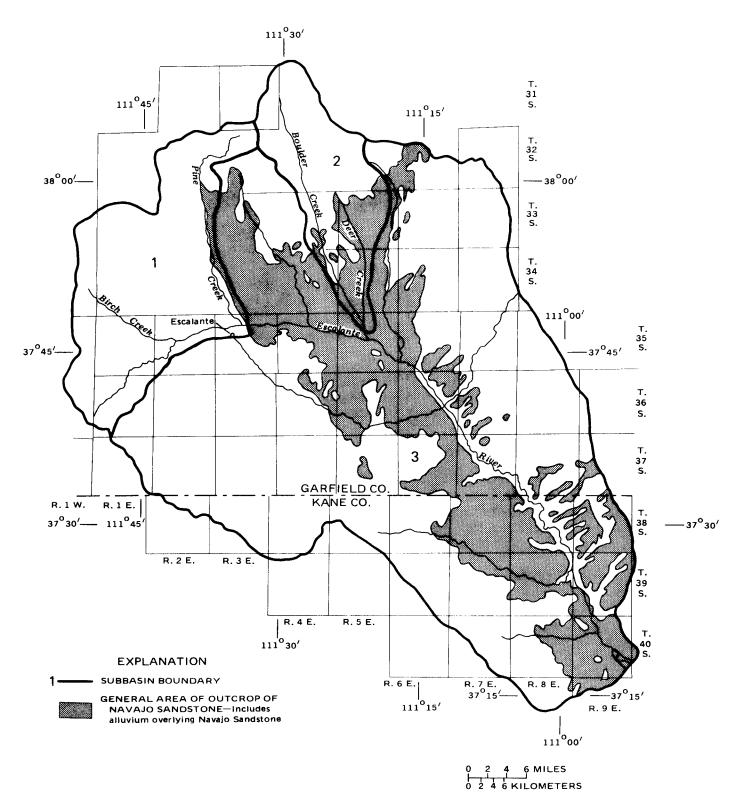


Figure 7.–Subdivisions of the Escalante River basin used in wetland consumptive-use determination (from Utah Division of Natural Resources, 1976, p. 31).

,

evapotranspiration from the Navajo Sandstone in subbasin 1 is estimated to be negligible. The Navajo is at or near the surface in about one-third of subbasin 2; however, most of the area is uplands and the depth to ground water is generally below the depth of potential evapotranspiration. For example, the depth to water in six wells in the Boulder area ranges from 80 to 445.6 feet. Evapotranspiration from the Navajo in subbasin 2 is estimated to be about the same as in subbasin 3. Wetland consumptive use in subbasin 3 is estimated to be 40 acre-feet per year, much of which probably is from the Navajo. Based on the above limited observations, evapotranspiration from the Navajo Sandstone in the Escalante River basin is estimated to be about 100 acre-feet per year.

The Paria River basin contains several stream reaches where the Navajo Sandstone is at or near the surface and could be affected by evapotranspiration: notably in Kaibab Gulch, along Hackberry Creek, and along the Paria River mainstem, both in Paria Canyon and in a reach about 10 miles south of Cannonville (pl. 2). The conditions in these areas are similar to those in subbasin 3 of the Escalante River basin. The canyons are steep and narrow and phreatophytes are few in number. The amount of evapotranspiration from the Navajo Sandstone in the Paria River basin, therefore, is estimated to be about the same as that in the Escalante River basin, about 100 acre-feet per year.

In the Wahweap Creek basin probably no significant evapotranspiration from the Navajo Sandstone occurs. Glen Canyon is the only location where any Navajo Sandstone is exposed, and inundation of the canyon has precluded evapotranspiration there.

In summary, the amount of evapotranspiration from the Navajo Sandstone is small because areas where the saturated Navajo is at or near the land surface (in reach of phreatophytes) generally are limited to deep, narrow canyons. Even in those areas, phreatophytes apparently exist chiefly on perched water in stream-valley alluvium. The estimated annual discharge from the Navajo Sandstone by evapotranspiration is only about 200 acre-feet.

Some water probably discharges from the Navajo Sandstone by upward leakage to the Carmel Formation. This condition apparently exists in the northern Paria Plateau area where water is confined in the Navajo and the hydraulic gradient is upward from the Navajo to the Carmel. The condition probably also exists beneath the Kaiparowits Plateau where the Navajo is assumed to be fully saturated. The amount of water discharging from the Navajo Sandstone by upward leakage is unknown.

Downward leakage from the Navajo Sandstone into the underlying Kayenta and Moenave Formations apparently takes place in the southern part of the Paria Plateau area near the margin of the plateau. Saturated thickness of the Navajo Sandstone in the area is very small. At four wells, (A-39-4)6cbb-1, (A-40-4)19bab-1, (A-40-5)5ccc-1, and (A-40-6)3ccc-1, the Navajo is completely unsaturated, and the water table is in the underlying Kayenta and Moenave Formations. Direction of ground-water movement in the area is to the northeast, away from the area of unsaturated Navajo (fig. 5). South of the Paria Plateau, the Navajo, Kayenta, and Moenave are absent. The only probable source of ground water in the Kayenta and Moenave Formations is precipitation on the Paria Plateau, which infiltrates into and moves downward through the Navajo and into the underlying Kayenta and Moenave. Whether downward leakage occurs in other areas is unknown. Certainly, downward movement is impeded by the underlying Kayenta Formation, as is evidenced by springs and seeps at the Navajo-Kayenta contact at several locations in the canyons of the Escalante River basin. Examples are spring (D-36-6)27bab-Sl (table 9) in Harris Wash and seeps along the canyon wall of the Escalante River at general location (D-36-6). The amount of water discharging from the Navajo Sandstone by downward leakage is unknown.

In summary, estimated values for discharge from the Navajo Sandstone can be made only for springs and seepage, wells, and evapotranspiration. Upward and downward leakage cannot be quantified with the data available. The total quantifiable discharge from the main zone of saturation in the Navajo Sandstone is estimated to be between 8,300 and 16,900 acre-feet: 6,600 to 15,200 acre-feet from springs and seepage, 1,500 acre-feet from wells, and 200 acre-feet by evapotranspiration.

Storage

The amount of water recoverable from storage in the Navajo Sandstone in the Kaiparowits Plateau area can only be roughly estimated because data regarding the saturated thickness of the Navajo are very limited. In order to estimate the volume of water recoverable from the Navajo, the following data were used: the specific yield of the formation, total thickness of the formation, the altitude of the top of the formation, and the altitude of the surface of the saturated zone. Where the Navajo is completely saturated, the saturated thickness is equal to the total thickness. Where the Navajo is not completely saturated, the saturated thickness has been estimated by subtracting the altitude of the surface of the saturated zone from the altitude of the top of the formation, and subtracting that difference from the total thickness of the formation. Known altitudes of the top of the Navajo are shown in figure 8 and known thicknesses of both the Navajo is completely saturated are shown in figure 5.

The values stated for water recoverable from storage in the Navajo Sandstone are the amounts that could be theoretically recovered if the Navajo could be completely drained. The actual amounts of water recoverable from the Navajo are less than the amounts stated because of various physical limitations, including well spacing and well yields; and various economic, legal, and environmental constraints.

Meinzer (1923, p. 28) defines specific yield as the ratio of (1) the volume of water that, after being saturated, a rock or soil will yield to gravity to (2) its own volume. Hood and Danielson (1981, p. 36) have estimated the specific yield of the Navajo Sandstone in the lower Dirty Devil River basin to be 9 percent. In this report, an estimated specific yield of 10 percent has been used to allow for the slightly larger total porosity values in the area compared to those in the lower Dirty Devil River basin (table 7).

EXPLANATION

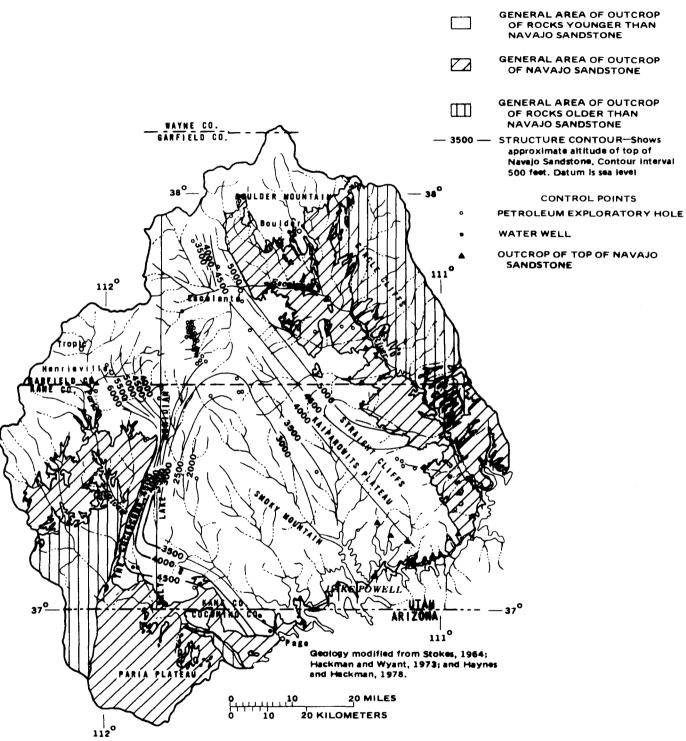


Figure 8.—Approximate altitude of the top of the Navajo Sandstone.

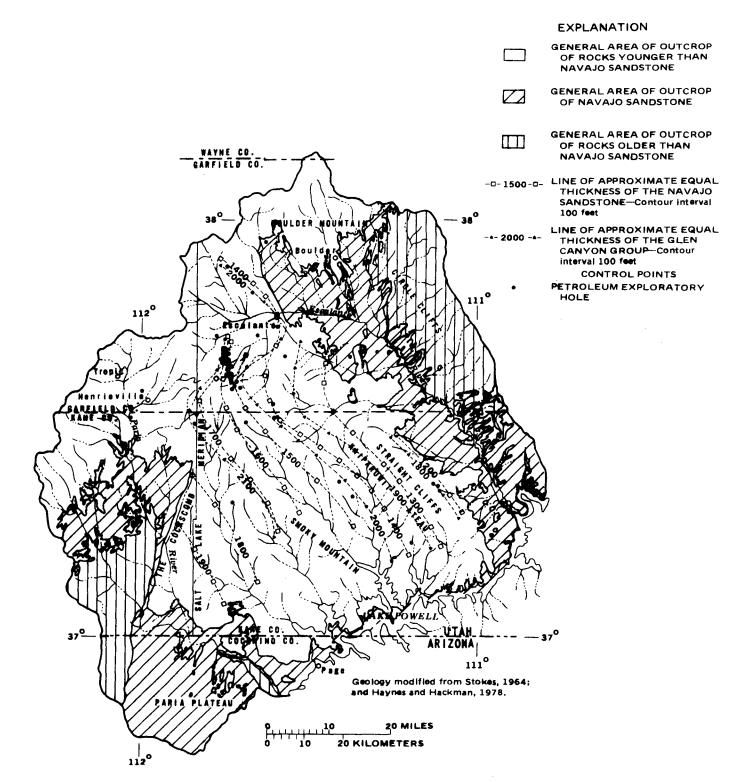
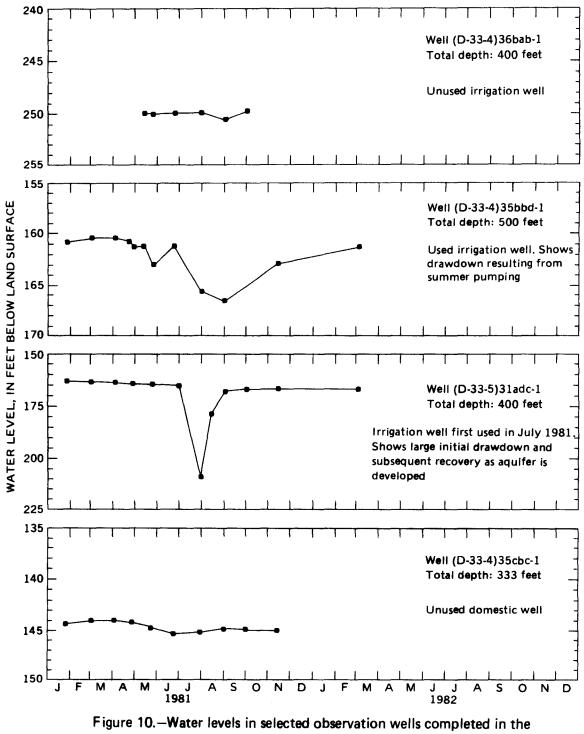


Figure 9.—Approximate thickness of the Navajo Sandstone and the Glen Canyon Group, undivided.

The area where the Navajo Sandstone is completely saturated is about 1,400 square miles and the average thickness is estimated to be 1,600 feet. The amount of water recoverable in the area is estimated to be about 140 million acre-feet.

North and west of the area of complete saturation, very little information about water in the Navajo Sandstone is available. It varies from nearly 100 percent saturated bordering the zone of complete saturation to totally unsaturated, as at well (D-35-4)20cca-1. Because of the lack of information, an average of 50 percent saturation has been assumed. The area is approximately 750 square miles and the average estimated saturated thickness is 1,000 feet. The amount of water estimated to be recoverable from storage in this area is about 50 million acre-feet. The total amount of water recoverable from the Navajo Sandstone in the entire Kaiparowits Plateau area is estimated to be about 190 million acre-feet.


The few available water-level records for the Kaiparowits Plateau area (fig. 10; and table 13, at back of report) are insufficient to indicate significant long-term changes in storage except in the Lake Powell area. The ground-water system in most of the Kaiparowits Plateau area is assumed to be in a state of equilibrium whereby ground-water recharge and discharge are virtually equal over the long term. Considering the small amount of withdrawal by wells in the area, it is unlikely that there has been any major long-term decrease in storage. The variations in water levels given in figure 10 and table 13 primarily are caused by seasonal variations in recharge and discharge, including withdrawals. There has been a significant increase in storage adjacent to Lake Powell because of the lake's effect on ground water in the area (see section on Effects of Lake Powell).

Chemical Ouality

Dissolved-solids concentrations were measured for 27 water samples collected from the Navajo Sandstone (table 14, at back of report) and were estimated for 10 additional samples for which only specific conductance of the water was measured. The estimates are based on a dissolved solids to specific conductance ratio of 0.63 to 1 for the 27 analyzed samples. Based on the determined and estimated dissolved-solids concentrations, water in the Navajo ranges from fresh to slightly saline. It is fresh in the principal recharge areas (near Boulder Mountain, the Paria Plateau, and west of the Kaiparowits Plateau). In these areas, the Navajo is either at the surface or overlain by alluvium or dune sand. The water is slightly saline in the area of complete saturation near the Paria River where it is crossed by U.S. Highway 89, and in the Wahweap Bay area near Lake Powell. In both of these areas, the Carmel Formation overlies the Navajo and is generally at the land surface.

Information regarding the quality of water in the Navajo Sandstone underneath the Kaiparowits Plateau is scarce, and what is available from records of oil-test holes is qualitative. The water probably is saline, and the degree of salinity probably varies with location.

In this report, ground water has been classified chemically using the system of Davis and DeWiest (1966, p. 119). In their system, only ions present in concentrations that represent more than 20 percent of the total milliequivalents per liter of cations or anions are used to name the water

Navajo Sandstone.

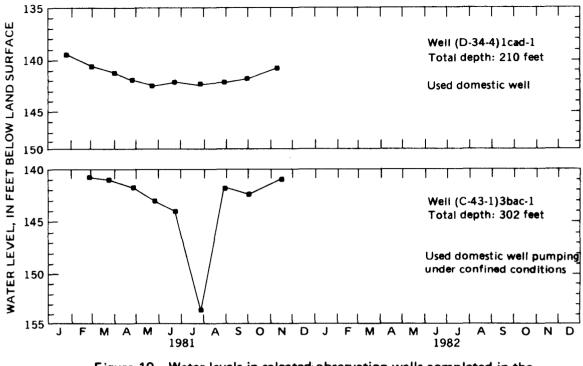


Figure 10.—Water levels in selected observation wells completed in the Navajo Sandatone—Continued.

type, and an ion present at levels greater than 60 percent of the total milliequivalents of cations or anions is used alone to name the water type. In mixed water types, ions present in amounts greater than 20 but less than 60 percent of the total cations or anions present are listed in descending order of concentration. For example, the sample collected from well (A-41-8)4dda-1 on August 31, 1981 had a cation composition of 40 percent sodium, 31 percent calcium, 26 percent magnesium, and 3 percent potassium; and an anion composition of 44 percent sulfate, 37 percent bicarbonate, and 19 percent chloride. This water is classified as sodium calcium magnesium sulfate bicarbonate. In most cases there are fewer ions with percentages greater than 20 percent of the total cations or anions present and the description of the water type is much simpler.

The chemical type of water in the Navajo Sandstone varies considerably depending chiefly on dissolved-solids concentration. In the areas of recharge and where the Navajo is at the surface (near Boulder Mountain, the Paria Plateau, and west of the Kaiparowits Plateau), the water type is calcium magnesium bicarbonate. In the area near the Paria River and U.S. Highway 89, the water type is sodium calcium sulfate. In the Wahweap Bay area, the water type generally is sodium calcium sulfate bicarbonate. Concentrations of major constituents in water samples collected at selected sites are given in Table 14. Water temperature in the Navajo Sandstone varies with distance from recharge areas. In the recharge areas, average temperature of five samples in the Boulder area was 13.1 °C, and the average temperature of three samples in the Paria Plateau area was 13.3 °C. Near the area of discharge, in the Wahweap Bay area, the average temperature of 13 samples collected from eight wells was 22.2 °C. The water temperatures measured during collection of samples for chemical analyses (table 14) ranged from 11.5 °C at well (D-33-4)35bbd-1 to 24 °C at wells (A-41-8)4dda-1, (A-42-8)35dab-2, and (A-42-8)35dab-1.

Effects of Lake Powell

Lake Powell, formed in Glen Canyon by impoundment of the Colorado River behind Glen Canyon Dam, has had a significant effect on ground water in part of the Kaiparowits Plateau area. Prior to formation of Lake Powell, there was a natural ground-water gradient toward the Colorado River, the channel of which is at an altitude of 3,142 feet at Glen Canyon Dam. The filling of Lake Powell began in the fall of 1962 and by June 1980, its surface altitude was 3,700.5 feet, or 558.5 feet higher than the channel of the Colorado River at Glen Canyon Dam (fig. 11; and table 15, at back of report). That increase has caused the ground-water system to be out of equilibrium near the lake, with the following effects: (1) significant rises of water levels in wells near the lake shore, (2) a reversal of the ground-water gradient near Lake Powell, (3) local changes from unconfined to confined conditions in the Navajo Sandstone, and (4) local changes in the quality of ground water near Lake The relation of ground-water levels in three wells to the changing Powell. surface altitude of Lake Powell is shown in figure 11 and tables 13 and 15.

The largest observed water level rise during filling of Lake Powell was 357 feet in well (A-41-8)4dda-1 (table 13). The water levels in wells (A-41-8)23dac-1 and (A-42-8)36cbc-1 near the lake have risen, respectively, 343 and 348 feet, and the water level in well (D-43-2)14bab-1, about 4 miles from the lake, has risen 28 feet (fig. 11 and table 13). The water levels in wells (D-43-1)2bda-1 and (D-43-1)2cab-1, which are about 11 miles from the lake, have risen about 10 feet (table 12). The water-level rises in wells (D-43-2)14bab-1, (D-43-1)2bda-1, and (D-43-1)2cab-1 are a result of the flattening of the ground-water gradient toward Lake Powell rather than a direct result of bank storage. The water levels in the wells are at significantly higher altitudes than the surface of the lake--as much as 350 feet at well (D-43-1)2cab-1.

The regional ground-water gradient is toward Glen Canyon and Lake Powell as is indicated by water levels in wells in Townships 43 and 44 South, Ranges 2 and 3 East (fig. 12). The water levels are at a higher altitude than the surface of Lake Powell, and ground-water movement is toward the lake. Near the shore of Lake Powell, however, ground-water levels measured in 1980, 1981, and 1982 in wells in Townships 41 and 42 North, Range 8 East, are at a lower altitude than the surface of Lake Powell, and indicate a ground-water gradient and ground-water movement away from the lake. For example, the ground-water level at well (A-42-8)32cdd-1, about 1.5 miles from Glen Canyon Dam, is about 88 feet lower than the surface of Lake Powell.

The local reversal of the gradient near the shore of Lake Powell is due to the inability of the Navajo Sandstone and other formations to readily accept water into bank storage as rapidly as the level of the lake has risen.

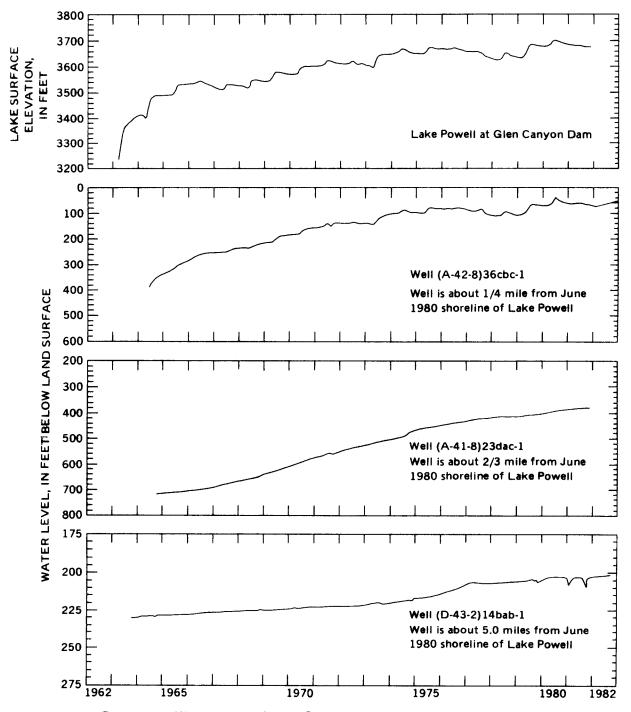


Figure 11.-Water levels of Lake Powell and in several nearby observation wells.

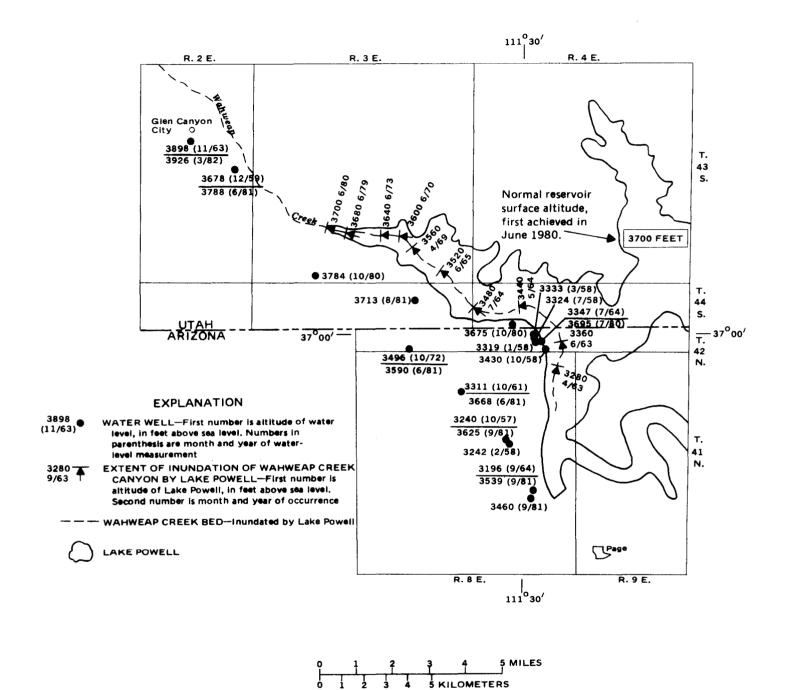


Figure 12.-Water levels of Lake Powell (1963-80) and in selected wells near Lake Powell at selected times.

The ground-water system near Lake Powell is not in equilibrium because of the rapid and large increase in hydraulic head at the lake. When equilibrium is re-established, the reversal of the ground-water gradient near the lake will be eliminated and a continuous gradient to the lake will exist. This gradient will be much flatter than the original gradient to the Colorado River, and water levels in the wells mentioned above (up to 11 miles from the lake) will continue to be above pre-lake levels.

With the filling of Lake Powell, the attendant rising ground-water level has caused formerly unsaturated Navajo Sandstone to become saturated to the base of the overlying less permeable Carmel Formation. This has created confined conditions where unconfined conditions formerly existed. Under confined conditions, ground-water levels respond rapidly to changes in recharge and discharge. Thus, water levels in nearby wells in the confined part of the Navajo, for example in well (A-42-8)36cbc-1, closely follow changes in water levels in Lake Powell (fig. 11). Conversely, the water level in well (A-41-8)23dac-1, which is completed in an unconfined part of the Navajo, reflects the gross increase in bank storage, but not the minor fluctuations in the water level of Lake Powell (fig. 11).

Available data indicate that Lake Powell has also caused local changes in the ground-water quality, chiefly by creating a more effective hydrologic connection between the Navajo Sandstone and the Carmel Formation. As noted earlier, the Carmel contains easily soluble minerals including gypsum. As Lake Powell filled, the top of the Navajo and the lower parts of the Carmel near the lake became saturated with water going into bank storage. This hydrologic connection between the formations allowed salts to be dissolved from the Carmel and transported to wells that obtain water from the Navajo, where the pumping of the wells created a cone of depression to an altitude below the Navajo-Carmel contact. Consequently, there has been an increase in dissolved-solids concentrations, chiefly sulfate, in water from several of those wells.

Major ion chemistry of water in wells in the Wahweap Bay area, and of water from Lake Powell and the Colorado River at Lees Ferry, is shown in figure 13. For each well or set of wells, there is an analysis of a water sample collected both prior to the beginning of filling of Lake Powell and in 1977 or 1981. The analyses from well (A-42-8)35dab-2 indicate a significant increase in dissolved-solids concentration, a three-fold increase in the concentration of sulfate, and a decrease in bicarbonate plus carbonate concentration. The well is in the area where the Navajo is confined by the Carmel Formation.

The analyses of samples from wells (A-42-8)36ccc-1 and (A-42-8)36ccc-2 indicate a 50 percent decrease in concentration of dissolved solids and major ions. The chemistry changed to more closely match that of Lake Powell. The wells are in an area where the ground-water level is below the Navajo Sandstone-Carmel Formation contact, and the water has not been affected by the Carmel, but has been affected by Lake Powell water entering the ground-water system.

The analyses from wells (A-41-8)14bca-1 and (A-41-8)14bcb-1 indicate that concentrations of dissolved solids and major ions have remained relatively constant. The wells are in an area where the ground-water level is below the

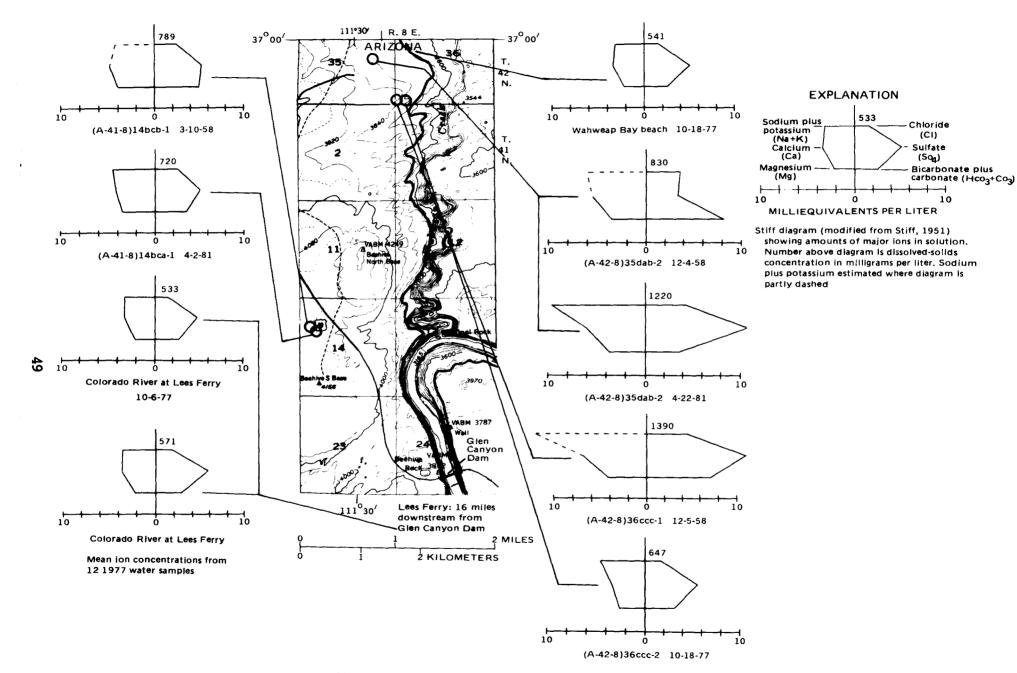


Figure 13.—Major ion chemistry of water in wells in the Wahweap Bay area, in Lake Powell, and in the Colorado River at Lees Ferry at selected times.

Navajo Sandstone-Carmel Formation contact, and are about 1 mile from Lake Powell. The water levels in the wells are lower than the level of Lake Powell and in the area affected by the reverse gradient. The water in the wells probably is affected by Lake Powell water; however, the major ion chemistry of the ground water prior to Lake Powell and that of Lake Powell water is similar and, therefore, the change in chemistry is small.

The analyses of samples from wells (A-41-8)23dac-1 and (A-41-8)23dcd-1 indicate that concentrations of dissolved solids and all major ions except chloride have decreased markedly. The two wells are located less than 1 mile from the present (1982) shoreline of the reservoir, and are along a line nearly parallel with Glen Canyon Dam. At the well sites, the Navajo Sandstone is unconfined and at the surface.

The concentrations of major ions have decreased to levels less than those in water of Lake Powell or in the Colorado River at Lees Ferry (table 14). Possibly a larger part of the ground-water flow through the area of the two wells is now moving from the eastern part of the Paria Plateau than prior to the presence of Lake Powell. Prior to the lake, ground-water movement was primarily from the northwest. Major ion concentrations in ground water in the eastern part of the Paria Plateau [for example at well (A-40-5)12ddb-1] are similar to those in 1981 water samples from wells (A-41-8)23dac-1 and (A-41-8)23dcd-1.

Three water-supply wells in the Glen Canyon National Recreation Area, (A-42-8)35dab-2, (A-42-8)35dcd-1, and (A-42-8)36ccc-2, have had concentrations of dissolved arsenic in excess of the U.S. Environmental Protection Agency (1976) drinking-water standard of 0.05 milligram per liter (table 16, at back of report). Arsenic concentration was not determined in water samples in the area prior to 1977 so it is not known if ground water contained significant concentrations of arsenic prior to inundation of Glen Canyon; however, at all three well sites ground-water levels have risen to a level higher than the Navajo Sandstone-Carmel Formation contact as a result of the filling of Glen Canyon by Lake Powell. Arsenic may be one of the materials being leached from the Carmel Formation.

Chemical analyses of surface water indicate that the arsenic found in the previously mentioned wells does not come from Lake Powell water entering the ground-water system. In the October 18, 1977 analysis of Wahweap Bay water, no arsenic analysis was made; however, dissolved arsenic analysis has been included intermittently in the Lees Ferry water analyses beginning in May 1974. The largest value recorded is 0.019 milligram per liter on May 28, 1974, and the next largest value is 0.006 milligram per liter on November 1, 1978. These values are much less than those found in ground water from the three wells.

Effects of Large-Scale Withdrawal

The withdrawal of large quantities of water from the Navajo Sandstone in the Kaiparowits Plateau area could cause one or more effects on the groundwater system. Among the possible effects are declines of water levels in existing wells, reduction of streamflows, and deterioration of water quality. In order to determine both the degree of effects and the areal extent of influence of large-scale withdrawals from the Navajo, the effects of two hypothetical withdrawal plans have been investigated. The first plan considers withdrawal of 40,000 acre-feet per year from a well or group of wells (roughly the amount required by a large thermoelectric powerplant) from an aquifer having a transmissivity of 5,000 feet squared per day and a storage coefficient of 0.0045. The second plan considers withdrawal of 20,000 acre-feet per year from an aquifer having a transmissivity of wells from an aquifer having a transmissivity of wells from an aquifer having a feet per year from a well or group of wells from an aquifer having a transmissivity of 10,000 feet squared per day and a storage coefficient of 0.0045. The relationship between drawdown and distance from the pumping well for various time periods is shown in figure 14.

The curves in figure 14 are based on the assumptions that the aquifer is homogenous, isotropic, infinite in areal extent, and uniform in permeability and thickness, and that the discharge is from a single well. The Navajo Sandstone does not satisfy the above assumptions, and discharge in the amounts specified would result from withdrawal from a well field rather than a single well. Nevertheless, the theoretical drawdown projections give an order-ofmagnitude estimate of effects of withdrawal.

The calculation based on withdrawal of 40,000 acre-feet per year from the Navajo Sandstone where the transmissivity is 5,000 feet squared per day and the storage coefficient is 0.0045 indicates that the drawdown at 18.9 miles from the pumping area would be about 80 feet after 25 years and about 124 feet after 50 years. The drawdown 100 feet from the pumping area would be in excess of 1,164 feet after 50 years. Under conditions of withdrawal of 20,000 acre-feet per year from the Navajo Sandstone where the transmissivity is 10,000 feet squared per day and the storage coefficient is 0.0045, the drawdown 18.9 miles distant from the pumping area would be about 31 feet after 25 years and about 43 feet after 50 years. The drawdown 100 feet from the pumping area would be about 304 feet after 50 years. Because of the small values (about 8,300 to 16,900 acre-feet per year) of natural recharge to and discharge from the Navajo Sandstone in the Kaiparowits Plateau area, withdrawals of these magnitudes would cause water to be removed from storage rather than diverted from natural discharge.

The effects of large-scale withdrawal on stream discharge and water quality are site specific and cannot be generalized to the entire study area. Generally, where drawdown in the Navajo would intersect a perennial stream, streamflow would be reduced. Where drawdown would cause leakage from overlying formations, degradation of water quality in the Navajo would be possible.

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FURTHER STUDY

The Kaiparowits Plateau area is located in central Garfield and eastern Kane Counties of Utah, and north-central Coconino County of Arizona. The area covers about 4,850 square miles, and includes the Escalante River and Paria River drainages and smaller drainages to the Colorado River between the Escalante River and Paria River drainages. In terms of potential for development, the Navajo Sandstone of Triassic(?) and Jurassic age is the most important consolidated rock aquifer in the Kaiparowits Plateau area, followed in importance by the Entrada Sandstone of Jurassic age and the Wingate Sandstone of Triassic age. Principal areas of withdrawal of water from the

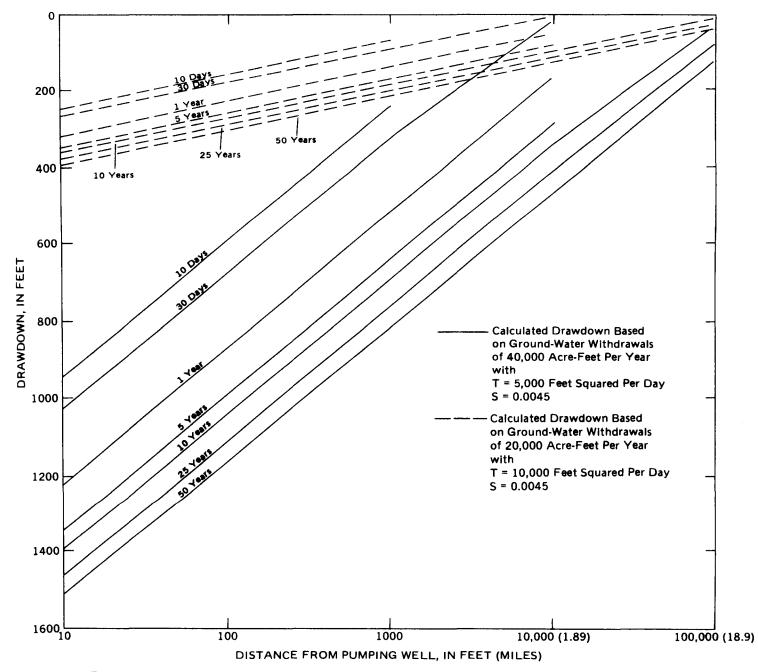


Figure 14.-Theoretical effect on water levels caused by withdrawals from the Navajo Sandstone.

Navajo Sandstone are near the town of Boulder and in the Paria Plateau area. Water from the Entrada Sandstone is withdrawn for irrigation or domestic use near the towns of Escalante, Cannonville, and Glen Canyon City. The Wingate Sandstone presently is not developed in the study area.

Annual recharge to and discharge from the Navajo Sandstone in the Kaiparowits Plateau area is estimated to be between 8,300 and 16,900 acrefeet. The total amount of water theoretically recoverable from storage in the Navajo Sandstone is estimated to be about 190 million acre-feet.

Chemical quality of water in the Navajo Sandstone ranges from fresh in areas where water-table conditions exist to slightly saline in areas where the aquifer is confined. In water-table areas, the predominant water type is calcium magnesium bicarbonate; in confined areas, it generally is sodium sulfate.

Inundation of Glen Canyon and tributary canyons by Lake Powell has caused a large increase in the altitude of the potentiometric surface near the lake. The ground-water system presently is out of equilibrium, and near the lakeshore ground-water movement is away from the lake. When equilibrium is re-established, the gradient will be to Glen Canyon as it was prior to Lake Powell, but the potentiometric surface will be higher and the gradient will be flatter.

Inundation has caused changes in ground-water chemistry near Lake Powell, primarily where the potentiometric surface has risen above the Navajo Sandstone-Carmel Formation contact. Major-ion chemistry has been altered, with the most significant change being an increase in sulfate concentration and a decrease in bicarbonate plus carbonate concentration. Arsenic in concentrations greater than U.S. Environmental Protection Agency drinkingwater standards has been detected in three water-supply wells in the Glen Canyon National Recreation Area.

Because of the small estimated amount of water recharging to and discharging from the Navajo Sandstone, large withdrawals from the aquifer would come from water in storage rather than from diverted discharge. A large withdrawal would be accompanied by a large drawdown in the vicinity of the pumping well or well field.

Further study is needed in several areas in order to more accurately define the Navajo Sandstone ground-water system in the Kaiparowits Plateau area. The most obvious deficiency is the lack of information about the area beneath the Kaiparowits Plateau itself. Because of the great depth to the Navajo Sandstone, no water wells are completed in the Navajo under the plateau and information obtained during oil-test drilling is limited. Several of the existing oil-test holes need to be re-entered in order to obtain water levels in and water samples from the Navajo Sandstone. The data would aid in more accurately determining both the amount of water in storage and the quality of water in the Navajo. Such data are necessary before possible uses of the resource can be accurately determined.

REFERENCES CITED

- Cashion, W.B., 1967, Carmel Formation of the Zion Park region, southwestern Utah-a review: U.S. Geological Survey Bulletin 1244-J, 9 p.
- Cooley, M. E., 1965, Stratigraphic sections and records of springs in the Glen Canyon region of Utah and Arizona: Museum of Northern Arizona Technical Series 6, 140 p.
- Cordova, R. M., 1978, Ground-water conditions in the Navajo Sandstone in the central Virgin River basin, Utah: Utah Department of Natural Resources Technical Publication 61, 66 p.

_____1981, Ground-water conditions in the upper Virgin River and Kanab Creek basins area, Utah, with emphasis on the Navajo Sandstone: Utah Department of Natural Resources Technical Publication 70, 87 p.

- Craft, B. C., and Hawkins, M. F., 1959, Applied petroleum reservoir engineering: Englewood Cliffs, N. J., Prentice-Hall.
- Davis, S. N., and DeWiest, R. J. M., 1966, Hydrogeology: New York, John Wiley and Sons, Inc., 463 p.
- Feltis, R. D., 1966, Water from bedrock in the Colorado Plateau of Utah: Utah State Engineer Technical Publication 15, 82 p.
- Fenneman, N. M., 1931, Physiography of the western United States: New York, McGraw-Hill Book Company, 534 p.
- Goode, H. D., 1964, Reconnaissance of water resources of a part of western Kane County, Utah: Utah Geological and Mineralogical Survey Water-Resources Bulletin 5, 64 p.
- _____1966, Second reconnaissance of water resources in western Kane County, Utah: Utah Geological and Mineralogical Survey Water-Resources Bulletin 8, 44 p.
- _____1969, Reconnaissance appraisal of the water resources near Escalante, Garfield County, Utah: Utah Geological and Mineralogical Survey Water-Resources Bulletin 11, 38 p.
- _____1973, Preliminary geologic map of the Bald Knoll quadrangle, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-520, scale 1:24,000.
- Gregory, H. E., and Moore, R. C., 1931, The Kaiparowits Region: A geographic and geologic reconnaissance of parts of Utah and Arizona: U.S. Geological Survey Professional Paper 164, 161 p.
- Hackman, R. J., and Wyant, D. G., 1973, Geology, structure, and uranium deposits of the Escalante quadrangle, Utah and Arizona: U.S. Geological Survey Miscellaneous Investigations Map I-744, 2 sheets, scale 1:250,000.

- Haynes, D. D., and Hackman, R. J., 1978, Geology, structure, and uranium deposits of the Marble Canyon 1° x 2° quadrangle, Arizona: U.S. Geological Survey Miscellaneous Investigations Map I-1003, 2 sheets, scale 1:250,000.
- Hood, J. W., and Danielson, T. W., 1979, Aquifer tests of the Navajo Sandstone near Caineville, Wayne County, Utah: Utah Department of Natural Resources Technical Publication 66, 69 p.
- _____1981, Bedrock aquifers in the lower Dirty Devil River basin, Utah, with emphasis on the Navajo Sandstone: Utah Department of Natural Resources Technical Publication 68, 142 p.
- Langbein, W.B., and Iseri, K.T., 1960, Manual of Hydrology: Part I. General surface-water techniques, General introduction and hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Levings, G. W., and Farrar, C. D., 1978, Map showing ground-water conditions in the House Rock area, Coconino County, Arizona - 1976: U.S. Geological Survey Water-Resources Investigations 78-15 Open-File Report.
- Lohman, S. W., 1972, Ground-water hydraulics: U.S. Geological Survey Professional Paper 708, 70 p.
- Meinzer, O. E., 1923, Outline of ground-water hydrology, with definitions: U.S. Geological Survey Water-Supply Paper 494, 71 p.
- O'Sullivan, R.B., 1980, Stratigraphic sections of Middle Jurassic San Rafael Group from Wilson Arch to Bluff in southeastern Utah: U.S. Geological Survey Oil and Gas Investigations Chart OC-102, 1 chart.
- Peterson, Fred, and Pipiringos, G.N., 1979, Stratigraphic relations of the Navajo Sandstone to Middle Jurassic formations, southern Utah and northern Arizona: U.S. Geological Survey Professional Paper 1035-B, 34 p.
- Price, Don, 1977a, Map showing general chemical quality of ground water in the Kaiparowits coal-basin area, Utah: U.S. Geological Survey Miscellaneous Investigations Map I-1033-A, scale 1:125,000.
- _____1977b, Map showing general availability of ground water in the Kaiparowits coal-basin area, Utah: U.S Geological Survey Miscellaneous Investigations Map I-1033-B, scale 1:125,000.
- Stiff, H. A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Journal of Petroleum Technology, v. 3, no. 10, p. 15-17.
- Stokes, W. L., [ed.], 1964, Geologic map of Utah: University of Utah, scale 1:250,000.
- Strahler, A. N., 1970, Introduction to physical geography, second ed.: New York, John Wiley and Sons, Inc., 457 p.

Todd, D. K., 1959, Ground-water hydrology: New York, John Wiley and Sons, Inc., 336 p.

- Trewartha, G. T., 1968, An introduction to climate: New York, McGraw-Hill Book Company, 408 p.
- U.S. Environmental Protection Agency, 1976, National interim drinking-water standards: Washington, D.C., 159 p.
- U.S. Weather Bureau, [1963], Normal annual and May-September precipitation (1931-60) for the State of Utah: Map of Utah, scale 1:500,000.
- Utah Division of Water Resources, 1976, Hydrologic inventory of the Escalante River basin: Utah Department of Natural Resources, 60 p.
- Uygur, Kadir, 1980, Hydraulic and petrographic characteristics of the Navajo Sandstone in southern Utah: University of Utah Department of Geology and Geophysics, Master's thesis, 134 p.

Table 11.--Drillers' logs of selected wells [See "Numbering system for hydrogeologic-data sites", p. 5, and figure 2.]

Alt.: Altitude of land surface at well. Thickness: Thickness of unit in feet. Depth: Depth to base of unit in feet below land surface.

Material	Thickness	Depth	Material	Thickness	Depth	Material	Thickness	Depth
(C-37-3)24dda-1. Log by			(D-33-4)36 abb-1. Log by			(D-43-1)2bda-1Continued		
Leman Exploration Co. Alt. 5,900.			The Well Supply Co. Alt. 6,525.			Carmel FormationContinued Sandstone, gray	15	155
Sand and fill, loose	16	16	Clay, cobbles, boulders	36	36	Shale, red	5	160
Siltstone, very fine	324	340	Navajo Sandstone			Navajo (?) Sandstone		
Sand, medium white, coarse- grained	26 0	600	Sandstone	289	325	Sandstone, red	15 180	175 355
Station	200	000	(D-33-4)36 bab-1. Log by			Sandstone, red	25	380
(C-37-3)24ddd-1. Log by			The Well Supply Co.			Sandstone, white	5	3 85
Leman Exploration Co.			Alt. 6,570.	46	~	Sandstone, pink	10	3 95
Well completed to depth of 403 ft. Alt. 5,910.			Clay, sand, gravel, cobbles Clay, cobbles, boulders	40 104	46 150	Sandstone, white	20 80	415 495
Fill and wash	8	8	Navajo Sandstone		150	Sandstone, white	20	515
Siltstone, very fine		360	Sandstone	250	400	Sandstone, pink	40	555
Sandstone, coarse-grained Sand, medium to fine-grained		410 520	(D 22 1)36 abo 1 Log by			Sandstone, red	40	595
Sand, medium to i me-grained	110	520	(D-33-4)36 cba-1. Log by The Well Supply Co.			Sandstone, white	25 30	620 650
(C-41-3)4bca-1. Log by			Alt. 6,730.			Sandstone, gray	70	720
Binning Drilling Co.			Cobbles, hardpan	20	20	Sandstone, white	40	76 0
Alt. 5,780. Silt and sand	24	24	Navajo Sandstone	E 1 E	626	Sandstone, red	18	778
Navajo Sandstone	24	24	Sandstone	515	535	(D-43-1)2bdd-1. Log by		
Sandstone, tan	11	35	(D-33-5)31ado-1. Log by			Ray Parnell Drilling Co.		
Sandstone, orange		45	The Well Supply Co.			Alt. 4,520.		
Sandstone, tan		50 70	Alt. 6,360.	26	26	Sand	10	10
Sandstone, rust		90 90	Sand Boulders	35 13	35 48	Carmel Formation Shale, sandy, red	52	62
Sandstone, orange		115	Navajo Sandstone			Sandstone, brown	63	125
Sandstone, tan, hard	20	135	Sandstone	352	400	Shale, sandy, red	15	140
Sandstone, orange	17	152	(D-34-4)1cad-1. Log by			Navajo (?) Sandstone	20	16.0
Sandstone, orange; seep of water	3	155	(D-34-4)10ad-1. Log by The Well Supply Co.			Sandstone, brown Sandstone, light red	20 40	160 200
Sandstone, orange; 1 gallon	2		Alt. 6,320.			Sandstone, white	50	250
per minute of water		170	Alluvium			Sandstone, light red	20	270
Sandstone, tan, hard	15	185	Clay, gravel, cobbles,	1.75		Sandstone, white	25	2 95
Sandstone, pink; 3 gallons per minute of water	15	200	boulders, hardpan Navajo Sandstone	175	175	Sandstone, light red Sandstone, white	35	330
Sandstone, pink; 7 gallons		200	Sandstone	33	208	Sandstone, light red	15 10	345 355
per minute of water	20	220	Shale, red	2	210	Sandstone, white	12	367
Sandstone, tan, hard		225				Sandstone, red	8	375
Sandstone, pink	5	230	(D-35-3)8aba-1. Log by			Sandstone, white	5	3 80
Sandstone, orange; 10 gallons per minute of water	10	2 40	Councilman Well Drilling Co. Alt. 5,810.			Sandstone, red	95	475
Sandstone, orange; 13 gallons	10	2 40	Sand, loose	6	6	Sandstone, white Sandstone, light red	100 25	575 600
per minute of water	10	250	Sand, soft	10	16	Sandstone, pink	45	645
/			Sand	10	26	Sandstone, white	120	765
(C-41-4)23adb-1. Log by Clair Stephenson Drilling			Sandstone Silt, mud, soft	10 10	36	Sandstone, pink	17	782
Co. Alt. 6,070.			Entrada Sandstone	10	46	(D-43-1)2cab-1. Log by		
Sand and fill	10	10	Sandstone, white	30	76	San Diego Pump and Well		
Navajo Sandstone			Sandstone, white; water	10	86	Drillers, Inc. Alt. 4,530.		
Sandstone	490	500	Sandstone, white	26	112	Sand, loose, red	19	19
(C-43-1)3bao-1. Log by			(D-35-3)8abb-1. Log by			Caliche Carmel Formation	13	32
Clair Stephenson Drilling			The Well Supply Co.			Sand and clay, loose, red	11	43
Co. Alt. 4,420.			Alt. 5,830.			Sandstone, gray	14	57
Soil, top Carmel Formation	10	10	Entrada Sandstone	80	00	Sandstone, red, firm	65	122
Shale, light red	30	40	Sandstone, yellow-gray Sandstone, gray-blue	82 113	82 195	Clay, red, very soft	12	134
Shale, red		50	Sandstone, grading into	115	195	Sandstone, red, soft Navajo (?) Sandstone	14	148
Shale and sandstone layers,			bentonite	10	205	Sandstone, white	28	176
gray	30	80	/ }			Sandstone, red	22	198
Shale and sandstone layers, red	20	100	(D-35-3)29bbd-1. Log by The Well Supply Co.			Sandstone, white	39	237
Shale, red	80	180	Alt. 5,840.			Sandstone, red, hard Sandstone, dark red	46 19	283 302
Shale and sandstone layers,			Entrada Sandstone			Sandstone, light pink.	.,	302
red; little water	95	275	Sandstone, red	48	48	very soft	12	314
Navajo Sandstone Sandstone, white; water	27	302	Sandstone, white	4 88	52	Sandstone, red	12	326
Sumssone, white, water	-1	302	Sandstone, white	20	140 160	Sandstone, white	8 14	334 348
(C-43-1)4bad-1. Log by			Sandstone; damp	68	228	Sandstone, white	21	369
Ballard Well Drilling Co.			Sandstone, red	63	2 91	Sandstone, light red,		
Alt. 4,410. Sand	10	10	(D-40-8)7bdo-1. Log by			very hard Sandstone, dark red, firm	5	374
Sand and gravel	10	20	The Well Supply Co.			Sandstone, red, soft	22 16	396 412
Carmel Formation			Alt. 4,480.			Sand, loose, red, and		
Shale, brown	40	60	Allvuium	42	42	clay, white, sticky	9	421
Shale, redSandstone	5 10	65 75	Entrada Sandstone	42 195	84 280	Sandstone, white, firm;		h 00
Shale, sandy	125	200	Navajo Sandstone	142	422	water Sandstone, white, in layers	71	492
Navajo Sandstone						of hard and soft material	18	510
Sandstone, white	205	405	(D-43-1)2bda-1. Log by			Sandstone, light red, fine		
Shale, red	10	415	Ray Parnell Drilling Co.			texture	12	522
(D-33-4)35cbo-1. Log by			Alt. 4,510. Surface sand	15	15	Sandstone, white, clean	7	529
The Well Supply Co.			Carmel Formation	15	15	Sandstone, red, broken; water increases	28	557
Alt. 6,410.			Sandstone, red	20	35	Sandstone, red, hard	35	592
Soil	3	3	No record	10	45	Sandstone, white, very soft	14	606
Conglomerate, loosely consolidated	52	55	Shale, sandy, red	23	68	Sandstone, white, hard, very		
Navajo Sandstone	52	22	Sandstone, red	27 9	95 104	consolidated	14	620
Sandstone, white	68	123	Sandstone, red	26	130			
Sandstone, yellowish; water .	210	333	Shale, sandy, red	5	135			
			Sandstone, brown	5	140			

Material Th		Thickness	Depth	Material	Thickness Depth		Material	Thickness	Dept
D-43-2)13 cdd-1. L		<u> </u>		(D-44-3)2bdc-1Continued			(4-41-8)14bcb-1. Log by		
San Diego Pump an				Carmel Formation	~~		Wininger Drilling Co.		
Drillers, Inc. W		bd		Clay, red-brown	57 34	155 189	Alt. 4,120. Sandstone, reddish-brown;		
to depth of 594 f Alt. 4,000.	ι.			Clay, purple-gray Clay, purple-gray, sandy	21	210	water first noticed at 885		
and, blow		. 10	10	Clay, red, hard	35	245	feet and stood at 880		
and, blow, small g				Clay, sandy pebbles, red-			while drilling was being		
clay			16	brown	40	285	completed	885	885
and and gravel, ce	mented	. 22	38	Shale, red	6 60	291	Sandstone, reddish-brown,		
ntrada Sandstone Sandstone, white .		124	16.2	Sandstone, red-brown-yellow Sandstone, red-orange	34	351 385	cleaner and coarser than from 0 to 885 feet	70	955
Sandstone, green a			176	Mudstone, brown	5	390	Sandstone, reddish-brown	40	995
Sandstone, light g	reen and			Shale, hard	58	448	Sandstone, reddish-brown,		
white		49	225	Navajo Sandstone			fine with silt	5	1,000
andstone, white,			252	Sandstone	142	590	Sandstone, reddish-brown,		
andstone, white,	firm	129	381	Sandstone, very hard	22	612	broken, with layers of coarser		
andstone, white,				Sandstone	40	652	sandstone	145	1,145
fractured, layers			64.0				Sandstone, reddish-brown,	200	
brown sand; water		. 31	412	(A-39-4)6 ebb-1. Log by			with silt or mudstone	355	1,500
andstone, white,		66	478	Mersfelder Drilling Co. Alt. 6,610.			(A-41-8)23dao-1. Log by		
clay			563	Navajo Sandstone			Wininger Drilling Co.		
andstone, brown,			578	Sandstone, pink	520	520	Alt. 3,917.		
andstone, pebbles			510	Kayenta Formation		541	Sand, blow	18	18
washed; water lev				Sandstone, limestone, shale	70	590	Navajo Sandstone		
from 412 to 322 f	eet	5	5 83	Moenave Formation			Sandstone, light brown, with		
andstone, white,	firm	. 11	594	Sandstone and shale, pink;			hard ribs or ledges,		
rmel Formation				water at about 650 feet	110	700	occasional pockets of soft		
lay and bentonite	, very			(1 b) C)Core 1 las hu			sand or silt; water at 735	76 7	7 DC
soft, hole will no open		11	605	(A-40-5)5cco-1. Log by Mersfelder Drilling Co.			feet Sandstone, cleaner; increase	767	785
open			005	Alt. 6,160.			in water	125	910
⊷43-2)13ded-1. L	og by			Navajo Sandstone					2.0
H and M Explorati				Sandstone	950	950	(A-41-8)23dod-1. Log by		
Well completed to	depth			Kayenta Formation			Wininger Drilling Co.		
of 590 ft. Alt.	3,960.			Sandstone, limestone, shale	70	1,020	Alt. 3,982.		
luvium		5	5	Moenave Formation			Navajo Sandstone	,	
ert peobles in sa			,	Sandstone, shale	320	1,340	Sandstone, broken	6	6
atrix			6	(4 10 E)10445 1 144 by			Sandstone, brown, very		56.0
nd, gray, fine-grand strate st			11 14	(A-40-5)12ddb-1. Log by Mersfelder Drilling Co.			uniform donno	554 240	56 C 80 D
nd, white			15	Alt. 6,210.			Sandstone, gray, dense Sandstone, gray, softer;	240	000
nglomerate with b		•		Navajo Sandstone			water	80	880
hert pebbles		2	17	Sandstone, coarse, light			Sandstone, red	35	915
trada Sandstone		_		colored	1,420	1,420	Sandstone, hard, dense	10	925
andstone, white,	very fine-			Kayenta Formation		•	Sandstone, red	65	990
grained		13	30	Silt and clay, fine, red	12	1,432	Sandstone, gray		1,010
andstone, yellow,				Moenave (?) Formation			Sandstone, broken		1,025
grained		3	33	Sandstone, fine, buff to			Sandstone, hard	5 1	1,030
andstone, white,		10	50	light red	36	1,468	Sandstone, brown, more silt		
grained			52 54	(A-40-6)3000-1. Log by			or mud	70 1	1,100
andstone, white .			70	Mersfelder Drilling Co. Well			Sandstone, brown; drilling muddy	65 1	1, 165
Sandstone, green;			81	completed to depth of 1,802 ft			Sandstone, brown, and silt		1,285
andstone, white g			180	Alt. 6,150.					,
andstone, gray-bro	own	159	339	Navajo Sandstone					
entonite			342	Sandstone	1,300	1,300	(A-42-8)32 edd-1. Log by		
andstone, white-g		10	352	Kayenta Formation			Larry Dalton. Alt. 4,100.		
andstone, gray-wh:				Sandstone, limestone, shale	60	1,360	Hardpan	4	4
water at 352-354,				Moenave (?) Formation			Sand, white, loose	14	18
feet; oil at 470-4		200	66 1	Sandstone, shale, siltstone;			Entrada Sandstone		
hole caved back to	o 590 reet .	309	001	well completed to or caved back to 1,802 feet	450	1 810	Sandstone, white, with	167	185
-43-2)14bab-1. La	og by			Dack to 1,002 1860	450	1,810	bentonite layers Sandstone, gray, medium hard	5	190
Harry H. Morris.				(4-41-8)4dda-1. Log by			Carmel Formation	,	190
completed to depti				Perry Brothers Drilling Co.			Shale, red, medium hard	129	319
Alt. 4,128.80.				Alt. 4,160.			Shale, red, soft and sandy	56	375
nd, blow, red		30	30	Sand, loose	3	3	Shale, red and white, very		
trada Sandstone				Entrada Sandstone			hard	3	378
andstone, white .			73	Sandstone, white	77	80	Shale, red	7	3 85
andstone, light r			98	Sandstone, light red	10	90	Sandstone, red, soft	55	440
andstone, light by		9	107	Sandstone, white	145	235	Sandstone, red, hard	70	510
andstone, light bl brown		102	209	Sandstone, light red Carmel Formation	40	275	Shale, red, sandy, very hard	71	581
andstone, white,			213	Sandstone, red	335	610	Sandstone, red, with shale		201
andstone, white			220	Sandstone, light red; hole		0,0	layers	3	584
andstone, brown		23	243	will not hold water	240	850	Shale, light red, soft	69	653
andstone, white; w				Sandstone, light red, loose;			Navajo Sandstone		
seepage			267	hole caving, first water		~ ~	Sandstone, red; water at 653		
andstone, white			312	encountered	10	860	feet, rose to static level		
lay, red			342	Navajo Sandstone Sandstone light med work			of 604 feet	137 18	790 808
andstone, white, w lay, red		28	360 388	Sandstone, light red, very clean	30	890	Shale, red, hard Sandstone, red, soft	16 78	886
andstone and clay,			398	Sandstone, light red	30	925	Sandstone, red, sort	22	908
andstone, red, sof			437				Sandstone, hard to medium		200
andstone, white, s			452	(A-41-8)14boa-1. Log by			hard, layers	22	980
ay, red, loose an	nd broken		467	Wininger Drilling Co.			Sandstone, very hard	5	935
andstone, white; w	water-			Alt. 4,112.					
			534	Loose sand	8	8	(4-42-8)35dab-1. Log by		
bearing	εe	2	536	Caliche	22	30	Wininger Drilling Co.		
bearing				Carmel Formation			Alt. 3,736.		
bearing and and clay, whit rmel Formation				Sandstone, alternating layers			Caliche Conglomerate: sand, gravel,	15	15
bearing and and clay, whit rmel Formation lay, red, sticky,				of brown and hard light gray, each layer 5 feet thick or				30	45
bearing and and clay, whit rmel Formation lay, red, sticky, caving; well caved	d to 537	61		ends rales) lear mitce of	225	265	boulders Sandstone, hard, gray		420
bearing and and clay, whit rmel Formation lay, red, sticky, caving; well caved	d to 537	61	5 97	less					
bearing and and clay, whit rmel Formation lay, red, sticky, caving; well caved feet	d to 537 	61	597	less Navajo Sandstone	335	365		375 20	440
bearing and and clay, whit rmel Formation lay, red, sticky,	d to 537 g by	61	5 97	Navajo Sandstone Sandstone, light brown	450	815	Sandstone, softer; water	20 35	440 475
bearing and and clay, whit meel Formation lay, red, sticky, caving; well cavec Feet	d to 537 g by o.			Navajo Sandstone Sandstone, light brown Sandstone, brown, broken;			Sandstone, softer; water Sandstone; water Sandstone, with clay, harder	20	
bearing and and clay, whit meel Formation Lay, red, sticky, caving; well cavec Caving; well cavec Caving; well cavec Caving; well cavec Caving; well cavec Caving; well cavec Caving; cavec cavec Caving; cavec cavec Caving; cavec cavec Caving; cavec cavec Caving; cavec cavec Caving; cavec cavec cavec cavec Cavec cavec cavec cavec cavec Cavec cavec cavec cavec cavec cavec Cavec cavec cavec cavec cavec cavec cavec Cavec cavec cavec cavec cavec cavec cavec cavec cavec cavec Cavec cavec c	d to 537 g by o.		597	Navajo Sandstone Sandstone, light brown Sandstone, brown, broken; water at 885 feet and rose	450	815	Sandstone, softer; water Sandstone; water Sandstone, with clay, harder Sandstone, light gray, soft;	20 35 15	475 490
bearing and and clay, whit mel Formation lay, red, sticky, saving; well cavec 'eet 44-3)2bdc-1. Log 'he Well Supply Co 14. 3, 820.	d to 537 g by o.			Navajo Sandstone Sandstone, light brown Sandstone, brown, broken;			Sandstone, softer; water Sandstone; water Sandstone, with clay, harder	20 35	475

Mater <u>ial</u>	Thickness	Depth	Material	Thickness	Depth	Material	Thickness	Depti
(4-42-8)35dab-1,Continued			(A-42-8)35dad-1. Log by			(A-42-8)36 cco-2. Log by		
Sandstone; water	25	625	Wininger Drilling Co.			Perry Brothers Drilling Co.		
Sandstone, clayey and silty	50	675	Alt. 3,742.			Alt. 3,760.		
lote: Resistivity log of			Sand	4	4	Carmel Formation		
ell indicates that the top			Caliche	18	22	Shale, red, sandy	20	20
f the Navajo Sandstone is at			Conglomerate: sand, clay,			Sandstone, red	40	60
80 feet, and that the total			gravel, and boulders	33	55	Shale, red	5	65
lepth of the well is 603 feet.			Sandstone, reddish-brown	275	330	Sandstone, red	135	200
			Clay, soft, silty; water seep .	15	345	Shale, red, sandy	7	207
A-42-8)35dab-2. Log by			Sandstone, with clay layers,			Navajo Sandstone		
Wininger Drilling Co. Well			or sandy clay	130	475	Sandstone, red	13	220
completed to depth of 620 ft.			Sandstone; water	90	565	Sandstone, light red	130	350
Alt. 3,735.			Clay, sandy	60	625	Sandstone, red	20	370
Caliche	12	12				Sandstone, light red	40	410
conglomerate: sand, gravel,						Sandstone, brown	10	420
boulders		42				Sandstone, light red	30	450
andstone, red, hard		95				Sandstone, light brown	50	500
andstone, red, softer	165	260				Sandstone, light red	80	5 80
lavajo Sandstone						Sandstone, brown	50	630
Sandstone, gray		400				Sandstone, light red	73	703
Sandstone; water		440						
Sandstone, red		470						
Sandstone; water		475						
Sandstone, light gray		635						
Sandstone, red	5	6 40						
ote: Well either completed								
o or caved to depth of 620 eet.								

.

Number: See "Numbering system for hydrogeologic-data sites", p. 5, and figure 2 Owner: U.S. BLM, U.S. Bureau of Land Management. Finish: P, perforated; X, open hole without casing. Principal aquifer: 220GLNC, Glen Canyon Group; 220WJO, Navajo Sandstone; 221ENRD, Entrada Sandstone. Water level: D, dry hole; L, geophysical log; R, reported; S, measured with steel tape; T, measured with electric tape. Discharge: B, measured with bailer; C, measured with current meter; R, reported. Types of logs available: C, caliper; D, driller's; E, electric; J, gamma ray; N, neutron; T, temperature; U, gamma-gamma. Other data available: QW (water quality): B, common ions; P, physical, common ions, and trace elements; WL (water level):

NUMBER	OWNER	DA TE Completed	ALTITUDE OF LAND SURFACE (FT)	DEPTH OF WELL (FT)	CASING DIAM- ETER (IN)	DEPTH CASED (FT)	DEPTH TO FIRST OPENING (FT)	FINISH	PRINCIPAL AQUIFER	DEPTH TO AQUIFEI (FT)
										WELLS
(C-37- 3)24DDA- 1	THOMPSON, GEORGE W.	1972	5900	600	4	570	510	P	221 EN RD	3 40
24DDD- 1	STOCK, BERT & IRMA	02/25/72	5910	403	4	403	373	Р	221EN RD	36 0
(C-41- 3) 4BCA- 1	U.S. BLM	06/18/68	5780	250	6	250	150	P	220 NV JO	24
(C-41- 4)23ADB- 1 (C-43- 1) 3BAC- 1	DO. DO.	09/07/78 12/13/74	6070 4420	500 302	6.63 6	20 300	20 275	X P	220 NV JO 220 NV JO	10 275
(-45- 1) 55AC- 1	50.	12713714	4420	302	Ū	200	215	•	2201100	615
4BAD- 1	GREENE & WEEDE INVESTMENT	08/04/71	4410	415	8	220	220	X	220NV JO	200
D-33- 4)35BBD- 1	NELSON, MARK	01/31/75	6480	500	16 14	6 80	6	X	220 NV JO	0
35CBB- 1 35CBC- 1	PECK, WILLIAM H. DO.	07/18/71 10/27/70	6380 6410	306 333	6.63	80 75	30 75	X X	220 NV JO 220 NV JO	68 55
36 ABB- 1	CROSBY, SAM & VIVIAN	05/15/75	6525	325	8	36	36	x	220NV J0	36
	-						-			
36 BAB- 1	DO.	07/28/77	6 570	400	8	150	150	X	220 NV JO	150
36 CBA- 1 D-33- 5)3 1 ADC- 1	PRESTON, ROBERT L. CLARKSON, DALE E.	03/04/74 02/29/80	6730 6360	535 400	8 14	23 52	23 52	x x	220 NV JO 220 NV JO	20 48
D-34- 4) 1CAD- 1	JEPSON, ALFRED	03/28/77	6320	210	6	180	180	x	220NV JO	175
D-35- 3) 8ABA- 1	BRUBAKER, RONALD W.	09/24/77	5810	112	6	60	60	x	221 EN RD	46
8ABB- 1	FORD, HAROLD H.	03/29/74	5830	205	8	27	27	x	221ENRD	0
2 9BBD- 1	SCHOW, JOSEPH B.	12/22/76	5840	2 91	6	2 91	100	P	221ENRD	õ
D-35- 4)20CCA- 1	SCHULTZ, BUTCH	01/01/80	5950	80.0	8	150	150	x	220NV JO	145
(D-40- 8) 7BDC- 1	U.S. BLM	10/05/80	4480	422	6	422	380	P	220 NV JO	280
(D-43- 1) 2BDA- 1	CONSUMERS AGENCY, INC.	09/27/57	4510	778	10	15	15	x	220NV JO	280
2BDD- 1	D0.	0 9/ 16 / 57	4520	782	10	30	30	x	220 NV JO	
2CAB- 1	DO.	08/31/59	4530	620	10	42	42	x	220NV J0	
D-43- 2)13CDD- 1	TAYLOR, DEE R.	12/25/59	4000	5 90	10	29	29	x	221 ENRD	38
13DCD- 1	DO.	07/18/66	3960	590	11	15	15	x	221EN RD	17
14BAB- 1	CONSUMERS AGENCY, INC.		4128.80	537	10	33		x	-+	30
D-43- 3)32DCA- 2	TAYLOR, LES		3984.34	780	16					
D-44-3) 2BDC-1	U.S. NATIONAL PARK SERVICE	11/19/80	3820	652	8	652	495	Р	220 NV JO	448
D-44- 4) 8BBC- 1	U.S. BUREAU OF RECLAMATION		3722.87	800	20				220NV JO	
8BBD 1	DO.	1950	3760	208						
										WELLS IN
A-39- 4) 6CBB- 1	VERMILION CLIFFS CC	08/ /61	6610	700	6				220GLNC	0
A-40- 4) 5DAC- 1	SANDERS	1 950	6 0 0 0	300					220 NV JO	
5DAC- 2	DO.	1950	6000	700					220 NV JO	
19BAB- 1	SANDERS, A. P.	04/17/60	6 050	6 10	~-				220GLNC	372
27BBC- 1	VERMILION CLIFFS CC	07/ /52	6330	920	6	550		P	220 NV JO	0
A-40- 5) 5CCC- 1	DO.	06//60	6160	1340	5	1000	1000	x	220GLNC	0
12DDB- 1	FINDLAY, A.D.	07/10/62	6210	1468	4				220 NV JO	0
33CBC- 1	DO.		6 400	1175					220NV JO	0
A-40- 6) 3CCC- 1 A-41- 4)14CBB- 1	VERMILION CLIFFS CC	12/11/59 1954	6150 5580	1802	4	1762	1762	x 	220 NV JO 220 NV JO	
16 CBB- 1		1954	5730	700						
2 8ADA- 1	SANDERS, A.		5875	920					220 NV JO 220GLNC	
A-41- 8) 4DDA- 1	CANYON TOURS	10/20/61	4160	925	8	793	793	x	220 NV JO	860
14BCA- 1	ARIZONA DEPT. OF TRANSPORTATION	02/ /58	4112	1200	14	1030	880	P	220 NV JO	36 5
14BCB- 1	U.S. NATIONAL PARK SERVICE	10/ /57	4120	1500	10.75	11	11	x	220NV JO	365
23DAC- 1	U.S. BUREAU OF RECLAMATION	01/ /58	3 917	910	7	910	755	P	220 NV JO	18
23DCD- 1	DO.	07/ /57	3 982	1285	18	6	6	x	220NV J0	Ő
A-42- 8)32CDD- 1	GREEN, BILL	10/15/72	4100	985	12	985	607	P	220 NV JO	6 53
35DAB- 1 35DAB- 2	U.S. BUREAU OF RECLAMATION U.S. NATIONAL PARK SERVICE	07/ /58 03/ /58	3736 3735	603 620	20 16	76 416	76 416	X X	220 NV JO 220 NV JO	280 260
		01/ /58	3742	625	14	625	475	P	220 NV JO	
35DAD- 1	U.S. BUREAU OF RECLAMATION						10.0		22011110	
35DAD- 1 35DCD- 1	U.S. NATIONAL PARK SERVICE	02/ /74	3 900	800	20	77	430	 x	220 NV JO 220 NV JO	233
35DAD- 1					20 8	77 500	430 77 500	x x	220 NV JO 220 NV JO 220 NV JO	233

I, intermittent; M, monthly; O, one-time measurement; R, continuous recorder.

WATER Level (ft)		DA TE WA TER Level Me asured	DISCHARGE (GAL/MIN)	DRAW- DOWN (FT)	SPECIFIC CAPACITY [(GAL/MIN) FT]	DA TE Discharge Measured	SPECIFIC CONDUCTANCE (UMHO/CM AT 25°C)	TEMPERATURE (°C)	DATE QUALITY PARAMETERS MEASURED	TYPES OF LOGS AVAILABLE	I Ava	THER DATA ILABLE WL
IN UTAH												
	s	08/12/81								D		0
	S	08/12/81						16.5	08/12/81	D		0
134	R D	06/18/68	13 R	85 	0.2	06/18/68	415	12.5	06/12/81	D D	P 	0
140.72	S	02/25/81	60 R	20	3.0	12/13/74	1520	16.5	02/25/81	D	P	м
	R	08/04/71	100 B	0		08/04/71				D		
160.78 80		01/27/81	30 R			01/31/75	415	11.5	04/23/81		P	м
143.98	R S	07/18/71 03/02/81	40 R 20 R			07/18/71 10/27/70	3 90	13.0	08/09/79	D D		о м
235.77		04/03/81	15 R	10	1.5	05/15/75	6 40	12.5	0 9/0 1/81	D	P	
249.85	s	05/13/81	60 R			07/28/77				D		м
445.61		04/28/81	15 R			03/04/74				D		0
	S	01/27/81	40 R			02/29/80	310	17.0	09/01/81	D	Р	M
	S S	01/27/81 09/02/81	20 R .50 B	32	<.1	03/28/77 09/24/77	430 810	12.5 13.5	0 9/0 1/81 0 9/03/81	D D	P P	м 0
					**1		510	13.5	0 37 037 01	U	r	U
57.69		09/02/81	.17 R			03/29/74				D		0
44.27 669	S L	09/03/81 08/30/81	.40 B	207	<.1 	12/22/76		15.5	08/30/81	D T		0 0
376.75		03/05/81	15 B	45	•3	10/05/80				D		
470 461.20	R	09/27/57	20 R	0		09/27/57				D		I
	3	05/22/81										
	R	09/16/57	20 R	0		0 9/ 16 / 57	960	16.0	09/26/79	D	Р	0
	R S	08/31/59 05/22/81								D		I
322	R	12/25/59	25 B	0		12/25/59				D		I
	S	06/18/81					6.8.5			_		
	R S	07/18/66 10/10/63					6 00	20.0	06/18/81	D D	Р 	O R
										D		к
310.21		10/10/63										R
	S S	04/27/81 07/15/64	150 R	50	3.0	11/19/80				D		I
66.39		11/14/81										R M
RIZONA												
520	R	06/20/70	5.0 B	5	1.0	08/ /61	500	12.0	08/05/76	D	P	I
526.50	Т	08/05/76		-			500	1210	00/03/10	b	ſ	1
	D D											
	R	04/17/60	12 B	20	.6	04/17/60						0
	R	07/ /69	5.0 R			07/ /69						õ
1100	R	07/ /69	5.0 R			07/ /69				D		o
1310	R	07/10/62	15 B			07/10/62	250	12.0	08/05/76	D	P	0
	R	06/14/51					300		08/05/76		Р	0
	R D	07/ /69 1954	3.0 R			12/11/59				D 		0
								-				
	D R	1954										
	л R	06/ /72 10/14/61					275	16.0	08/06/76	 D	B P	0 I
492.20	s	06/18/81								U	r	-
	R S	02/ /58 02/09/81	180 R			02/ /58				D	P	I
	R	10/ /57	100 R			10/ /57				C, D, E, J, N, T, U	в	I
378.1	L	08/28/81	30 R							C, D, J, N, T	P	м
521.8	L	08/27/81	34 R			07/ /57				C, D, E, J, N, T, U	P	
	R	10/15/72	600 R	171	3.5	10/15/72				D	Р	I
	R R	07/ /58 03/ /58								C, D, E, J, N, T, U D	B P	M
	R, R	01/ /58 02/ /74	1000 R			01/ /58				D 	B P	0 0
82.00	S	07/22/76	1200 R			01/ /59				E, J, N, T, U	P B	M
	R	10/ /57	100 R	8	12.5	10/ /57	2050	20.0	12/05/58		в	o
	R	08/01/61	275 C	25	11.0	02/ /61				D	Р	0

Table 13.--Water levels in selected observation wells

[Water levels are in feet below land surface. From water-level records except E, estimated; L, log; R, reported; S, steel-tape measurement; T, electric-tape measurement.]

Well number: See "Numbering system for hydrogeologic-data sites", p. 5, and figure 2. Altitude (Alt.) of land surface: Surveyed altitudes given in feet and decimal fractions; altitudes interpolated from U.S. Geological Survey topographic maps given in feet.

from U.S.	Geologi	cal Survey	topographic	maps	given in fo	eet.						
(C-43-	1) 3BAC-) ALT.	4,420		WELLS	IN UTAH						
()												
DEC 13,		148. R	APR 25, May 26	1981	141.67 S 143.00 S	JUL AUG		1981	153.79 S 141.73 S		16, 1981 12, 1983	140.94 S 140.42 S
FEB 25, MAR 24	1901	140.72 S 140.94 S	JUN 24		144.04 S	OCT			142.46 S			
			6 100									
(D-33-	4)35BBD-	1 ALT.	6,480									
JAN 27,	1981	160.78 S	APR 28,	1981	161.25 S		30,	1981	165.53 S	MAR	10, 1983	160.94 S
MAR 02		160.41 S	MAY 13		161.06 S	SEP			166.55 S 162.80 S			
APR 03 23		160.41 S 160.67 S	25 JUN 23		163.05 S 161.09 S	NOV MAR		1982	161.18 S			
(D-33-	4)35CBC-	1 ALT.	6,410									
AUG 09,	1979	146.61 S	APR 03,	1981	143.98 S			1981	145.33 S		01, 1981	144.90 S
JAN 26,		144.30 S	28 May 25		144.24 S 144.69 S	JUL SEP	30		145.15 S 144.75 S	NOV	13	144.93 S
MAR 02		143.98 S	MA1 25		144.09.5	SEF	01		144.15 5			
(D-33-	4)36 BAB-	1 ALT.	6,570									
NOV 13,	1980	249.29 S	MAY 25,	1981	249.93 S	JUL	30,	1981	249.77 S	OCT	01, 1981	249.70 S
MAY 13,		249.85 S	JUN 23		249.81 S	SEP	01		250.48 S			
(D-33-	5)31ADC-	1 ALT.	6,360									
									*/ 0 00 0		10. 1983	169.02 S
JAN 27, MAR 02	1981	162.90 S 163.14 S	MAY 25, JUL 01	1981	164.40 S 164.97 S	OCT		1981	168.02 S 166.71 S	пал	10, 1905	10 9.02 3
APR 03		163.56 S	30		20 8.9 3 S	NOV	13		166.59 S			
28		164.10 S	AUG 13		177.97 S	MAR	03,	1982	166.76 S			
(D-34-	4) 1CAD-	1 ALT.	6,320									
JAN 27,	1081	140.55 S	APR 28,	1 0.81	142.98 S	.107	30.	1981	143.47 S	NOV	13, 1981	141.75 S
MAR 02	1901	140.55 S	MAY 25	1901	143.41 S	SEP		1 901	143.22 S		13, 1901	
APR 03		142.18 S	JUN 23		143.07 S	OCT	01		142.89 S			
(D-43-	2)14BAB-	1 ALT.	4,128.60									
			000 05	. ~ .				1 05 E	228.40		20, 1966	227.15
OCT 10, 15		230.33 230.35	SEP 05, 10	1904	228.77 228.96	AUG		1965	228.30		20, 1900	227.07
20		230.33	15		228.82		10		228.38		30	227.04
25 31		230.35 230.30	20 25		228.97 229.86		15 20		228.19 228.33	NOV	30	226.94 227.10
NOV 05		230.25	30		228.82		25		228.20	DEC	05	226.69
10 15		230.37	OCT 05 10		228.87 228.90	OCT	30		228.32 228.27		10 15	227.31 227.13
20		230.10	15		228.74		10		228.25		20	226.92
25		230.37	20		228.77		15 20		227.95 228.32		25	226.76 226.81
30 DEC 05		230.45 230.38	25 31		228.76 228.71		25		228.39		31 05, 1967	226.70
10		229.77	DEC 15		228.56		31		228.31		10	227.26
15 20		230.35 230.22	20 25		228.82 228.40	NOV	10		228,18 228.05		15 20	226.89 226.77
25		230.33	31		228.73		15		228.10	1	25	226.55
31 JAN 05,		230.35 230.20	JAN 05, 10	1965	228.85 228.87		20 25		228.14 227.88	FEB	31	226.66 226.73
10	1304	230.00	15		228.90		30		228.23		10	226.61
15 20		230.10 230.00	20 25		228.51 228.36	DEC	05 10		228.32 227.81		15 20	226.45 226.64
25		230.35	31		228.42		15		227.80		25	226.60
31 FEB 05		230.35	FEB 05		228.52		20 25		228.38 228.17	MAR	28	226.97 226.37
10		229.90 229.12	10 15		228.31 228.59		31		228.05		10	226.45
15		228.97	20		228.12	J AN		1966	228.30		15	226.71
20 25		229.20 228.98	25 28		228.75 228.34		10 15		228.20 227.97		20 25	226.61 226.43
29		228.94	MAR 05		228.74		20		227.98		31	226.37
MAR 05 10		228.98	10 15		228.51 228.49		25 31		228.01 227.80	APR	10	226.52 226.43
15		229.22	20		228.68	FEB	05		228.14		15	226.38
20 25		229.17 228.98	25 31		228.34 228.53		10 15		227.83 228.01		20 25	226.46 226.47
31		229.03	APR 05		228.49		20		228.15		30	226.42
APR 05		228.85	10		228.32		25 28		227.83 228.00	MAY		226.45 226.33
10 15		229.10 229.03	15 20		228.73 228.61	MAR			228.30		10 15	226.75
20		228.94	25		228.44		10		227.96		20	226.52
25 30		228.95 228.84	30 MAY 05		228.57 228.28		15 20		227.90 227.87		25 31	226.39 226.23
MAY 05		228.96	10		228.58		25		227.91	JUN	05	226.49
10 25		229.16 229.16	15 20		228.43 228.43	APR	31		227.97 228.02		10 15	226.27 226.46
31		228.97	25		228.35		10		227.74		20	226.49
JUN 05 10		228.92 228.97	31 JUN 05		228.31 228.46		15 20		228.06 227.70		25 30	226.43 226.42
15		228.92	10		228.43		25		228.00	JUL	05	226.32
20 25		228.97 229.09	15 20		228.19 228.48	JUN	30 30		227.88 227.57		10 15	226.40 226.39
30		229.03	25		228.19	JUL	05		227.46	:	20	226.33
JUL 05		228.90 229.03	30 JUL 05		228.34		10 15		227.45 227.38		25 31	226.43 226.33
10 15		229.03	10		228.38 228.33		20		227.28	AUG		226.41
20		228.93	15		228.42		25		227.34		10	226.45
25 31		228.93 228.93	20 25		228.31 228.38	AUG	10		227.18 227.12		15 20	226.29 226.27
AUG 05		229.04	31		228.44		15		227.33	2	25	226.32
10 15		228.88 228.86	AUG 05 10		228.30 228.40		20 25		227.27 227.32	SEP	31 05	226.35 226.20
20		228.78	15		228.32		31		227.14		10	226.27
25 31		228.93 228.79	20 25		228.34 228.33	SEP	10 15		227.13 227.09		15 20	226.26 226.25
							-		• • •			

FP	25, 1	06 7	226.18	ADD	20, 19	a	224.73	FER	05.	1971	223.18	MAR	20, 1	974	219.86
	30	90 /	226.17	JUN	05	,,	224.72	100	10		223.51		25		219.8
CŢ			226.13		10 15		224.48 224.64		15 20		223.18 223.88	A PR	31 05		219.73
	10 15		226.15		20		224.66		25		223.12		10		219.61
	20		226.21		25		224.39		28		223.17		15 20		220.01
	25		226.10	JUL	30		224.71 224.55	MAR	05 10		223.04 223.22	JUN			219.00
ov	31 05		226.17 226.01		10		224.75		15		223.29		15		219.70
	10		226.10		15		224.67		20		223.27		20 25		219.65
	15		226.10		20 25		224.78 224.62		25 31		223.08 222.98		30		219.60
	20 25		226.23 226.28		31		224.70	APR			223.41	JUL	05		219.52
	30		225.84	AUG	05		224.54		10		223.16		10		219.4
EC			225.97		10		224.50		15		222.85 222.98		15 20		219.52
	10		226.06 225.79		15 20		224.63 224.59		20 25		222.90		25		219.3
	15 20		225.65		31		224.43		30		223.27		31		219.2
	25		226.20	E SEP	05		224.35	MAY			223.02	AU G			219.1
	31	968	225.99 226.05		10 15		224.51 224.44		10 15		223.24 223.17		10 15		219.0
лл	05, 1 10	90 0	225.88		20		224.31		20		223.04		20		218.8
	15		225.96		25		224.43		25		223.12		25 31		218.90 218.60
	20 25		226.08 225.64	OCT	30 05		224.33 224.37	JUN	31 05		223.08 223.24	SEP	05		218.8
	31		225.77		10		224.14		10		223.05		10		218.7
EB	05		226.04		15		224.31		15		223.05		15 20		218.8
	10 15		225.64 225.71		20 25		224.43 224.60		20 25		223.19 223.14		25		218.6
	20		225.72		31		224.50		30		223.18		30		218.7
	25		225.83	NOV			224.70	JUL			223.13	OCT	05 10		218.4
AR	29		225.86 225.60		15, 19 20	70	224.05 224.23		10 15		223.16 223.00		15		218.6
	10		225.48		25		224.06		20		223.17		20		219.2
	15		225.70		31		224.16		25		223.10		25 31		219.4
	20 25		225.71	FEB	05 10		224.07 224.15	AUG	31		223.13 223.09	NOV	05		219.10
	31		225.58 225.55		15		223.98	100	10		223.07		10		219.1
PR	05		225.57		20		224.25		15		223.01		15		219.0
	10		225.87		25 28		224.13 223.90		20 25		223.03 223.04		20 25		219.19
AY	15 20		225.51 225.48	MAR			223.84		31		222.90		30		219.0
	25		225.50		10		223.69	SEP	05		222.89	DEC			218.8
	31		225.44		15		223.95		10		222.41 222.74		10 15		217.8
UN	05 10		225.24 225.52		20 25		223.98 223.82		15 20		222.74		20		217.10
	15		225.50		31		223.44		25		222.64		25		217.70
	20		225.48	A PR			223.05		30		222.55	TAN	31 05, 1	075	217.70
	25 30		225.35		10 15		223.18 223.67	OCT	10		223.01 222.94	JAN	10	915	217.70
UL			225.17		20		223.70		15		222.48		15		217.7
	10		225.16		25		223.84		20 25		222.99 222.60		20 25		217.60
	15 20		225.31 225.19	MAY	30 05		223.94 223.99		31		222.79		31		217.60
	25		225.24		10		223.64	NOV	05		222.80	FEB			217.6
	31		225.30		15		224.06		10		222.99 222.55		10 15		217.60
UG	05 10		225.26 225.31		20 25		223.73 223.88		15 20		222.55		20		217.60
	15		225.45		31		223.82	DEC			222.70		25		217.40
	20		225.43	JUN			223.83	FEB		1972	222.41		28		217.4
	25		225.22		10 15		223.56 223.80		15 20		222.31 222.51	MAR	10		217.4
EP	31 05		225.21 225.30		20		223.85		25		222.23		15		217.3
	10		225.26		25		223.91		29		222.14		20		217.3
	15		225.07		30		223.64	MAR	05 10		222.41 222.45		25 31		217.3
	20 25		225.01 225.37	JUL	10		223.91 223.86		15		222.36	APR			217.2
	30		225.31		15		223.78	MAY	03		222,28		10		217.20
СТ			225.19		20		223.73	OCT			221.83 222.20		15 20		217.10
	10 15		225.20 225.04		25 31		223.78 223.68	DEC MAR		1973	221.38		25		216.7
	20		225.21	AUG	05		223.75	APR	16		220.60		30		216.9
	25		225.31		10		223.66	AUG SEP			220.20 221.20	MAY	05 10		2 16 .60
ov	31 05		225.01 225.00		15 20		223.70 223.69	SPL	15		221.02		15		216.7
	10		225.04		25		223.69		20		220.98		20		216.3
	15		224.83		31		223.62		25		220.83		25		216.60
	20 25		224.40 224.76	SEP	05 10		223.41 223.72	OCT	30 05		221.02 220.94	JUN	31 05		216.5
	30		224.53		15		223 .52		10		220.80		10		216.5
EC	05		224.54		20		223.52		15		221.11		15		216.3
	10 15		224.33 225.09		25 30		223.49 223.67		20 25		220.89 220.87		20 25		216.3
	20		224.62	OCT			223.45		31		220.79		30		216.3
	25		224.84		10		223.39	NOV			220.85	JUL	05 10		216.3
AN	31 05, 1	05 0	225.14 225.12		15 20		223.56 223.50	DEC	10 05		220.98 220.78		15		216.3
~~~	10	, ,	224.86		25		223.42		10		220.98		20		216.0
	15		224.85		31		223.61		15 20		220.65 220.86		25 31		216.00
	20 25		224.82 224.86	NOV	05 10		223.61 223.49		20 25		220.86	AUG			216.0
	31		225.07		15		223.80		31		220.44		10		215.8
EB			224.86		20 25		223.38	J AN	05, 10	1974	220.24 220.36		15 20		215.8 215.7
	10 15		225.07 224.80		25 30		223.23 223.28		10		220.84		25		215.6
	20		224.64	DEC	05		223.62		20		220.32		31		215.6
	25		224.63		10		223.35		25		220.33	SEP			215.6
AR	28		224.70 224.70		15 20		223.38 223.30	FEB	31 05		220.38 220.15		10 15		215.54
AN	10		224.70		25		223.52	r 6D	10		220.50		20		215.4
	15		225.02		31	_	223.47		15		220.25		25		215.5
	20		224.86	JAN		71	223.49		20		219.84	OCT	30		215.40 215.4
	25 31		224.95 224.68		10 15		223.36 223.50		25 28		220.38 220.13	001	10		215.21
PR			224.66		20		223.34	MAR	05		220.00		15		215.3
	10		224.70		25		223.31		10		219.86		20		215.21

Table 13.--Water levels in selected observation wells--Continued

		Table 13Water	· level	s in selected	observation	wellsContinue	90	
(D-43-	2)14BAB- 1 -	- CONTINUED						
OCT 31,				214.11 214.45	SEP 26, 19 OCT 10	79 205.54 S 204.40 S	APR 25, 1981 MAY 22	203.52 S 203.21 S
NOV 05	215.13 214.83	10	1310	214.38	31	206.59 S	JUN 24 JUL 29	203.73 S 202.94 S
15 20	215.08 214.96	20		214.67 214.60	MAR 14, 19 OCT 13	202.80	AUG 29	204.00 S
25 30	214.88 214.76		1977	214.18 207.03	NOV 23 DEC 20	202.95 S 202.97 S	OCT 02 07	209.77 S 205.44 S
DEC 05	214.81 214.65	OCT 26	1978	207.52 206.66	FEB 06, 19 26	81 208.70 S 205.94 S	NOV 14 MAR 25, 1982	203.32 S 202.51 S
15	214.86	OCT 12		205.88 S	MAR 24	204.37 S	OCT 05	201.37 S
20 25	214.90 214.67		1 97 9	206.15 S R 204.48 S	26	203.94	MAR 24, 1983	200.60 S
		2 084 24						
(D-43-3)32	2DCA- 2 ALT.	3,984.34						
OCT 10, 15	, 1963 310.21 306.21		1965	272.08 271.94	MAR 20, 19 25	67 240.03 239.42	JUN 30, 1968 JUL 05	228.02 227.78
20	303.47 301.87	10		271.57 271.24	31 APR 05	239.01 239.75	SEP 10 15	225.90 225.61
25 31	300.21	20		271.02	10	239.60	20	225.39
NOV 05 10	298.94 297.95			270.63 270.40	15 20	239.17 239.19	25 30	225.75 225.50
15 20	296.78 304.06			270.07 269.58	25 30	239.14 238.31	OCT 05 10	225.35 225.10
25 DEC 05	300.91 297.64	15		269.37 269.28	MAY 05 10	238.42 238.30	15 20	224.78
10	2 96.22	JUN 14		261.17	15 20	238.49 238.38	25 31	224.80
15 20	295.25 294.18	AUG 05		265.53 265.09	25	238.09	NOV 05	224.27
25 31	298.25 292.25	15		264.78 264.40	31 JUN 05	237.72 237.66	10 15	224.26 224.08
JAN 05, 10	, 1964 291.38 290.54			265.09 265.45	10 15	237.37 237.17	20 25	224.24 223.90
15 20	289.92 289.13			264.76 264.08	20 25	237.18 236.17	30 DEC 05	223.81 223.99
25	288.45	i 10		263.60 263.30	30 JUL 05	236.23	10 15	224.06 223.87
31 FEB 05	286.98	3 20		262.79	10	236.02	20	223.34
10 15	286.68 285.82	: 30		262.40 262.04	15 20	235.89 235.70	25 31	223.27 223.23
20 25	285.23 284.46			261.67 261.39	25 31	235.66 235.50	JAN 05, 1969 10	223.10 222.83
29	284.02	: 15		260.84 260.63	AUG 05 10	235.32	15 20	222.64
MAR 05 10	283.40 313.45	5 25		260.43	15	234.84	25	222.35
15 20	307.45 304.05	NOV 05		260.01 259.69	20 25	234.76 234.61	31 FEB 05	222.30 222.12
25 31	301.80 298.57			259.38 259.07	31 SEP 05	234.58 234.35	09 25	222.16 221.70
APR 05	2 97 . 87 2 96 . 90	20		258.75	10 15	234.20 234.11	28 MAR 05	221.98 222.58
15	296.27	30		258.18	20	234.09	10 15	221.53
30 May 05	292.86 307.60	) 10		257.90 257.25	25 30	233.70 233.58	20	221.42
10 15	299.44 295.55			256.84 256.85	OCT 05 10	233.40 233.22	25 31	221.35 221.16
20 25	292.85 293.50			256.54 256.12	15 20	233.05 233.06	APR 05 10	221.09 221.00
31 1 אַטַר	2 91 .33 289.90	JAN 05,	1966	256.03	25 31	232.88 232.94	15 20	220.82 220.94
10	294.40	) 15		255.46	NOV 05	232.77	25	220.84
15 20	291.75 289.92			255.12 254.90	10 15	232.62 232.47	30 May 05	220.66 220.55
25 30	288.82			254.49 254.32	20 25	232.23 231.98	10 JUN 05	220.60 220.05
JUL 05 10	286.22	2 10		253.82 253.70	30 DEC 05	231.95 231.80	10 15	219.77 219.81
15	284.86	20		253.52	10	231.63	20	219.76
20 25	283.84 283.16	28		253.18 252.95	15 20	231.34 231.09	25 30	219.50 219.38
31 AUG 05	282.90 281.95			252.77 252.55	25 31	231.65 231.29	JUL 05 10	219.44 219.46
10 15	281.12 280.54			252.17 251.95	JAN 05, 19 10	68 231.55 231.56	15 20	219.42 219.36
20 25	279.92	25		251.69 251.53	15 20	231.94 231.62	25 31	219.20 219.14
31 SEP 05	278.81	APR 05		251.20	25	231.39	AUG 05	218.85
10	278.05 277.67	15		250.92 250.75	31 FEB 05	231.25 231.30	10 31	218.49
15 20		20 25		250.23 250.28	10 15	230.92 230.68	SEP 05 10	218.47 218.45
25 30	276.36 296.95			249.93 249.67	20 25	230.54 230.32	15 20	218.35 218.15
OCT 05	2 90 .30 288.20	10		249.32 249.08	29 MAR 05	230.28 230.12	25 30	218.10 217.97
10 15	286.35	5 JUN 05		255.78	10	229.72	OCT 05	217.52
20 25	283.37	15		254.56 253.56	15 20	229.68 229.60	10 15	217.61 217.85
31 NOV 05		20		252.35 251.85	25 31	229.35 229.30	24 25	217.75 217.77
30 DEC 05	278.26	30	1967	251.30 244.02	APR 05 10	229.42 229.45	31 NOV 05	217.65 217.48
10 14	277.22	10		243.83	15 20	229.12 228.87	10 15	217.34
22	276.35	20		243.43 243.28	25	228.95	20	217.27
25 31		31		243.00 242.09	30 May 05	229.12 228.54	25 30	217.12 217.02
JAN 05, 10				242.79 242.21	10 20	228.67 228.44	DEC 05 10	216.65 216.47
15	273.95 273.40	15		241.89 241.32	25 31	228.04	15 20	216.72 216.55
FEB 08	273.38	25		241.04	JUN 05 10	227.60	25 31	216.42
15	273.16 272.97	MAR 05		240.21	15	228.09	JAN 15, 1970	216.05
20 25	272.74 272.37			240.50 240.18	20 25	227.80 227.66	20	216.10

AN 25,	1970 215.91	AUG 20, 1971	207.79	MAY 10, 1973	202.22	OCT 20, 1974	206.40
31	215.92	25	207.74	15	202.28	25	206.48
SB 05	215.75	31	207.67	20	202.06	31 NOV 05	206.19 206.18
10 15	215.82 215.63	SEP 05 10	207.61 207.60	25 31	201.94 201.98	10	206.15
20	215.03	15	207.43	JUN 05	201.95	15	206.07
25	215.67	20	207.45	10	201.94	20	210.31 E
28	215.83	25	207.30	15	201.84	25 30	214.50 E 218.70 E
AR 05 10	215.15 214.92	30 OCT 05	207.13 207.43	20 25	201.92	DEC 05	222.90 E
15	215.18	10	207.33	30	201.77	10	227.10 E
20	215.16	15	206.93	JUL 05	201.76	15	231.32 E
25	215.01	20	207.06	10	201.75	20	225.75
31	214.87	25	206.83	15	201.71 201.53	25 31	222.95 220.66
PR 05 10	215.07 214.88	31 NOV 05	206.87 206.83	20 25	201.55	JAN 05, 1975	219.36
15	214.62	10	206.93	31	201.53	10	218.00 E
20	214.56	15	206.59	AUG 05	201.47	15	216.00 E
25	214.53	20	206.73	10 15	201.35 201.35	20 25	245.35 243.11
30 AY 05	214.50 214.48	25 30	206.70 206.47	20	201.34	31	229.05
10	214.13	DEC 05	206.45	25	201.13	FEB 05	226.22
15	214.31	10	206.47	31	201.06	10	223.58
20	214.08	15	206.58	SEP 05	201.09	15 20	221.80 246.58
25	214.10 213.95	20 25	206.72 206.63	10 15	201.00 200.93	25	234.46
31 UN 05	213.87	31	206.62	20	200.87	28	231.74
10	213.61	JAN 05, 1972	206.52	25	200.71	MAR 05	228.24
15	213.63	10	206.34	30	200.83	10 15	225.85 224.25
20	213.58	15 20	206.41 206.25	OCT 05 10	200.77 200.62	20	223.14
25 30	2 13 .51 2 13 .33	20	206.25	15	200.80	25	221.98
UL 05	213.45	31	206.37	20	200.68	31	221.06
10	213.42	FEB 05	206.46	25	200.60	APR 05	220.47
15	213.32	10	206.47	31	200.53	10 15	238.74 231.43
20 25	213.20 213.13	15 20	206.37 206.38	NOV 05 10	200.41 200.55	20	228.15
31	212.98	25	206.13	15	200.40	25	227.90 E
UG 05	212.88	29	206.15	20	200.20	30	227.65 E
15	212.74	MAR 05	206.16	25	200.15	MAY 05	227.40 E 227.15 E
20 25	212.75 212.69	10 15	206.13 206.10	30 DEC 05	200.45 200.40	10 15	226.90 E
31	212.56	20	205.91	10	200.43	20	226.65 E
EP 05	212.33	25	205.85	15	200.22	25	226.40 E
10	212.41	31	205.85	20	200.37	31	226.15 E 225.90 E
15 20	212.48 212.47	APR 05 10	205.74 205.60	25 31	199.98	JUN 05 10	225.90 E 225.65 E
30	212.45	15	205.57	JAN 05, 1974	199.78	15	225.40 E
CT 05	212.30	20	205.51	10	199.75	20	225.15 E
25	211.97	25	205.35	15	200.14	25	224.90 E
31 0V 05	212.02 211.98	30 May 05	205.40 205.23	20 25	199.96 199.93	30 JUL 05	224.65 E 224.40
10	211.90	25	205.10	31	199.83	10	223.10
15	211.92	31	205.08	FEB 05	199.72	15	222.02
20	211.62	JUN 05	205.09	10	199.85	20	221.19
25	211.40	10	204.94	15	199.67	25	220.54
30 EC 05	211.37 211.50	15 20	204.91 204.83	20 25	199.52 199.76	31 AUG 05	219.86 219.38
10	211.33	25	204.70	28	199.60	10	218.95
15	211.26	30	204.68	MAR 05	199.47	15	218.60 E
20	211.08	JUL 05	204.67	10	199.38	20	218.30 E
25	211.13 211.05	10 15	204.58 204.43	15 20	199.40 199.36	25 31	218.00 E 217.64 E
31 AN 05,		AUG 15	205.00	25	199.30	SEP 05	217.34 E
31	210.62	20	205.00	31	199.12	10	217.04 E
EB 05	210.43	25	204.82	APR 05	199.14	15	216.74 E
10	210.57 210.28	SEP 15 20	204.75 204.70	10 15	198.89 199.03	20 25	216.44 E 216.14 E
15 20	210.20	25	204.52	20	199.05	30	215.84 E
25	210.09	30	204.67	25	198.79	OCT 05	215.54 E
28	210.09	OCT 05	204.54	30	198.83	10	215.24 E
AR 05	209.98	10	204.48 204.47	MAY 05 10	198.65 198.48	15 20	215.00 E 214.74
10 15	209.97 209.92	15 20	204.47	10	198.40	25	214.74
20	209.90	25	204.57	20	198.38	31	214.20
25	209.68	31	204.48	25	198.56	NOV 05	214.13
31	209.59	NOV 05	204.41	31	198.39	10	213.79
PR 05 10	209.87	10 15	204.39 204.32	JUN 05 10	198.30 198.36	15 20	213.78 213.56
15	209.65 209.41	20	204.32	15	198.26	25	213.41
20	209.30	25	204.38	20	198.21	30	213.09
25	209.15	30	204.48	25	198.19	DEC 05	213.07
30	209.33	DEC 05	204.04	30 JUL 05	198.06 198.05	10 15	212.82 212.74
AY 05 10	208.96 209.07	JAN 25, 1973 31	202.88 202.62	10	198.05	20	212.74 212.70 E
15	208.98	FEB 05	202.83	15	197.99	25	212.80 E
20	208.84	10	202.65	20	197.99	31	212.80 E
25	208.79	15 20	202.67 202.78	25 31	197.88 197.78	JAN 05, 1976 10	242.12
31 UN 05	208.66 208.78	20	202.66	AUG 05	198.40 E	15	242.10
10	208.59	28	202.48	10	199.00 E	20	242.12
15	208.67	MAR 05	202.28	15	199.60 E	25	242.12
20	208.75	10	202.33	20	200.20 E	MAR 03	241.10
25	208.67	15	202.28	25	200.80 E	OCT 07	234.98 224.21
30 UL 05	208.58 208.50	20 25	202.18 202.31	31 SEP 05	201.40 E 202.00 E	MAR 23, 1977 OCT 26	224.21
10	208.47	31	202.18	10	202.60 E	MAR 20, 1978	214.21
15	208.33	APR 05	202.28	15	203.20 E	OCT 12	211.43
20	208.33	10	202.40	20	203.80 E	MAR 10, 1979	207.05 S
25	208.23	15	202.30	25	204.40 E	OCT 10	205.64 S
	208.12	20	202.24	30	205.00 E	MAR 14, 1980 OCT 13	203.43 S
31 UG 05	208.02	25	202.32	OCT 05	205.60 E		200.62 S

Table 13 .-- Water levels in selected observation wells--Continued

(D-44-3) 220-7 1 AT. 3, 80 APP 27, 1991 107.33 AT. 25, 100 APP 27, 1991 107.33 AT. 25, 100 APP 27, 1981 107.35 AT. 25, 100 APP 27, 108 AT. 27,	(0 44 2) 200	18D. C. 1 ALT		evers in selecte	d observation we	118CONFILME	iu.	
Curbe 4   J   HAT. 5, 727.47   HAT. 6, 156   27.07.6   23.15   23.15   23.14   30   15.9   20.15     35   35.43   10   97.07   33.42   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   23.44   10   10   23.44   10   10   23.44   10   10   23.44   10   10   23.44   10   10   23.44   10   10   23.44   10   10   23.44   10   10   23.44   10   10   23.44   10   10   23.44   10   10   10   10   23.44   10   10   10   10   10   10   10   10				181 107.31 S	JUN 18. 1981	106.98 S	AUG 29, 1981	106.63 S
11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			-		.,	-		
Sec     Sec <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1     1     1     2     3     0     2     2     1     1     2     2     1     1     2     1     1     2     1     1     2     1     1     2     1     1     2     1     1     2     1     1     1     2     2     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1	20	355.03					20	
Had     55     55     55     55     55     55     55     55     55     55     55     55     55     55     55     55     55     55     55     55     55     55     55     55     55     56     55     56     55     56     55     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75     75 <th75< th="">     75     75     75&lt;</th75<>								
15     251.35     0.00     05     25.55     10     24.57     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     231.47     25.01     232.57     231.47     23.01     231.47     23.01     231.47     23.01     231.47     23.01     231.47     23.01     231.47     23.01     232.57     23.01     232.57     23.01     232.57     23.01     232.57     23.01     232.57     23.01     232.57     23.01     23.01	AUG 05	353.05	25	267.31	20	232.63		
Bor     Bor <td></td> <td></td> <td>31 JUN 05</td> <td></td> <td></td> <td></td> <td></td> <td>200.80</td>			31 JUN 05					200.80
1     14.6     20     22.5     23.04     DE 0     23.1,57     31     99.00       33     33     33     33     35     34     35     34     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     35     36     35     36     36     36     36     36     36     36     36     36     36     36     36     36     36     36     36     36	20	350.55	10	264.99	NOV 05	231.70		
NOT     Sign of a si								
15     235.53     JUL 05     24.17     15     229.53     15     197.22       JM     105     331.11     105     34.161     20     229.10     30     197.65       20     330.65     225     360.19     FEB     105     127.24     JUL 05     197.85       21     330.65     225     360.19     FEB     105     227.24     105     197.85       23     320.45     105     256.55     20     226.45     105     197.80       24     105     127.74     25     257.75     105     225.45     20     184.83       25     327.77     10     225.45     20     226.45     20     184.84       26     325.55     10     225.45     10     226.77     105     184.85       25     323.45     20     225.45     10     226.71     106     184.85       26     323.45     225.45     10     226.71     105     184.65	NOV 05	337.05	25	263.04	DEC 05	230.20	JUN 05	
ab     ab<     ab								195.52
Instructure     Sin Left     20     Sin Left     Sin Left <t< td=""><td>20</td><td>335.14</td><td>10</td><td>261.59</td><td>20</td><td>229.25</td><td>20</td><td>194.94</td></t<>	20	335.14	10	261.59	20	229.25	20	194.94
25     330.65     25     360.19     PEB     10     15     15     27.32     JUL     05     197.24       15     330.45     31     255.32     25     26     38     10     191.25       15     327.47     20     255.55     26     26.45     25     10     184.85       20     327.48     25     257.70     10     225.45     10     184.85       23     325.75     10     257.48     25     225.73     20     188.45       24     324.77     15     257.48     25     225.73     20     188.45       25     323.47     10     256.28     10     325.55     10     256.47     20     225.46     20     257.67     10     188.49       31     322.46     C0     525.27     256.40     10     225.40     10     18.49     10     10     10     10     10     10     10     10     10     10     10								
1     299.03     MU0     65     259.24     20     226.38     15     190.20       55     337.99     15     258.55     25     226.45     21     190.35       55     337.99     15     258.55     25     257.70     15     226.45     21     190.45       26     377.9     15     257.70     15     226.16     10     188.45       28     325.77     10     257.95     10     257.95     31     187.27       20     323.47     70     0     255.25     15     225.75     31     187.27       20     323.47     30     225.25     15     225.87     31     187.27       31     322.46     10     225.47     10     226.10     387     05     186.47       31     322.47     10     30     225.47     10     186.47       32     31.1     15     254.45     10     225.47     10     186.48	20	330.65	25	260.19	FEB 10, 1968	227.32	JUL 05	192.39
PEB 00     228.50      10     228.72     25     226.45     20     20     0.55       15     327.49     15     228.05     28     28.655     10     36.65     10     36.65     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10								
10     377.47     377.47     20     258.55     28     226.45     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     25     26     25     26     25     26     26     26     26     26     26     26     26     26     26     26 <th26< th=""></th26<>							20	190.65
25     27.28     25     25.99     AUD     05     05.64.8     10     186.86       28     325.72     SED     05     256.95     10     186.45       15     326.47     15     226.02     10     186.45       15     324.27     20     25.96     225.85     31     107.85       20     324.47     20     25.95     11     225.85     31     107.85       21     323.45     25     254.48     10     226.02     20     18.69       31     321.23     10     20     254.00     30     225.87     18.69       30     310.57     21     254.00     30     225.87     18.69       30     316.50     15     225.40     30     225.87     18.69       31     316.50     15     226.45     31     225.87     20     18.75       31     315.97     10     225.37     15     232.97     10     18.45								
25     36. ku     31     257.22     326.32     326.18     10     188.45       XIR 00     325.57     10     256.16     225.47     225.42     25     166.45       320     323.55     10     255.46     4FP 05     222.42     25     167.42       20     323.45     23     255.46     10     226.17     10     18.48       21     321.14     30     225.47     10     18.48     18.49       23     321.34     10     225.47     20     226.40     20     18.40       31     322.44     0.07     254.40     30     226.40     0.07     18.40       320     320.57     25     254.40     30     226.40     0.07     18.40       310     316.50     15     252.45     224.47     31     18.43       311     316.31     255.03     25     224.47     31     18.43       311     316.37     15     254.62     244.41     10								
NAR     0     25:55     10     25:18     25:27:33     20     108:25       10     324.75     15     25:48     31     22:58     23     167:37       13     324.75     25     25:59.25     10     225:82     20     15     167:36       31     32:2.14     25     25:52.25     12     22:80     15     168:36       31     32:3.13     13     25:4.60     22:8.02     20     186:37       25     32:0.07     25     25:2.1     20     225:07     168:36       25     32:0.07     15     25:4.72     20     225:87     15     188:36       30     316:55     M07<05	25	326.40	31	257.25				
i     j22.75     j5     j6     j5     j5     j6     j6     j5     j6     j6 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
20     22     22     225     225     10     186.88       ATP     05     322.14     00     255.25     15     222.87     15     186.38       ATP     05     322.14     10     255.25     12     20     225.67     186.38       15     321.43     20     254.00     MAT     15     222.69     30     186.30       20     320.57     225.420     10     222.87     10     186.10       30     316.55     N07     05     255.22     225.67     10     186.10       30     316.55     N07     05     255.45     31     224.57     31     186.89       20     317.38     25     251.77     10     223.97     N07     186.46       31     316.37     10     251.62     20     222.77     10     188.40       30     31.39.7     10     251.62     224.77     10     186.40       20     31.30.7     31.30	10	324.75	15	256.13	31	225.82		
25     22,14     30     255,25     15     225,97     10     18.58       AFP     05     322,14     10     254,42     25     26.02     20     18.59       10     320,47     25     254,40     10     225,60     25     18.59       10     320,477     25     254,40     10     226,69     20     18.59       25     30,477     25     254,64     10     226,89     20     18.80       25     314,80     10     252,60     221,87     10     18.11       30     315,50     10     252,60     221,87     10     18.16       16     317,94     10     251,77     10     18.16     18.16       25     314,77     30     251,17     10     222,17     10     18.16       31     316,37     250,00     20     222,148     20     18.16       31     313,17     25     250,00     220,27     10     18.16								
AFP     05     322,14     10     254,40     30     326,62     20     185,07       10     321,37     15     321,37     15     321,37     15     321,37     15     321,37     15     321,37     16     185,09       20     310,355     NOV 05     235,22     20     225,87     15     184,80       30     316,55     NOV 05     252,265     31     225,22     25     184,80       31     316,37     25     25,175     15     224,177     NOT     16     188,80       31     36,37     25     250,00     20     222,218     20     188,80       31     316,37     D5     250,00     20     222,218     20     188,80       31     316,37     D5     251,00     30     220,82     25     186,46       31     316,37     75     250,00     25     218,46     31     186,55       31     316,30     25     240,00	25	323.14	30	255.25	15	225.87	10	186.83
10     121     231     23     22     26     05     25     186.00       20     320.07     25     24.00     10     285.02     00     15     186.00       20     320.07     25     24.00     10     285.02     25     255.05     20     184.85       10     316.50     10     255.26     25     255.05     20     184.37       115     317.38     20     252.38     JUN 05     224.47     31     185.40       20     316.30     10     255.00     223.07     10     185.40       31     36.31     02     251.00     30     223.07     10     186.40       20     313.60     25     250.00     10     219.46     DEC 05     186.40       21     313.30     12.25     250.00     10     219.46     DEC 05     186.50       22     313.40     25     20.00     10     219.46     DEC 05     186.50       21	31							
20     320.07     29     241.04     10     226.02     00     168.14       25     320.00     31     253.64     15     225.87     15     188.11       30     319.55     NOV 05     253.22     20     225.23     25     36     20     184.75       10     318.50     15     226.45     31     225.22     25     31     25     25     31     87.97     18     81.97     81.93     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90     18.90	10	321.37	15	254.40	30	226.05	25	186.09
25     20.00     31     253.44     15     225.89     10     188.15       MAY 05     318.50     10     252.22     20     225.85     20     184.37       10     318.50     10     252.45     31     252.25     225.85     20     184.37       15     317.98     20     25.17     JUN 05     223.97     NOV 05     188.40       25     316.77     30     25.75     23.07     NOV 05     188.46       31     316.31     DEC 05     250.90     20     222.27     15     182.46       20     315.94     10     251.73     25     20.04     20     220.04     20     221.23     182.46     20     182.46     20     182.46     20     182.46     20     182.46     20     182.46     20     218.44     20     218.45     181.45     20     30.45     20     30.45     20     30.45     181.45     20     30.45     181.45     20     181.45								
MAY     05     316.50     10     252.20     25     225.86     20     184.75       10     318.50     15     224.57     31     188.89       20     317.36     25     252.37     10     223.37     10     188.89       20     317.36     25     252.17     10     223.97     10     188.40       31     316.31     DEC 05     250.90     20     222.1.42     25     260.00     20     221.34     25     260.00     210.86     05     188.40       20     313.30     25     250.00     10     219.46     10     181.45       30     312.26     JAM 05, 15.7     140.00     216.55     20     181.42       30     312.26     JAM 05, 15.7     249.48     20     216.55     301     1970     181.42       21     306.55     21     249.50     31     217.75     20     181.42       31     306.55     21     249.44     20 <t< td=""><td>25</td><td>320.00</td><td>31</td><td>2 53 .6 4</td><td>15</td><td>225.89</td><td>10</td><td>185.11</td></t<>	25	320.00	31	2 53 .6 4	15	225.89	10	185.11
Int     O     318.50     15     252.65     31     225.22     25     184.37       15     317.90     20     252.36     JUII 05     221.57     31     186.89       25     316.77     30     251.75     15     223.07     10     18.16       JUII 05     315.94     10     251.22     22     221.48     20     122.08       10     315.94     10     251.22     22     221.48     20     122.08       10     315.94     10     251.23     25     21.44     15     181.55       15     313.07     31     26     250.00     218.46     15     218.47     10     181.35       30     310.33     15     249.96     15     218.67     31     180.65       20     306.46     25     248.04     10     216.55     180.60       21     307.46     31     246.62     15     216.35     180.60       220     303.17								
		318.50	15	252.65	31	225.22	25	184.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							31 NOV 05	
JUL 05     15, 94     10     251, 23     25     221, 48     20     182, 88       15     314, 32     20     250, 44     JUL 05     220, 08     30     122, 56       20     313, 60     25     250, 00     10     219, 96     DEC     00     161, 60       25     313, 07     31     249, 98     15     218, 67     10     181, 35       30     310, 33     15     249, 98     15     218, 67     20     181, 15       300, 54     20     218, 44     10     181, 35     25     180, 78       20     308, 46     25     218, 77     10     180, 45     31     180, 45       21     308, 46     25     248, 74     10     218, 52     JAN 05, 197     10     180, 45       23     307, 40     31     246, 247     15     213, 45     160, 46       20     301, 17     28     248, 63     31     214, 57     25     160, 46       20		316.77	30	251.75	15	223.07	10	183.16
								182.16
20     313.00     25     250.00     10     219.46     DEC 05     181.60       25     313.07     31     249.96     15     218.67     10     131.35       30     312.26     JAN 05, 195.7     249.48     20     218.44     15     181.35       JUL 05     311.36     10     280.00     25     217.55     20     181.15       10     310.33     15     249.21     AUG 05     216.65     31     180.65       20     306.45     25     248.74     10     215.75     10     180.37       31     306.55     FEB 05     246.41     20     215.03     20     180.31       20     303.177     25     247.46     10     213.28     FEB 05     180.31       21     301.31.79     PAR 05     247.17     20     213.33     10     180.31       22     303.177     25     213.26     20     179.49       31     301.79     PAR 05     247.17 <td></td> <td></td> <td>15</td> <td>251.00</td> <td>30</td> <td>220.82</td> <td>25</td> <td>182.50</td>			15	251.00	30	220.82	25	182.50
25     31     26     13     07     31     249.96     15     218.44     15     181.42       JUL 05     311.36     10     250.00     25     217.35     25     180.78       15     309.54     20     249.21     AUG 05     216.52     JAN 05, 177     180.45       20     308.46     25     248.74     10     216.52     JAN 05, 170     180.45       25     307.80     31     248.62     15     215.72     15     180.14       AUG 05     305.53     10     248.14     25     215.02     180.60       20     303.17     25     27.76     10     213.82     FEB 05     180.60       25     302.53     28     247.76     15     213.42     31     10     180.31       25     302.453     28     247.77     20     213.14     15     180.05       311     301.79     48     26     20     213.77     28     179.68 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>								
30     312.26     JAN 05, 195 7     249.48     20     218.44     15     161.15       JUL 05     311.36     10     280.00     25     217.35     25     180.78       15     309.54     20     249.21     440 05     216.85     31     180.65       20     306.46     25     248.74     10     215.75     10     180.63       25     307.80     31     246.62     15     215.75     10     180.33       31     366.55     FEB 05     248.41     20     215.23     20     180.33       20     303.17     25     247.46     10     213.33     10     180.45       20     303.177     25     247.45     10     213.33     10     180.17       31     301.79     MAR 05     247.17     20     213.33     10     180.47       20     238.43     20     246.49     00     212.57     25     179.48       31     30.029     1								
10     310.33     15     249.50     31     217.35     25     180.76       20     308.46     25     248.74     10     216.52     JAB 05, 1970     180.45       25     307.80     31     286.62     15     215.75     10     180.45       31     306.55     FEB 05     248.41     20     215.22     15     180.14       AUG 05     305.53     10     248.03     31     214.57     25     180.60       10     304.23     15     248.03     31     214.24     31     10     180.61       20     303.171     25     247.76     10     213.82     FEB 05     180.31       25     302.53     28     247.17     20     213.34     15     180.05       31     301.79     MAR 05     247.17     20     213.26     20     179.94       10     300.29     15     247.17     20     213.77     26     179.50       20     298.64								
20     308.46     25     248.74     10     216.25     JAR 05, 1970     100.45       25     307.80     31     306.55     PED     05     248.41     20     215.22     15     180.14       AUG 05     305.53     10     248.14     20     215.22     15     180.37       20     303.171     25     248.03     31     214.24     31     180.45       20     303.171     25     247.46     10     213.42     PED     05     180.31       25     302.53     28     247.17     20     213.14     15     180.05       31     301.79     MAR 05     247.17     20     213.14     15     180.05       352     294.84     25     266.49     0CT     05     124.7     28     179.48       30     297.76     APR 05     246.49     0CT     211.97     16     177.96       30     297.76     APR 05     246.58     10     211.97					31			180.78
25     307.80     31     248.41     20     215.22     15     10       AUG 05     305.53     10     248.14     25     215.22     15     100.14       AUG 05     303.92     20     248.03     31     214.57     25     180.60       15     303.92     20     248.00     SEP 05     214.24     31     180.31       25     302.53     28     247.76     15     213.33     10     180.31       31     301.79     NAR 05     247.17     20     213.35     20     179.94       10     300.29     15     247.17     20     212.57     26     179.94       10     300.29     15     247.07     25     212.57     26     179.68       20     29.8.4     25     246.90     0CT 05     212.57     26     179.94       30     297.76     AFR 05     246.60     31     211.97     18     177.55       20     296.77     10							31	
AUG   05   30   23   10   248.14   25   214.57   25   180.60     15   303.92   20   248.03   31   214.57   25   180.60     20   303.17   25   246.00   SEP 05   214.24   31   180.45     20   303.17   25   247.16   10   213.63   FBB 05   180.31     25   302.53   28   247.17   20   213.43   15   180.05     31   30.179   MAR 05   247.17   20   213.46   20   179.68     10   300.29   15   247.17   20   213.26   20   179.68     20   298.84   25   246.49   10   212.37   MAR 05   178.98     30   297.76   APR 05   246.06   20   211.95   15   177.46     10   295.17   15   245.58   NOV 05   211.33   31   177.05     20   295.03   25   245.57   10   211.27   APR 05   177.17				248.62				180.37
10     10     10     214.57     25     180.60       15     303.92     20     248.00     SEP 05     214.24     31     180.45       20     303.17     25     247.76     10     213.82     FEB 05     180.31       25     302.53     28     247.76     15     213.33     10     180.17       360     290.53     301.44     10     247.07     25     213.26     20     179.94       10     300.29     15     247.12     30     212.90     25     179.46       20     298.64     25     246.90     0CT 05     212.57     28     179.30       20     298.64     25     246.90     10     212.37     HAR 05     178.98       20     295.77     10     214.56     02     211.97     10     178.57       30     297.76     APR 05     245.66     NOV 05     211.33     31     177.48       15     295.18     20     245.56 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
20     303,17     25     247,76     10     213,82     FEB 05     180,31       31     301.79     MAR     05     247.77     20     213,14     15     180,17       SEP 05     301.44     10     247.07     25     213,26     20     179,94       10     300.29     15     247,12     30     212,90     25     179,46       20     298,64     25     246,90     01     212,57     26     179,46       25     298,10     31     246,09     15     211,97     10     178,98       20     295,17     15     245,60     31     211,63     25     177,48       15     295,18     20     245,56     NOV 05     211,33     31     177,45       20     296,03     25     245,57     10     211,27     APR 05     177,17       21     295,18     20     245,57     30     210,13     25     177,17       20     296,07			15	248.03	31	214.57		180.60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						214.24	31 RPB 05	
31     301.79     MAR 05     247.07     20     213.14     15     180.05       SEP 05     301.44     10     247.07     25     213.26     20     25     179.94       15     299.45     20     246.49     0     01     212.37     28     179.30       20     296.64     25     246.49     10     212.37     MAR 05     177.96       30     297.76     APR 05     246.09     15     211.97     10     176.57       30     295.77     10     245.68     25     211.77     20     177.76       15     295.18     20     245.58     NOV 05     211.33     31     177.05       20     295.03     25     245.57     NOV 05     211.33     31     177.05       31     296.51     MAY 05     245.37     20     210.07     10     176.92       30     296.71     10     245.48     15     210.06     176.92       31     296.71								
10     300.29     15     247.12     30     212.90     25     179.68       15     299.45     20     245.90     0CT 05     212.57     28     179.30       20     298.64     25     298.10     31     246.09     15     211.97     10     178.98       25     298.10     31     246.06     20     211.95     15     177.45       30     297.76     APR 05     245.81     25     211.77     20     177.76       15     295.18     20     245.56     NOV 05     211.33     31     177.05       20     295.33     25     245.57     10     211.33     31     177.05       31     238.51     MAY 05     245.37     20     210.67     10     176.92       30     290.70     25     245.77     30     210.13     25     176.82       30     289.47     JUN 05     245.37     20     210.51     20     176.73       30	31							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
25     298.10     31     246.09     15     211.97     10     178.57       30     297.76     APR 05     246.06     20     211.95     15     177.95       0CT 05     256.79     10     245.81     25     211.77     20     177.76       10     256.17     15     245.56     31     211.63     25     177.48       20     295.03     25     245.57     10     211.27     APR 05     177.17       25     294.35     30     245.48     15     210.67     10     176.92       31     293.51     MAY 05     245.37     20     211.08     15     176.87       10     295.00     15     245.97     30     210.13     25     176.87       15     291.37     20     245.41     DEC 05     210.00     30     176.92       20     290.70     25     245.21     10     209.92     20     176.63       30     249.01     10	15							
30     297.76     APR 05     246.06     20     211.95     15     177.95       OCT 05     296.79     10     245.81     25     211.77     20     177.76       10     295.17     15     245.60     31     211.63     25     177.48       15     295.18     20     245.57     10     211.23     31     177.76       20     295.03     25     245.57     10     211.27     APR 05     177.17       25     294.35     30     245.48     15     210.87     10     176.95       10     292.67     10     245.97     30     210.51     20     176.82       15     291.37     20     245.97     30     210.13     25     176.82       20     290.70     25     245.21     10     209.92     MAY 05     176.92       21     291.37     JUN 05     244.38     20     209.00     176.93       30     298.47     JUN 05     244.3								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	2 97 . 76	APR 05	246.06	20	211.95	15	177.95
15     295.18     20     245.56     NOV     05     211.33     31     177.05       25     294.35     30     245.48     15     210.67     APR     05     177.17       25     294.35     30     245.48     15     210.67     10     176.92       31     295.51     MAX     05     245.37     20     211.08     15     176.87       10     292.07     10     245.19     25     210.51     20     30     176.87       20     290.70     25     245.21     DC     05     210.00     30     176.92       21     289.47     JUN<05								
25   294.35   30   245.37   20   210.67   10   176.92     NOV   05   292.67   10   245.37   20   210.61   20   176.82     NOV   05   292.67   10   245.57   30   210.13   25   210.01   25   210.01   25   210.01   25   210.00   30   176.82     15   291.37   20   245.51   10   20.92   260.70   25   245.21   10   20.92   MAY 05   176.92     20   290.70   25   245.21   10   20.92   MAY 05   176.63     30   289.47   JUN 05   244.32   20   209.00   15   177.06     DEC 05   289.00   10   243.57   25   209.12   20   176.13     10   287.81   15   240.94   31   209.45   25   175.63     31   288.05   20   242.54   JAN 05, 155   209.18   31   172.48     31   285.75   JUL 05   240.49 <t< td=""><td>15</td><td>295.18</td><td>20</td><td>245.58</td><td>NOV 05</td><td>211.33</td><td>31</td><td>177.05</td></t<>	15	295.18	20	245.58	NOV 05	211.33	31	177.05
31     298.51     MAY 05     245.37     20     211.08     15     176.87       NOV 05     296.67     10     245.19     25     210.51     20     176.82       10     292.00     15     245.57     30     210.13     25     176.85       15     291.37     20     245.41     DEC 05     210.00     30     176.99       20     290.70     25     245.21     10     209.92     MAY 05     176.92       25     289.73     31     244.62     15     209.04     10     176.63       30     289.47     JUN 05     243.57     25     209.12     20     176.13       10     287.81     15     243.05     31     209.45     25     175.63       15     286.96     20     242.54     JAN 05, 156     20.18     31     174.44       20     286.80     25     241.37     15     208.62     10     172.48       31     281.75     J								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	298.51	MAY 05	245.37	20	211.08	15	176.87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								176.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	2 91 .37	20	245.41	DEC 05	210.00	30	176.99
30     289, 47     JUN 05     244.3.8     20     209,00     15     177.06       DEC 05     289,00     10     243.57     25     209,12     20     176.13       10     287.81     15     243.57     25     209.45     25     175.63       15     286.96     20     242.54     JAN 05, 1959     209.18     31     174.64       20     286.80     25     241.86     10     208.84     JUN 05     173.75       25     285.31     30     241.17     15     208.62     10     172.48       31     283.75     JUL 05     240.04     25     208.20     20     170.82       10     282.50     15     239.40     31     208.17     25     169.95       15     281.55     10     240.04     25     208.20     20     170.82       10     282.50     15     239.40     31     208.17     25     168.26       25     280.93     2						209.92		
0     287: 81     15     216: 04     31     209: 45     25     175. 63       15     286: 96     20     212: 54     JAN 05, 1969     209: 18     31     174. 64       20     286: 96     20     212: 54     JAN 05, 1969     209: 18     31     174. 64       20     286: 96     20     214: 86     10     208. 84     JUN 05     173. 75       25     295: 31     30     241. 17     15     208. 62     10     172: 48       31     283. 75     JUL 05     240. 49     20     208. 39     15     171. 60       JAN 05, 1966     283. 15     10     240. 49     20     208. 39     155     171. 60       15     281. 46     20     238. 78     FEB 05     207. 76     30     168. 97       20     280. 93     25     238. 75     10     207. 76     30     168. 97       20     280. 72     31     237. 75     15     207. 70     15     166. 53	30	289.47	JUN 05	244.38	20	209.00		177.06
15     286.96     20     212.54     JAN 05, 196.9     209.18     31     174.64       20     286.80     25     241.88     10     208.84     JUN 05     173.75       25     285.31     30     241.17     15     208.62     10     172.48       31     283.75     JUL 05     240.049     20     208.33     15     171.60       JAN 05, 1966     28.15     10     240.04     25     208.20     20     170.82       JAN 05, 1966     28,15     10     240.04     25     208.20     20     170.60       JAN 05, 1966     28,15     10     240.04     25     208.12     20     170.82       20     280.93     25     238.76     FEB 05     207.76     30     168.97       20     280.93     25     238.24     10     207.83     JUL 05     168.26       25     280.72     31     237.75     15     207.28     10     167.57       FEB 25								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	286.96	20	242.54	JAN 05, 1969	209.18	31	174.64
j     283,75     JUL 05     240,49     20     208,39     15     171.60       JAN 05, 196     281,15     10     240,04     25     208,29     20     170.62       10     282,50     15     239,40     31     208,17     25     169,95       15     281,65     20     233,40     31     208,17     25     169,95       15     281,65     20     238,78     FEB 05     207.76     30     166,97       20     280,93     25     238,74     10     207,85     JUL 05     168,85       25     280,72     31     237,75     15     207,28     10     167,57       7EB     278,13     10     237,03     25     206,65     20     165,182       MAR 05     277,54     15     236,41     28     206,55     25     165,162       20     275,39     31     235,50     15     206,05     31     164,27       15     276,43     28								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			JUL 05	240.49	20	208.39	15	171.60
15     281.66     20     238.78     FEB     05     207.76     30     168.97       20     280.98     25     238.24     10     207.85     JUL 05     168.26       25     280.72     31     237.75     15     207.28     10     167.57       FEB 25     278.35     AUG 05     237.25     20     207.07     15     166.53       28     278.13     10     237.75     20     207.07     15     166.53       28     278.13     10     237.05     20     207.07     15     166.53       28     276.73     20     235.99     MAR 05     206.58     31     164.27       10     276.73     20     235.99     MAR 05     206.28     31     164.27       20     275.39     31     235.50     15     206.06     10     163.35       25     274.92     SEP 05     235.50     15     206.51     15     1562.92       31     274.29<								
20     280.93     25     238.24     10     207.83     JUL 05     168.26       25     280.72     31     231.75     15     207.28     10     167.57       FEB 25     278.35     AUG 05     237.25     20     207.07     15     166.53       28     278.13     10     237.03     25     206.65     20     165.82       MAR 05     277.54     15     236.41     28     206.55     25     165.15       10     276.73     20     235.99     MAR 05     206.28     31     164.27       20     275.39     31     235.50     15     206.06     10     163.35       25     274.92     SEP 05     235.19     20     205.61     15     162.92       20     275.39     31     235.50     15     206.06     10     163.35       25     274.92     SEP 05     235.19     20     205.61     15     162.92       31     274.29     1	15		20	238.78	FEB 05	207.76	30	168.97
FEB     25     278.35     AUG     05     237.25     20     207.07     15     166.63       28     278.13     10     237.03     25     206.65     20     165.82       HAR 05     277.54     15     236.41     28     206.65     25     165.15       10     276.73     20     235.99     MAR 05     206.28     31     164.27       15     276.00     25     235.86     10     206.07     AU0 05     163.82       20     275.39     31     235.50     15     206.06     10     163.35       25     274.92     SEP 05     235.19     20     205.61     15     162.92       31     274.29     10     234.82     25     205.61     15     162.92       31     274.29     10     234.82     25     205.57     20     162.78       APR 05     273.69     15     234.94     31     204.95     25     162.61       10	20							
28     278.13     10     237.03     25     206.65     20     165.82       MAR     05     277.54     15     236.41     28     206.55     25     165.15       10     276.73     20     235.99     MAR     05     206.28     31     164.27       15     276.00     25     235.88     10     206.07     AU0     05     163.82       20     275.39     31     235.50     15     206.06     10     163.35       25     274.92     SEP     05     235.19     20     205.61     15     162.78       31     274.29     10     234.82     25     205.57     20     162.78       34PR     05     273.69     15     234.29     31     204.95     25     162.78       31     0     234.29     APR     05     204.71     31     162.26       30     273.69     15     234.29     APR     05     204.71     31	FEB 25	278.35		237.25	20	207.07	15	166.53
10     276.73     20     235.99     MAR     05     206.28     31     164.27       15     276.00     25     235.88     10     206.07     AUG     05     163.82       20     275.39     31     235.50     15     206.06     10     163.35       25     274.92     SEP     05     235.19     20     205.61     15     162.92       31     274.29     10     234.82     25     205.57     20     162.78       APR     05     273.69     15     234.54     31     204.96     25     162.78       10     276.63     20     234.29     APR     05     204.71     31     162.25	28	278.13	10					
20     275.39     31     235.50     15     206.06     10     163.35       25     274.92     SEP 05     235.19     20     205.61     15     15     152.27       31     274.29     10     234.82     25     205.57     20     162.78       APR 05     273.69     15     234.54     31     204.96     25     162.71       10     272.63     20     234.29     APR 05     204.71     31     162.25	10	276 .73	20	235.99	MAR 05	206.28	31	164.27
25     274,92     SEP     05     235,19     20     205,61     15     162,92       31     274,29     10     234,82     25     205,57     20     162,78       APR 05     273,69     15     234,54     31     204,95     25     162,61       10     272,63     20     234,29     APR 05     204,71     31     162,25				235.88		206.07 206.06		
APR 05     273.69     15     234.54     31     204.96     25     162.61       10     272.63     20     234.29     APR 05     204.71     31     162.25	25	274.92	SEP 05	235.19	20	205.61	15	162.92
10 272.63 20 234.29 APR 05 204.71 31 162.25				234.82				
15 272.47 25 233.95 10 204.60 SEP 05 161.91	10	272.63	20	234.29	APR 05	204.71	31	162.25
	15	272.47	25	233.95	10	204.60	SEP 05	161.91

10V 05 10 15 20		157.48 156.98 156.90 156.26	1	0 5 0 5	132.64 132.64 132.38 132.20	20 25 31 SEP 05		113.50 112.63 111.98 111.71	31 FEB 05 10	91	.64 .65 .70
25		155.63	3	0	132.56	10		111.32	15	91	.75
30 EC 05		155.38 155.45		0	132.27 132.23	15 20		110.66	20 25	91	. 83
10 15		154.88 154.70	2	5	132.26 132.11	25 30		109.68 109.42	28 MAR 05	91	.96 .68
20 25		154.30 154.32		5 1	131.95 131.79	OCT 05 10		109.00 108.50	10 15	91	.44 .63
31	1971	153.98	JUNO		131.52 130.98	15 20		108.01 107.24	20 25		.64
10 15		153.63 153.77	1	5	130.70 130.17	25 31		106.32	31 APR 05	91	.44
20		153.23	2	5	129.70	NOV 05		106.08	10 15	91	.57
25 31		153.10 152.57	JUL O	5	129.22	15		105.43	20	91	.62
EB 05 10		152.15 152.08	1	0 5	128.79 128.58	20 DEC 05		104.88	25 30	91	.30
15 20		151.50 150.88		0 5	128.31 128.39	10 15		103.79 103.53	MAY 05 10	90	.10 .99
25 28		150.75 150.67	3 AUG 0	1 5	128.46 128.48	20 25		103.26 102.46	15 20	90 90	.64 .06
AR 05 10		150.32	1	0 5	128.55 128.90	31 JAN 05,	1974	102.06	25 31	89	.84
15		150.19	2	0 5	129.08	10	.,,,,	101.76	JUN 05 10	88	.40
20 25		149.81 149.43	3	1	129.35	15 20		101.41	15	87	.13
31 PR 05		149.07 149.28		0	129.54 129.80	25 31		101.31 101.20	20 25	85	.31
10 15		148.95 148.58		5 0	130.11 130.38	FEB 05 10		100.77 100.90	30 JUL 05	83.	. 43 . 42
20 25		148.31 147.94		5 0	130.42 130.90	15 20		100.55 99.91	10 15		.48 .33
30 AY 05		148.09	OCT 0		131.04	25 28		100.09 99.82	20 25	80	.53
10 15		147.54	1	5	131.18 130.70	MAR 05 10		99.46 99.30	31 AUG 05	79.	.14
20		146.53	2	5	130.60	15		99.03 98.55	10 15	78.	
25 31		146.27 145.88	NOV		130.38 130.01	20 25		98.32	20	77.	.96
UN 05 10		145.32 144.68		0 5	129.78 129.63	31 APR 05		97.82 97.85	25 31	76	.30 .98
15 20		144.41 143.60		0 5	129.49 129.58	10 15		97.46 97.71	SEP 05 10		.98
25 30		142.77		0	129.58	20 25		97.38 97.31	15 20	76.	.79
UL 05		141.05	1	0	129.17	30		97.17	25	76.	.74
10 15		140.83 139.81	2	5 0	129.60 129.41	MAY 05 10		96.58 96.24	30 OCT 05	76.	.71
20 25		139.32 138.75	3	5 1	129.58 129.40	15 20		95.86 95.69	10 15	77.	.95 .19
31 UG 05		138.60 138.51		5, 1973 0	129.53 129.65	25 JUN 10		95.11 92.82	20 25	77.	.10 .22
10 15		138.09 138.11		5 0	130.08 129.82	15 20		92.08 91.41	31 NOV 05		.82 .85
20 25		137.90 137.82		5 1	130.52 130.13	25 JUL 05		90.93 89.83	10 15		.35
31 EP 05		137.31	FEB 0		130.75 130.68	10 15		89.55 89.51	20 25	76.	.24
10		137.23	1	5	130.96 131.25	20		89.45 89.25	30 DEC 05	76.	.01
15 20		137.31 136.92	2	5	131.22	25 31		89.17	10	75	.42
CT 20 25		136.22 135.78	MAR O		131.03	AUG 05 10		89.14 89.27	15 20	75 -	.57 .46
31 OV 05		135.65 135.55		0 5	130.98 131.11	15 20		89.36 89.38	25 31	74.	.17
10 15		135.68 135.10		0 5	130.85 131.35	25 31		89.72 90.00	JAN 05, 1 10		.68
20 25		135.34		1	131.50 131.87	SEP 05 10		90.29 90.44	15 20	74.	.77
30 EC 05		134.93	1	0 5	132.22	15		90.48 90.34	25 3 1	74.	.35
10		135.08 134.94	2	0	132.77	25		90.46	FEB 05	74.	.13
15 20		134.90 135.22	3	5	133.34 133.22	30 OCT 05		90.71 90.55	10 MAR 03	74.	.14
25 31		135.09 135.27		0	133.11 133.11	10 15		90.68 90.94		977 79	.58
AN 05, 10	1972	135.46 135.23	2	5	133.28 132.52	20 25		90.77 90.99		978 95.	.87
15 20		135.54 135.26	2	5	131.25 129.86	31 NOV 05		90.76 90.78	OCT 12 MAR 20, 1	979 91.	.58 .25
25 31		135.23 135.25	0 אוטע 1	5 0	129.00 127.48	10 15		90.86 90.66	JUL 24 OCT 10		.48
EB 05 10		135.17		5 0	126.06 124.77	20 25		90.90 90.78	OCT 31 MAR 14, 1		.75
15 20		135.06	2	5	123.20	30 DEC 05		90.85 90.72	OCT 13 MAR 26, 1	47.	.57 .14
25		134.84	JUL O	5	120.59	10		90.77	OCT 07	54.	.34
29 AR 05		134.63 134.67	1	0 5	119.82 118.77	15 20		90.82 90.92	MAR 26, 1 OCT 05	44.	.73 .82
10 15		134.40 134.14	2	0 5	117.88	25 31		90.91 91.07	MAR 23, 1	983 45.	.04
D-44- 4	) 8BBD	- 1 ALT.	3,760								
UL 24, UG 28	1979	73.32 S 70.35 S		1, 1980 4, 1981	61.48 S 61.95 S	APR 25, May 22	1981	63.60 S 63.41 S	AUG 25, 1 26	981 63. 63.	.90 .96
EP 29		70.61 S	FEB 2 MAR 2	6	62.83 S	JUN 24		63.24 S 63.22 S	29 0CT 02	64.	.27

WELLS IN ARIZONA

(A-41- 8)14BCB-	- 1 ALT.	4,120												
OCT 00, 1957	880 R	JAN 24,	1981	496	S	FEB 09,	1 981	492.99	S	APR	13,	1983	484.70	S
SEP 26, 1979	510 T													
(A-41- 8)23DAC-	-1 ALT.	3,917											<b>1</b>	_
SEP 30, 1964	721 R	SEP 30,	1969	620	R	APR 18,	1974	497 495	R R	NOV DEC		1978	415 414	R R
OCT 26	720 R 719 R	NOV 05 DEC 04		617 615	R R	MAY 15 JUN 13		495	R			1979	413	R
NOV 30 DEC 28	719 R 718 R	23		614	R	JUL 17		491	R	FEB			413	R
JAN 25, 1965	717 R		1970	6 12	R	AUG 16		489	R	MAR			413	R
FEB 23	716 R	FEB 20		609	R	SEP 18		479	R	APR			413 411	R R
MAR 29	716 R	MAR 24		606 604	R R	OCT 17 NOV 14		477 475	R R	MAY JUN			411	R
APR 28 May 17	716 R 715 R	APR 30 May 28		604 601	R	DEC 18		473	R	JUL			410	R
JUN 15	714 R	JUN 26		598	R	JAN 15,	1975	471	R	AUG			40 9	R
JUL 12	713 R	JUL 29		596	R	FEB 19		469	R	SEP			407	R
AUG 09	712 R	AUG 25		593	R	MAR 19		467. 465	R R	OCT NOV			406 406	R R
SEP 20	711 R 710 R	OCT 01 28		590 587	R R	APR 16 MAY 14		464	R	DEC			405	R
OCT 18 NOV 16	709 R	NOV 23		584	R	JUN 11		460	R	JAN		1980	403	R
DEC 13	708 R	DEC 29		580	R	JUL 16		460	R	FEB			402	R
JAN 12, 1966	708 R		1971	577	R	AUG 13		458	R	MAR	-		400 400	R R
FEB 07	706 R	FEB 23		574	R R	SEP 18 OCT 15		455 454	R R	A PR May			398	R
MAR 09 APR 15	706 R 705 R	MAR 25 APR 27		571 568	R	NOV 19		452	R	JUN			3 97	R
MAY 16	703 R	MAY 27		565	R	DEC 17		450	R	JUL	17		396	R
JUN 13	703 R	JUN 29		562	R	JAN 14,	1 976	449	R	AUG			393	R
JUL 08	701 R	JUL 27		559	R R	FEB 11 Mar 31		448 444	R R	SEP OCT			392 390	R R
AUG 10 Sep 07	700 R 699 R	AUG 27 SEP 30		557 564	R	APR 14		443	R	NOV			389	R
OCT 17	698 R	OCT 22		562	R	MAY 20		441	R	DEC	16		388	R
NOV 17	696 R	NOV 18		560	R	JUN 16		441	R			1981	387	R
DEC 12	695 R	DEC 23		557	R	JUL 22		438	R	FEB			386 385	R R
JAN 09, 1967	694 R	JAN 19, FEB 17	19/2	553 552	R R	AUG 17 SEP 15		436 433	R R	MAR A PR			384	R
MAR 08 Apr 11	690 R 688 R	MAR 16		549	R	OCT 13		433	R	MAY			3 82	R
MAY 15	687 R	APR 18		546	R	NOV 22		431	R	JU N			382	R
JUN 15	684 R	MAY 17		543	R	DEC 15		430	R	JUL			381	R
JUL 10	682 R	JUN 15		541	R	JAN 21,	1977	428	R	AUG	14 28		380 378.1	R L
AUG 09	680 R 677 R	JUL 21 AUG 15		53 8 536	R R	FEB 17 Mar 16		430 426	R R	SEP			379	R
SEP 19 OCT 06	677 R 676 R	SEP 21		534	R	APR 13		425	R	OCT			379	R
NOV 07	674 R	OCT 18		532	R	MAY 18		42 4	R	NOV			379	R
29	673 R	NOV 15		530	R	JUN 16		423	R	DEC		1982	378 378	R R
JAN 03, 1968	669 R 667 R	DEC 15 JAN 19,	1 07 2	528 525	R R	JUL 14 AUG 16		422 421	R R	FEB		19042	382	R
29 FEB 26	667 R 665 R	FEB 13	1915	524	R	SEP 19		420	R	MAR			377	R
MAR 28	663 R	MAR 14		522	R	OCT 19		420	R	A PR			375	R
APR 30	660 R	APR 18		520	R	NOV 16		419	R	MAY			375	R
JUN 12	658 R	MAY 16		519	R	DEC 13	1 07 8	419 418	R R	JUN JUL			376 375	R R
NOV 01 DEC 27	652 R 642 R	JUN 15 JUL 18		517 515	R R	JAN 17, FEB 15	1978	418	R	AUG			375	R
JAN 27, 1969	639 R	AUG 16		513	R	MAR 09		417	R	SEP	17		374	R
FEB 27	638 R	SEP 19		511	R	APR 13		417	R	OCT			374	R
MAR 27	635 R	OCT 16 NOV 14		510 508	R R	MAY 19 JUN 14		417 417	R R	NOV DEC			372 372	R R
APR 21 May 27	633 R 630 R	DEC 14		506	R	JUL 12		416	R			1983	371	R
JUL 01	627 R	JAN 16,	1974	505	R	AUG 16		415	R	FEB			370	R
17 AUG 22	626 R 623 R	FEB 13 Mar 13		502 500	R R	SEP 14 OCT 17		415 414	R R	MAR	15		370	R
(A-42- 8)32CDD		4,100				•								
OCT 15, 1972	604 R	SEP 26,	1973	553	R	JUL 22,	1 976	543	R	JUN	10,	1 981	510	R
OCT 21	582 R					,	- • -							
(A-42- 8)35DAB	- 1 ALT.	3,736												
JUL 00, 1958	395 R	OCT 31,		73.43		JUN 24,	1981	67.54			•	1981	70.52	
AUG 07, 1979	73.10 S	MAR 24,	1981	66.80 67.11		JUL 29 AUG 25		68.92 68.45		NOV	14		71.10	5
29 SEP 26	72.20 S 73.15 S	APR 25 May 22		67.18		AUG 25 29		68.75						

(A-42- 8)36 CBC	- 1 AL'	3,735									
JUL 02, 1964	388 1	DEC 04,	1969	184	R	OCT 17,	1974	97	R	AUG 15, 197	968 R
AUG 03	370			184	R	NOV 14		97	R	28	67.44 S
SEP 08	359		1970	184	R	DEC 18		97	R	SEP 19	69 R
OCT 05	353	FEB 20		184	R	JAN 15,	1975	99	R	26	68.77 S
NOV 02	347			182	R	FEB 19		100	R	OCT 17	69 R 70 R
DEC 07	341 1			183	R	MAR 19		100 99	R R	NOV 16 DEC 14	70 R 71 R
JAN 04, 1965	337			181	R R	APR 16 May 14		99	R	JAN 15, 198	·
FEB 01	333 I 329 I			172 164	R	JUN 11		93	R	FEB 15	71 R
MAR 01 Apr 05	329 1 325 1			163	R	JUL 16		83	R	MAR 14	69 R
MAY 03	322			163	R	AUG 13		81	R	APR 16	69 R
JUN 01	319			16 1	R	SEP 18		81	R	MAY 14	65 R
JUL 12	311	29		159	R	OCT 15		83	R	JUN 17	55 R
AUG 09	304 1			157	R	NOV 19		83	R	JUL 17	40 R
SEP 07	299			155	R	DEC 17	4.006	80	R	AUG 13 SEP 22	53 R 55 R
OCT 04	2 95		1971	156	R		1 976	84 85	Ř R	OCT 15	58 R
NOV 01	291			153 152	R R	FEB 11 MAR 31		82	R	NOV 13	58 R
DEC 13	284 280			152	R	APR 14		82	R	DEC 16	62 R
JAN 12, 1966 FEB 07	277			149	R	MAY 20		86	R	21	61.18 S
MAR 09		JUN 29		141	R	JUN 23		83	R	JAN 15, 198	1 62 R
APR 06	271			139	R	JUL 22		82	R	24	62.00 S
MAY 02	26 8	SEP 30		139	R	AUG 17		82	R	FEB 13	63 R
JUL 08	259	0CT 22		139	R	SEP 15		84	R	26	63.40 S
AUG 10	256			138	R	OCT 13		81	R	MAR 16 24	63 R 63.59 S
SEP 07	255	-	1070	140	R	NOV 22 DEC 15		84 86	R R	APR 15	64 R
OCT 03	254 253		1912	140 141	R R		1977	88	R	25	63.92 S
31 DEC 12	253 252			13.9	R	FEB 17		90	R	MAY 15	64.00 R
JAN 09, 1967	251			137	R	MAR 16		91	R	22	63.97 S
FEB 07		MAY 17		138	R	APR 13		92	R	JUN 15	63 R
MAR 08		JUN 15		136	R	MAY 18		90	R	24	63.95 S
APR 11	250	JUL 21		133	R	JUN 16		89	R	JUL 15	62 R
MAY 01	-	AUG 15		135	R	JUL 14		87	R	29	62.80 S
JUN 02		SEP 21		139	R	AUG 16		84	R	AUG 14	65 R 65.47 S
JUL 10		OCT 18		140	R	SEP 19		100 102	R R	24 29	66.00 S
AUG 09		NOV 15 DEC 15		138 138	R R	OCT 17 NOV 16		102	R	SEP 15	67 R
28 OCT 06		JAN 19	1 973	139	R	DEC 13		105	R	OCT 02	67.84 S
NOV 07		FEB 13	, , , , , , , , , , , , , , , , , , , ,	141	R		1978	108	R	15	68 R
29	-	MAR 14		142	R	FEB 15		111	R	NOV 14	68.37 S
JAN 03, 1968		R APR 18		143	R	MAR 09		113	R	16	71 R
29	-	R MAY 16		146	R	APR 13		114	R	DEC 16	69 R
FEB 26	•	JUN 15		133	R	MAY 19		112	R	JAN 18, 198	
MAR 27	-	JUL 18		120	R	JUN 14		105	R	FEB 16 MAR 16	75 R 75 R
APR 30	-	AUG 16		115	R	JUL 12		96 95	R R	APR 15	75 R
JUN 12		SEP 19		112 109	R R	AUG 16 SEP 14		95 97	R	MAY 14	72 R
OCT 31 DEC 27		R OCT 16 R NOV 14		109	R	OCT 17		99	R	JUN 15	65 R
JAN 27, 1969		DEC 14		105	R	NOV 17		102	R	JUL 15	58 R
FEB 27		JAN 16	1974	104	R	DEC 15		104	R	AUG 13	56 R
MAR 27		FEB 13		103	R	JAN 18,	1979	107	R	SEP 17	56 R
APR 21	212	MAR 13		102	R	FEB 15		109	R	OCT 15	55 R
MAY 23		APR 18		102	R	MAR 15		109	R	NOV 17	55 R
JUL 01		MAY 15		99	R	APR 16		99 05	R R	DEC 15 JAN 14, 198	56 R 3 57 R
17 AUG 22		{ JUN 13 { JUL 17		93 90	R R	MAY 16 JUN 14		95 86	R	FEB 16	58 R
SEP 30		AUG 16		90 93	R	JUL 13		71	R	MAR 16	58 R
NOV 05		SEP 18		95 96	R	AUG 07		67.82			

# Station number or name: See "Numbering system for hydrogeologic-data sites", p. 5, and figure 2. Site: GW, ground water; LX, lake; SP, apring; SW, stream. Geologic unit: 220MVJO, Navajo Sandstone; 220GLNC, Olen Canyon Group; 221ENRD, Entrada Sandstone.

_____

.

STATION NUMBER OR NAME	SITE	GEO- LOGIC UNIT	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	ALKA- LINITY FIELD (HG/L AS CAC03)	HARD NESS (HG/L AS CACO3)	CALCIUN DIS- Solven (MG/L AS CA)
(C-41-3) 4BCA-1 (C-43-1) 3BAC-1 (D-33-4)35BBD-1 36AB-1 (D-33-5)3IADC-1	GW GW GW GW	22 ONV J O		415 1520 415 640 310	7.6 7.1 7.2 7.4 8.2	12.5 16.5 11.5 12.5 17.0	   	220 390 200 310 150	39 91 62 59 37
(D-34-4) 1CAD-1 (D-35-3) 6ABA-1 (D-43-1) 2BDD-1 (D-43-2)13DCD-1 (A-39-4) 6CBB-1	GW GW GW GW	220NV JO 221EN RD 220NV JO 221EN RD 220GL NC	81-09-01 81-09-03 79-09-26 81-06-18 76-08-05	430 810 960 600 500	7.4 7.5 7.6 8.8 7.6	12.5 13.5 16.0 20.0 12.0	120 196	210 320 440 11 260	52 81 98 2.7 63
(A-40- 5)12DDB- 1 33CBC- 1 (A-41- 4)28ADA- 1 (A-41- 8) 4DDA- 1	GW GW GW GW	220NV JO 220NV JO 220GLNC 220NV JO	76-08-05 76-08-05 76-08-06 74-03-03 ¹ 77-10-18	250 300 275 1060 1150	8.2 8.0 7.7 7.7 7.2	12.0  16.0 24.0	87 115 152 266 250	100 130 180 7 390	22 29 43 1.0 81
148CA- 1 148CB- 1 23DAC- 1	GW GW GW	220NV JO 220NV JO 220NV JO	81-08-31 77-10-19 81-04-02 58-03-10 ² 58-03-10 ²	1160	7.3 7.7	23.0	230 253 127	350 400 380 440 170	75 83 84 97 39
23DCD- 1 (A-42- 8)32CDD- 1	GW GW	550MA10	81-08-29 58-03-10 ² 81-08-28 73-03-23 ¹	185  295 950	9.1  7.9 7.7	20.0	120	64 160 120 420	7.6 36 29 93
35DAB- 1 35DAB- 2	GW GW	550MA10 550MA10	73-08-15 ¹ 77-09-09 ¹ 77-09-09 ¹ 81-06-11 58-08-203 58-12-04 ¹	1000 1190 1350 	7.4  7.0  8.3		230 250 381 407	450  460 450 450 450	118 105 96 112 110
			72-04-27 ² 77-04-05 ² 77-09-13 ² 77-10-18 77-12-05 ¹	1540 1610 1790 2000 1800	7.9 7.4 7.3	 24.0 24.0	276 292 286 300	500 460 540 490	124 118 138 120
35DAD- 1 35DCD- 1	GW .	250MA10 550MA10	81-04-22 58-08-203 76-11-00 ² 77-09-13 ² 77-10-18	1280  1430 1610 1600	7.0 7.3 7.6 7.5 7.3	22.5   24.0	381 224 281 300	480 470 420 540 550	120 119 99 133 130
36 CBC- 1 36 CCC- 1 36 CCC- 2	GW GW GW	55 ONA 10 55 ONA 10 55 ONA 10	77-12-05 ¹ 58-08-203 58-12-05 ¹ 68-05-221 72-04-27 ²	1650 2050 830	 7.8 7.5 8.3	21.0	332 361 189 154	620 560 330 330	 156 140 81 78
			76-11-00 ² 77-04-05 ² 77-09-13 ² 77-10-18 77-12-05 ¹	880 880 990 950 1000	8.0 7.6 7.1 7.5	 21.0 21.0	1 16 152 144 16 0	250 270 300 290	54 66 71 67
(C-NO- 1)23BBA-SI ESCALANTE R AB MAMIE CR AT (D-35- 4) 7BDD ESCALANTE R AB BOULDER CR AT (D-35- 5)22BBB BOULDER CREEK AT MOUTH AT (D-35- 5)22BBB ESCALANTE R AB TRIB AT (D-37- 7) 6DCD	SP SW SW SW	220MA 10	79-09-25 81-10-21 81-10-21 81-10-21 81-10-22	2 80 850 6 80 2 80 510	7.5 8.4 8.5 8.6 8.5	16.0 5.5 12.5 10.0 13.5	110	130 300 280 130 220	32 64 65 35 53
PARIA R AB SHEEP CR AT (C-39- 2)17BDB PARIA R AB DEER CR AT (C-40- 2) 4AAB PARIA R 3 MI 30 HT 89 AT (C-43- 1)15AAC PARIA R AB KAIBAB GULCH AT (C-44- 1)12CCA ARE POWELL AT (A-42- 8)36CAB	SW SW SW LK		81-10-23 81-10-23 81-10-23 81-10-23 77-10-18 ¹	2000 1730 1800 1750 800	8.3 8.4 8.4  8.5	5.0 8.0 18.0 7.5 24.0		710 640 670 670 280	150 130 140 140 68
COLORADO R AT LEES FERRY, AZ	SW		77-01-04 77-01-18 77-02-03 77-02-17 77-03-03	815 820 880	8.0 8.3 7.5	8.0 9.0 9.0 8.0 9.0	131 131 140	270 280 300	67 69 75
			77-03-16 77-04-04 77-04-20 77-05-03 77-05-20	940 940	8.0 8.0	8.0 11.0 15.0 12.0 11.0	140 139	300	74 79
· .			77-06-01 77-06-15 77-07-05 77-07-20 77-08-09	945  890  950	8.0 7.9 7.9	11.0 11.0 11.0 10.0 10.0	140 130 140	300 290 300	74 74 74
			77-09-07 77-09-12 77-10-06 77-11-04 77-12-07	905  890 845 870	7.9 7.6 7.6 7.8	10.0 9.5 9.0 9.0 8.0	130 130 130 140	2 90 270 2 80 3 10	73 65 71 81

Prom files of U.S. Geological Survey, source of data unknown.
Analysis by Arizona State Department of Health.
Analysis by Arizona Testing Laboratories, Phoenix, Arizona.

MAGNE- SIUM DIS- SOLVED (HG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA)	POTAS- SIUM DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	ALKA- LINITY LAB (MG/L AS CACO3)	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE DIS- SOLVED (MG/L AS CL)	FLUO- RIDE DIS- SOLVED (MG/L AS F)	SILICA DIS- SOLVED (MG/L AS SIO2)	SOLIDS RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOL IDS SUM OF CONSTI- TUENTS DIS- SOLVED (MG/L)	NITRO- GEN NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN NO2+NO3 DIS- SOLVED (MG/L AS N)
29 38 11 40 14	6.4 190 6.2 18 6.9	1.8 7.1 2.8 7.3 4.4		150 120 190 310 140	8.2 21 23 24 1.7	28 590 11 19 7.0	4.1 33 6.1 7.5 4.1	0.0 1.0 .2 .6 .6	8.1 9.2 23 32 27		210 1000 240 370 190		10.0 .09 .61 1.9 .06
19 27 46 1.1 24	9.4 55 36 140 12	3.4 3.9 4.3 1.4 2.6	239	190 200 26 0	15 12 5.8 .8 9.5	21 200 380 68 42	15 17 11 7.5 26	.5 .5 .2 .3 .1	30 13 9.5 10 10	704	260 520 660 390 300		.54 .67 .59 .11 4.0
11 13 17 1.0 45	6.4 14 7.1 264 110	1.6 2.0 2.0 	106 140 185 324 300		1.1 2.2 5.9 10 30	13 19 14 170 250	8.8 15 14 95 91	.1 .1 .6 .5	9.2 10 10  13	126 165 205 	120 170 200 630 750		3.0 2.5 3.6 
38 46 42 48 18	110 90 95 	13 9.2 11 	280 308 155	220 220 	24 8.9  	250 250 250 260 70	82 92 89 88 7.0	.5 .3 .3 .0	12 13 12		710 720 720 790 230	.68 1.10	.55 .65 .60 
11 18 12 45 38	11 2.1 76 90	3.3	146  258 280	82  	.1 2.0 8.2 18	<5.0 66 18 260 188	34 7.0 20 84 98	.0 .1 .4 .3 .3	.3 11 		97 220 150 660 600	1.20	.05 1.3 
48 53 42 42	109 120 	7.3	3 05 46 4 4 80	270 	52 3.8	272 280 254 160	124 130 140 130	.2 .2 .5	12 17 18	903 	85 0 12 00 83 0	.45   	.38
46 39 48 47 	217 218 220 270 	21	336 356 349 360		6.7 23 29	455 470 520 570 	150 119 137 140 	.5 .5 .7	17	11 18 1324 136 0	910  1400 	.68 .45 	.63
44 42 42 50 54	210 162 162 150	18  20	46 4 273 343 370	230   	50 37 11 17 29	520 300 455 440 450	150 152 140 106 110	.7  .4 .5 .5	16 1 8  16	1000 1211	1200 1300  1100	 .68 .90	.64   .99
55 51 32 32	  150 94	  13	405 440 230 188		 11 12 1.5	800 540 340 225	188 160 81 62	 .5 .8 .7	8.0 16 15	842 	2000 1400 830 530		
29 26 30 31	88 99 95 97	  11	142 185 176 190		2.3 7.4 22 9.5	210 250 276 270	60 54 54 59	.7 .7 .8 .8	 14 	584 604 688 	6 40	. 90 .6 8 	 -6 4
12 34 28 11 20	3.4 59 42 6.1 24	3.0 3.1 3.2 1.9 2.8		220 170 120 150	6.7 1.7 1.0 .6 .9	23 120 130 15 84	5.2 48 45 4.4 22	.2 .3 .1 .2	12 20 20 26 21	162   	16 0 4 80 4 40 170 320		.18 .54 .24 .09 .16
82 75 78 76 26 25	160 140 150 150 70 72	5.8 5.6 6.3 6.0 4.0 3.5	  150 16 0	190 180 150 130	1.8 1.4 1.1 	770 690 800 780 240 230	27 23 26 34 50 53	.3 .3 .3 .3 .3 .3 .3	11 11 12 11 7.5 7.4	 543 548	1300 1200 1300 1300 540 540		.63 .57 .53 .53 .15
25 27	71 71 81	3.7	16 0		1.3	210	58 58 65	.3 .3 .3	7.6	548 541 623	530		.55 .46 .61
29 28 	89 86  82	3.9 4.0 	170 170  170		2.7 2.7  2.7	250 26 0 250	62 62 62	-3 -3	7.3 8.1 	635 633	6 00 6 10		•53 •58
27 26 29 25	82 82 88 72	3.6 3.6 3.6	170 160 170 160		3.2 3.4 3.2	250 250 250 240	60 61 47	.2 .3 .3 .4	8.0 8.2 8.3	6 13 6 02 6 14 575	590 580 600 550		.55   .65
25 24 27	73 77 76	3.5 3.6 3.8	16 0 16 0 17 0		6.4 6.4 4.3	230 230 260	49 52 52	-3 -3 -1	8.0 8.1 8.2	543 566 590	530 550 550 590		   

Table 15Wate	er levels of Lak	e Powell at Glen	Canyon Dam,	1963-82
[ Wa	ter levels are	in feet above sea	a level.]	

DATE	WATER Level	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
0							26 11 2 6 5
MAR 31, 1963	3233.40	APR 30, 1968	3514.04	MAY 31, 1973	36 16 .52	JUN 30, 1978	
APR 30	3282.20	MAY 31	3522.24	JUN 30	3636.36	JUL 31	3652.29
MAY 31	3342.50	JUN 30	3547.00	JUL 31	3644.05	AUG 31	3645.80 3640.17
JUN 30	3370.50	JUL 31	3546.10	AUG 31	3645.25	SEP 30	3637.28
JUL 31	3372.20	AUG 31	3548.73	SEP 30	3646.02	OCT 31 NOV 30	3636.08
AUG 31	3382.40	SEP 30	3545.35	OCT 31	3645.80	DEC 31	3632.83
SEP 30	3393.60	OCT 31	3543.39	NOV 30	3646.85 3648.84	JAN 31, 1979	
OCT 31	3397.83	NOV 30	3541.67	DEC 31		FEB 28	3627.99
NOV 30	3404.73	DEC 31	3539.29	JAN 31, 1974	3647.09	MAR 31	3635.03
DEC 31	3409.73	JAN 31, 1969	3540.22	FEB 28	3648.49	APR 30	3646.28
JAN 31, 1964	3414.60	FEB 28	3542.87	MAR 31	3651.14		3663.76
FEB 28	3414.80	MAR 31	3543.65	APR 30	3652.34	MAY 31	3680.40
MAR 31	3410.20	APR 30	3552.61	MAY 31	3662.30	JUN 30	
APR 30	3397.70	MAY 31	3571.49	JUN 30	3667.35	JUL 31	3684.32
MAY 31	3436.10	JUN 30	3579.95	JUL 31	3662.62	AUG 31	3680.79
JUN 30	3472.48	JUL 31	3580.54	AUG 31	3655.82	SEP 30	3678.10
JUL 31	3484.35	AUG 31	3575.94	SEP 30	3651.73	OCT 31	3676.13
AUG 31	3490.28	SEP 30	3573.32	OCT 31	3650.71	NOV 30	3673.50
SEP 30	3491.69	OCT 31	3574.90	NOV 30	3649.46	DEC 31	3672.68
OCT 31	3491.70	NOV 30	3574.21	DEC 31	3648.27	JAN 31, 1980	3673.03
NOV 30	3491.42	DEC 31	3572.11	JAN 31, 1975	3645.78	FEB 28	3674.26
DEC 31	3491.94	JAN 31, 1970		FEB 28	3645.34	MAR 31	3675.54
JAN 31, 1965	3491.41	FEB 28	3570.13	MAR 31	3646.10	APR 30	3677.64
FEB 28	3491.91	MAR 31	3571.27	APR 30	36 47 . 81	MAY 31	36 91.72
MAR 31	3491.88	APR 30	3566.65	MAY 31	3655.60	JUN 30	3700.50 3696.40
APR 30	3490.91	MAY 31	3582.13	JUN 30	3668.90	JUL 31	36 90.48
MAY 31	3491.82	JUN 30	3599.13	JUL 31	3674.81	AUG 31 SEP 30	36 87.78
JUN 30	3510.85	JUL 31	3600.88	AUG 31	3671.89		36 85.47
JUL 31	3530.91	AUG 31	3597.90	SEP 30	3668.06	OCT 31	
AUG 31	3531.34	SEP 30	3598.87	OCT 31	3666.57	NOV 30 DEC 31	3682.81 3681.28
SEP 30	3530.12	OCT 31	3599.84	NOV 30	3667.15	JAN 31, 1981	3679.57
OCT 31	3531.57	NOV 30	36 00 . 89	DEC 31	3667.88	FEB 28	3678.09
NOV 30	3531.93	DEC 31	3599.78	JAN 31, 1976	3666.77	MAR 31	3677.75
DEC 31	3534.44	JAN 31, 1971	3600.79	FEB 28	3665.43 3664.70	APR 30	3677.25
JAN 31, 1966	3536.00	FEB 28	36 02 .66	MAR 31		MAY 31	3677.76
FEB 28	3534.11	MAR 31	3602.86	APR 30 May 31	3664.17 3667.76	JUN 30	36 80 .6 1
MAR 31	3536.06	APR 30	36 03 .62	JUN 30	36 72 . 16	JUL 31	3677.79
APR 30	3538.76	MAY 31	36 08.73	JUL 31	3670.39	AUG 31	3673.44
MAY 31	3544.54	JUN 30 JUL 31	3620.79 3620.80	AUG 31	3667.44	SEP 30	3671.96
JUN 30	3545.12	AUG 31	3617.31	SEP 30	3664.00	OCT 31	3671.94
JUL 31	3541.05			OCT 31	3661.24	NOV 30	3670.68
AUG 31	3535.43	SEP 30	3614.25	NOV 30	3657.89	DEC 31	3667.47
SEP 30	3531.86	OCT 31	3614.15	DEC 31	3655.31	JAN 31, 1982	3663.75
OCT 31	3527.29	NOV 30	3612.42			FEB 23	3662.75
NOV 30	3523.92	DEC 31	3609.56	JAN 31, 1977 FEB 28		MAR 31	3663.96
DEC 31	3522.39	JAN 31, 1972	36 07 . 87		3651.38		3665.59
JAN 31, 1967	3517.39	FEB 28	3609.51	MAR 31	3651.20	APR 30	3674.59
FEB 28	3515.15	MAR 31	36 12 . 74	APR 30	3652,63	MAY 31	
MAR 31	3515.22	APR 30	3610.58	MAY 31	3654.27	JUN 30	3684.92
APR 30	3514.58	MAY 31	3611.92	JUN 30	36 53 .6 5	JUL 31 AUG 31	3687.35 3686.64
MAY 31	3509.69	JUN 30	3619.57	JUL 31	3649.36		36 87.27
JUN 30	3529.15	JUL 31	3615.43	AUG 31	3642.48	SEP 30 OCT 31	
JUL 31	3532.53	AUG 31	36 09.12	SEP 30 OCT 31	3636.70	NOV 30	3687.65 3686.26
AUG 31	3530.48	SEP 30 OCT 31	3603.40	NOV 30	3635.65 3634.62	DEC 31	3684.74
SEP 30	3528.45 3528.40	NOV 30	3609.09 3609.51	DEC 31	3630.05		30 04.14
OCT 31	3528.40	DEC 31	3606.20	JAN 31, 1978	3625.02		
NOV 30 DEC 31		JAN 31, 1973	3601.04	FEB 28	3622.71		
· · · · · ·	3527.30	FEB 28	36 00.6 8	MAR 31	3622.69		
JAN 31, 1968	3525.23		3598.12	APR 30	36 26 . 85		
FEB 28 MAR 31	3526.09	MAR 31		MAY 31	3635.62		
1 B B B S I	3520.48	APR 30	3590.63	17A1 JI	20,00		

73

.

36 37

50

---

---

50

52

--

-----3 1

22

70 30 40

36 37 30

---

50

30 ___

4 4 4

1

1

1

2 2 3

2

220 NV J0 76 - 11-00² 77-03-01² 77-04-01 77-04-05² 77-04-05² 77-09-13²

GW 220NVJ0 58-08-203

220 NV JO

---

---

220NV J0 6 8-05-22 72-04-272 76-11-00 77-04-05² 77-04-05²

77-09-28² 77-09-28¹ 77-10-18 77-12-05

77-09-13² 77-10-18 77-12-05¹

79-09-25 81-10-21

81-10-21 81-10-21 81-10-22 81-10-23

81-10-23

81-10-23

81-10-23 81-10-23 77-10-181 77-02-03 77-05-03 77-08-09

77-11-04

GW

G₩

SP

SW

SW SW

SW SW SW

SW SW LK SW

---

--

160

---

390

110

---

---

---

140 71

81

59 60 ---

200

### Station number or name: See "Numbering system for hydrogeologic-data sites", p. 5, and figure 2. Site: GW, ground water; LK, lake; SP, spring; SW, stream.

STATION NUMBER OF NAME	SITE	GEO- LOGIC UNIT	DATE OF Sample	ARSENIC TOTAL (µg/L AS AS)	ARSENIC DIS- SOLVED (µg/L AS AS)	BARIUM DIS- SOLVED (µg/L AS BA)	BORON DIS- SOLVE (µg/L AS B
(C-41- 3) 4BCA- 1	GW	220NV J0	81-06-12		0	500	
(C-43- 1) 3BAC- 1	GW	220 NV J O	81-02-25		1	50	
(D-33- 4)35BBD- 1	GW		81-04-23		6	300	
36 ABB- 1	GW	220 NV J 0	81-09-01		22	270	
(D-33- 5)31ADC- 1	GW	220NV J0	81-09-01		3	57	
(D-34- 4) 1CAD- 1	GW	220 NV J O	81-09-01		12	78	
D-35- 3) 8ABA- 1	GW	221ENRD	81-09-03		0	37	
D-43- 1) 2BDD- 1	GW	220 NV JO	79-09-26			30	
D-43- 2)13DCD- 1	GW	221ENRD	81-06-18		11	100	
A-39- 4) 6CBB- 1	GW	220GLNC	76-08-05				40
A-40- 5)12DDB- 1	GW	220NV JO	76-08-05				30
33CBC- 1	GW	220 NV JO	76-08-05				40
A-41- 4)28ADA- 1	GW	220GLNC	76-08-06				30
A-41- 8) 4DDA- 1	GW	220 NV JO	74-03-03	<10			
		2201100	77-04-051	1	1		
			77-10-18		13		130
			81-08-31		13	36	
14BCA- 1	GW	220 NV JO	77-10-19		2		110
			81-04-02		4	40	
14BCB- 1	GW	220 NV J O	58-03-10 ²				
23DAC- 1	GW	220NV JO	81-08-29		0	44	
23DCD- 1	GW	220 NV J O	58-03-10 ²				
			81-08-28		33	530	
A-42- 8)32CDD- 1	GW	220 NV J 0	73-03-23	<10			
			73-08-151	10			
			77-09-09	<5			
			77-09-09 ¹		<5		
			81-06-11		1	100	
35DAB- 2	GW	220 NV JO	72-04-272	50			
•••			77-04-05 ²	90			
			77-04-052	60	60		
			77-00-126	50			
			77-09-13 ² 77-10-18	59			
			77-09-13 ⁶ 77-10-18 77-12-05 ¹	59  48	40		220

¹From files of U.S. Geological Survey, source of data unknown. ²Analysis by Arizona State Department of Health. ³Analysis by Arizona Testing Laboratories, Phoenix, Arizona.

.

35DCD- 1

36 CBC- 1

36 CCC- 2

ESCALANTE R AB MAMIE CR AT (D-35- 4) 7BDD

ESCALANTE R AB BOULDER CR AT (D-35-5)22BBBBOULDER CREEK AT MOUTH AT (D-35-5)22BBBESCALANTE R AB TRIB AT (D-37-7) 6 DCD PARIA R AB SHEEP CR AT (C-30-2) 17 ADB PARIA R AB DEER CR AT (C-40-2) 4AAB

PARIA R 3 MI SO HY 89 AT (C-43-1)15AACPARIA R AB KAIBAB GULCH AT (C-44-1)12CCALAKE POWERL AT (A-42-8)36CABCOLORADO R AT LEES FERRY, AZ

(C-40- 1)23BBA-S1

ŧ

CADMIUM TOTAL RECOV- ERABLE (µg/L AS CD)	CHRO- MIUM TOTAL RECOV- ERABLE (µg/L AS CR)	COBALT DIS- SOLVED (µg/L AS CO)	COPPER TOTAL RECOV- ERABLE (µg/L AS CU)	MERCURY TOTAL RECOV- ERABLE (µg/L AS HG)	IRON TOTAL RECOV- ERABLE (µg/L AS FE)	IRON DIS- SOLVED (µg/L AS FE)	LEAD TOTAL RECOV- ERABLE (µg/L AS PB)	SELE- NIUM DIS- SOLVED (µg/L AS SE)	SILVER TOTAL RECOV- ERABLE (µg/L AS AG)	STRON- TIUM DIS- SOLVED (µg/L AS SR)	ZINC TOTAL RECOV- ERABLE (µg/L AS ZN)	POTAS- SIUM 40 DIS- SOLVED (pc1/L AS K40)
						30		0		230		1.3
						1500		0		36 00		5.3
						10		ō		220		2.1
						<10		1		760		
						19		0	'	2 40		
						<10		0		460		
						<10		1		2000		
		<3				39				16 00		
						<10 <10				70		1.0
						<10		'				
						<10						
						<10						
<20	<20		<50	<5.0			<50		<20		<70	
						60		3				
						37		3		1300		
						40		2				
						30		2		1100		8.2
						Ő						
						12		0		49		
						0						
						10		1		300		
<20	<20		<50	<5.0	<50		<30		<20		50	
<20	<20		<50	<5.0	<50		<50		<20		70	
<5	<20		<50	<5.0			<20		<2		<65	
					110			<5				
						60		1		1500		5.4
<10	<10		<50	<5.0	<50		<50		<10		<10	
<5	<20		1120	<5.0	740		<20		<20		<50	
<5	<20		60	<5.0	13		<20		<20		50	
						170		2				
						230		3		1500		13
												.,
<20	<20		<50	<.5	100		<50		<20		<b>&lt;6</b> 0	
 <5	<20		<50	<5.0	 <50		<20		<20		<50	
10	120		100	19.0	<b>N</b> 30		120		120		100	
								10 10				
						70		21				
						0						
					150	30						
<10	<10		<50	<.5	<50		<50		<10		<50	
<20	<20		<50	<.5	2040		<50		<20		100	
<5	<20		20	<.5	1070		<50		<20		100	
<5	<20		<50	<5.0	150		<20		<20		<50	
						180		3				
		<3				<10				1500		
						<10		<1		550		
						<10		<1		630		
						23		<1		200		
						<10		<1		440		
						<10 <10		1		2300 2400		
						<10				26 0 0		
						<10				26 00		
						30		4				
<20		<2	<20	1.1	850	<10	<200	3			20	
<20			<20	<.5	30	<10	<200	3			20	
					<10	30	<200	5			20	
<20 <20			<20 <20	<.5 <.1	<10 50	<10	<200	4	<20		<20	

# FUBLICATIONS OF THE UTAH DEPARTMENT OF NATURAL RESOURCES, DIVISION OF WATER RIGHTS

## (*)-Out of Print

## TECHNICAL PUBLICATIONS

- *No. 1. Underground leakage from artesian wells in the Flowell area, near Fillmore, Utah, by Penn Livingston and G. B. Maxey, U.S. Geological Survey, 1944.
- No. 2. The Ogden Valley artesian reservoir, Weber County, Utah, by H. E. Thomas, U.S. Geological Survey, 1945.
- *No. 3. Ground water in Pavant Valley, Millard County, Utah, by P. E. Dennis, G. B. Maxey and H. E. Thomas, U.S. Geological Survey, 1946.
- *No. 4. Ground water in Tooele Valley. Tooele County, Utah, by H. E. Thomas, U.S. Geological Survey, in Utah State Engineer 25th Biennial Report, p. 91-238, pls. 1-6, 1946.
- *No. 5. Ground water in the East Shore area, Utah: Part I. Bountiful District, Davis County, Utah, by H. E. Thomas and W. B. Nelson, U.S. Geological Survey, in Utah State Engineer 26th Biennial Report, p. 53-206, pls. 1-2, 1948.
- *No. 6. Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah, by P. F. Fix, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S. Geological Survey, in Utah State Engineer 27th Biennial Report, p. 107-210, pls. 1-10, 1950.
- No. 7. Status of development of selected ground-water basins in Utah, by H. E. Thomas, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S. Geological Survey, 1952.
- *No. 8. Conspumptive use of water and irrigation requirements of crops in Utah, by C. O. Roskelly and W. D. Criddle, Utah State Engineer's Office, 1952.
- No. 8. (Revised) Consumptive use and water requirements for Utah, by W. D. Criddle, Karl Harris, and L. S. Willardson, Utah State Engineer's Office, 1962.
- No. 9. Progress report on selected ground water basins in Utah, by H. A. Waite, W. B. Nelson, and others, U.S. Geological Survey, 1954.
- *No. 10. A compilation of chemical quality data for ground and surface waters in Utah, by J. G. Connor, C. G. Mitchell, and others, U.S. Geological Survey, 1958.
- *No. 11. Ground water in northern Utah Valley, Utah: A progress report for the period 1948-63, by R. M. Cordova and Seymour Subitzky, U.S. Geological Survey, 1965.

- *No. 12. Reevaluation of the ground-water resources of Tooele Valley, Utah, by J.S. Gates, U.S. Geological Survey, 1965.
- *No. 13. Ground-water resources of selected basins in southwestern Utah, by G. W. Sandberg, U. S. Geological Survey, 1966.
- *No. 14. Water-resources appraisal of the Snake Valley area, Utah and Nevada, by J. W. Hood and F. E. Rush, U.S. Geological Survey, 1966.
- *No. 15. Water from bedrock in the Colorado Plateau of Utah, by R. D. Feltis, U.S. Geological Survey, 1966.
- *No. 16. Ground-water conditions in Cedar Valley, Utah County, Utah, by R. D. Feltis, U.S. Geological Survey, 1967.
- *No. 17. Ground-water resources of northern Juab Valley, Utah,, by L. J. Bjorklund, U. S. Geological Survey, 1968.
- No. 18. Hydrologic reconnaisssance of Skull Valley, Tooele County, Utah by J. W. Hood and K. M. Waddell, U. S. Geological Survey, 1968.
- No. 19. An appraisal of the quality of surface water in the Sevier Lake basin, Utah, by D. C. Hahl and J. C. Mundorff, U.S. Geological Survey, 1968.
- No. 20. Extensions of streamflow records in Utah, by J. K. Reid, L. E. Carroon, and G. E. Pyper, U.S. Geological Survey, 1969.
- No. 21. Summary of maximum discharges in Utah streams, by G. L. Whitaker, U.S. Geological Survey, 1969.
- No. 22. Reconnaissance of the ground-water resources of the upper Fremont River valley, Wayne County, Utah, by L. J. Bjorklund, U. S. Geological Survey, 1969.
- No. 23. Hydrologic reconnaissance of Rush Valley, Tooele County, Utah, by J. W. Hood, Don Price, and K. M. Waddell, U.S. Geological Survey, 1969.
- No. 24. Hydrologic reconnaissance of Deep Creek valley, Tooele and Juab Counties, Utah, and Elko and White Pine Counties, Nevada, by J. W. Hood and K. M. Waddell, U.S. Geological Survey, 1969.
- No. 25. Hydrologic reconnaissance of Curlew Valley, Utah and Idaho, by E. L. Bolke and Don Price, U.S. Geological Survey, 1969.
- No. 26. Hydrologic reconnaissance of the Sink Valley area, Tooele and Box Elder Counties, Utah, by Don Price and E. L. Bolke, U.S. Geological Survey, 1970.
- No. 27. Water resources of the Heber-Kamas-Park City area, north-central Utah, by C. H. Baker. Jr., U.S. Geological Survey, 1970.

- No. 28. Ground-water conditions in southern Utah Valley and Goshen Valley. Utah, by R. M. Cordova, U.S. Geological Survey, 1970.
- No. 29. Hydrologic reconnaissance of Grouse Creek valley, Box Elder County, Utah, by J. W. Hood and Don Price, U.S. Geological Survey, 1970.
- No. 30. Hydrologic reconnaissance of the Park Valley area, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1971.
- No. 31. Water resources of Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Harr, U.S. Geological Survey, 1971.
- No. 32. Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah, by C. T. Sumsion, U.S. Geological Survey, 1971.
- No. 33. Hydrologic reconnaissance of Hansel Valley and northern Rozel Flat, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1971.
- No. 34. Summary of water resources of Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Harr, U.S. Geological Survey, 1971.
- No. 35. Ground-water conditions in the East Shore area, Box Elder, Davis, and Weber Counties, Utah, 1960-69, by E. L. Bolke and K. M. Waddell, U.S. Geological Survey, 1972.
- No. 36. Ground-water resources of Cache Valley, Utah and Idaho, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1971.
- No. 37. Hydrologic reconnaissance of the Blue Creek Valley area, Box Elder County, Utah, by E. L. Bolke and Don Price, U.S. Geological Survey, 1972.
- No. 38. Hydrologic reconnaissance of the Promontory Mountains area, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1972.
- No. 39. Reconnaissance of chemical quality of surface water and fluvial sediment in the Price River Basin, Utah, by J. C. Mundorff, U.S. Geological Survey, 1972.
- No. 40. Ground-water conditions in the central Virgin River basin. Utah, by R. M. Cordova. G. W. Sandberg, and Wilson McConkie, U.S. Geological Survey, 1972.
- No. 41. Hydrologic reconnaissance of Pilot Valley. Utah and Nevada, by J. C. Stephens and J. W. Hood, U.S. Geological Survey, 1973.
- No. 42. Hydrologic reconniassance of the northern Great Salt Lake Desert and summary hydrologic reconnaissance of northwestern Utah, by J. C. Stephens, U.S. Geological Survey, 1973.

.

- No. 43. Water resources of the Milford area, Utah, with emphasis on ground water, by R. W. Mower and R. M. Cordova, U.S. Geological Survey, 1974.
- No. 44. Ground-water resources of the lower Bear River drainage basin, Box Elder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1974.
- No. 45. Water resources of the Curlew Valley drainage basin, Utah and Idaho, by C. H. Baker, Jr., U.S. Geological Survey, 1974.
- No. 46. Water-quality reconnaissance of surface inflow to Utah Lake, by J. C. Mundorff, U.S. Geological Survey, 1974.
- No. 47. Hydrologic reconnaissance of the Wah Wah Valley drainage basin, Millard and Beaver Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1974.
- No. 48. Estimating mean streamflow in the Duchesne River basin. Utah, by R. W. Cruff, U.S. Geological Survey, 1974.
- No. 49. Hydrologic reconnaissance of the southern Uinta Basin, Utah and Colorado, by Don Price and L. L. Miller, U.S. Geological Survey, 1975.
- No. 50. Seepage study of the Rocky Point Canal and the Grey Mountain-Pleasant Valley Canal systems, Duchesne County, Utah, by R. W. Cruff and J. W. Hood, U.S. Geological Survey, 1976.
- No. 51. Hydrologic reconnaissance of the Pine Valley drainage basin, Millard, Beaver, and Iron Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1976.
- No. 52. Seepage study of canals in Beaver Valley, Beaver County, Utah, by R. W. Cruff and R. W. Mower, U.S. Geological Survey, 1976.
- No. 53. Characteristics of aquifers in the northern Uinta Basin area, Utah and Colorado, by J. W. Hood, U.S. Geological Survey, 1976.
- No. 54. Hydrologic evaluation of Ashley Valley, northern Uinta Basin area, Utah, by J. W. Hood, U.S. Geological Survey, 1977.
- No. 55. Reconnaissance of water quality in the Duchesne River basin and some adjacent drainage areas, Utah, by J. C. Mundorff, U.S. Geological Survey, 1977.
- No. 56. Hydrologic reconnaissance of the Tule Valley drainage basin, Juab and Millard Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1977.
- No. 57. Hydrologic evaluation of the upper Duchesne River valley, northern Uinta Basin area, Utah, by J. W. Hood, U.S. Geological Survey, 1977.

- No. 58. Seepage study of the Sevier Valley-Piute Canal, Sevier County, Utah, by R. W. Cruff, U.S. Geological Survey, 1977.
- No. 59. Hydrologic reconnaissance of the Dugway Valley-Government Creek area, west-central Utah, by J. C. Stephens and C. T. Sumsion, U.S. Geological Survey. 1978.
- No. 60. Ground-water resources of the Parowan-Cedar City drainage basin. Iron County, Utah, by L. J. Bjorklund, C. T. Sumsion, and G. W. Sandberg, U.S. Geological Survey, 1978.
- No. 61. Ground-water conditions in the Navajo Sandstone in the central Virgin River basin, Utah, by R. M. Cordova, U.S. Geological Survey, 1978.
- No. 62. Water resources of the northern Uinta Basin area, Utah and Colorado, with special emphasis on ground-water supply, by J. W. Hood and F. K. Fields, U.S. Geological Survey, 1978.
- No. 63. Hydrology of the Beaver Valley area, Beaver County, Utah, with emphasis on ground water, by R. W. Mower, U.S. Geological Survey. 1978.
- No. 64. Hydrologic reconnaissance of the Fish Springs Flat area, Tooele, Juab, and Millard Counties, Utah, by E. L. Bolke and C. T. Sumsion, U.S. Geological Survey, 1978.
- No. 65. Reconnaissance of chemical quality of surface water and fluvial sediment in the Dirty Devil River basin, Utah, by J. C. Mundorff, U.S. Geological Survey, 1978.
- No. 66. Aquifer tests of the Navajo Sandstone near Caineville, Wayne County, Utah, by J. W. Hood and T. W. Danielson, U.S. Geological Survey, 1979.
- No. 67. Seepage study of the West Side and West Canals, Box Elder County, Utah, by R. W. Cruff, U.S. Geological Survey, 1980.
- No. 68. Bedrock aquifers in the lower Dirty Devil River basin area, Utah, with special emphasis on the Navajo Sandstone, by J. W. Hood and T. W. Danielson, U.S. Geological Survey, 1980.
- No. 69. Ground-water conditions in Tooele Valley, Utah, 1976-78, by A. C. Razem and J. I. Steiger, U.S. Geological Survey, 1980.
- No. 70. Ground-water conditions in the Upper Virgin River and Kanab Creek basins area, Utah, with emphasis on the Navajo Sandstone, by R. M. Cordova, U.S. Geological Survey, 1981.
- No. 71. Hydrologic reconnaissance of the Southern Great Salt Lake Desert and summary of the hydrology of West-Central Utah, by Joseph S. Gates and Stacie A. Kruer, U.S. Geological Survey, 1980.

- No. 72. Reconnaissance of the quality of surface water in the San Rafael River basin, Utah, by J. C. Mundorff and Kendall R. Thompson, U.S. Geological Survey, 1982.
- No. 73. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water, by R. W. Mower, U.S. Geological Survey, 1982.
- No. 74. Seepage study of the Sevier River and the Central Utah, McIntyre, and Leamington Canals, Juab and Millard Counties, Utah, by L. R. Herbert, R. W. Cruff, Walter F. Holmes, U.S. Geological Survey, 1982.
- No. 75. Consumptive use and water requirements for Utah, by A. Leon Huber, Frank W. Haws, Trevor C. Hughes, Jay M. Bagley, Kenneth G. Hubbard, and E. Arlo Richardson, 1982.
- No. 76. Reconnaissance of the quality of surface water in the Weber River basin, Utah, by Kendall R. Thompson, U.S. Geological Survey, 1983.
- No. 77. Ground-water reconnaissance of the central Weber River area, Morgan and Summit Counties, Utah, Joseph S. Gates, Judy I. Steiger, and Ronald T. Green, U.S. Geological Survey, 1984.
- No. 78. Bedrock aquifers in the northern San Rafael Swell area, Utah, with special emphasis on the Navajo Sandstone, J. W. Hood and D. J. Patterson, U.S. Geological Survey, 1984.
- No. 79. Ground-water hydrology and projected effects of ground-water withdrawals in the Sevier Desert, Utah, W. F. Holmes (in preparation).
- No. 80. Ground-water resources of northern Utah Valley, Utah, D. W. Clark and C. L. Appel (in preparation).
- No. 81. Ground-water conditions in the Kaiparowits Plateau area, Utah and Arizona, with emphasis on the Navajo Sandstone, Paul J. Blanchard.
- No. 82. Seepage study of six Canals in Salt Lake County, Utah. L. R. Herbert, R. W. Cruff, and K. M. Waddell

## WATER CIRCULARS

- No. 1. Ground water in the Jordan Valley. Salt Lake County, Utah, by Ted Arnow, U.S. Geological Survey, 1965.
- No. 2. Ground water in Tooele Valley, Utah, by J. S. Gates and O. A. Keller, U.S. Geological Survey, 1970.

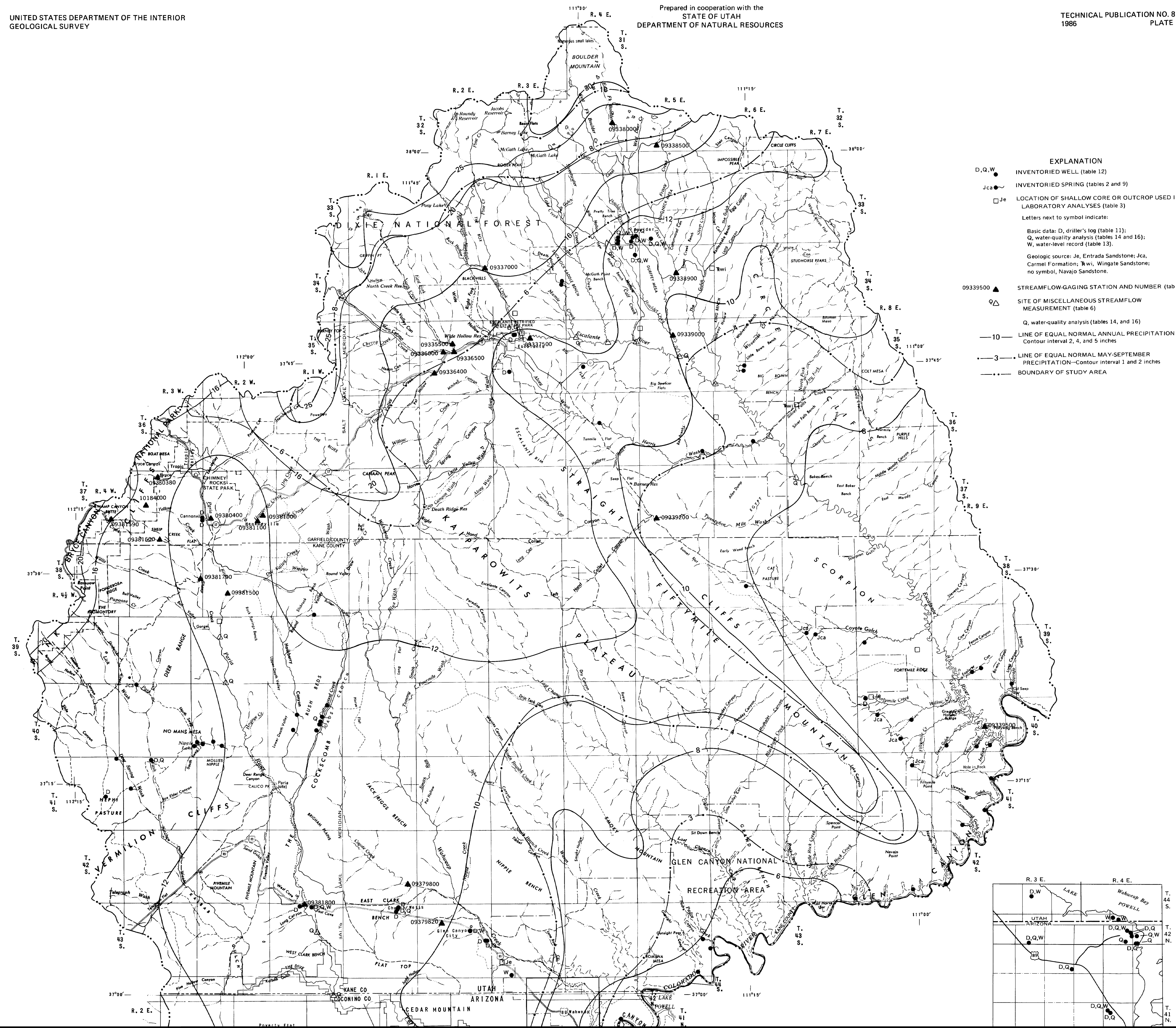
## BASIC-DATA REFORTS

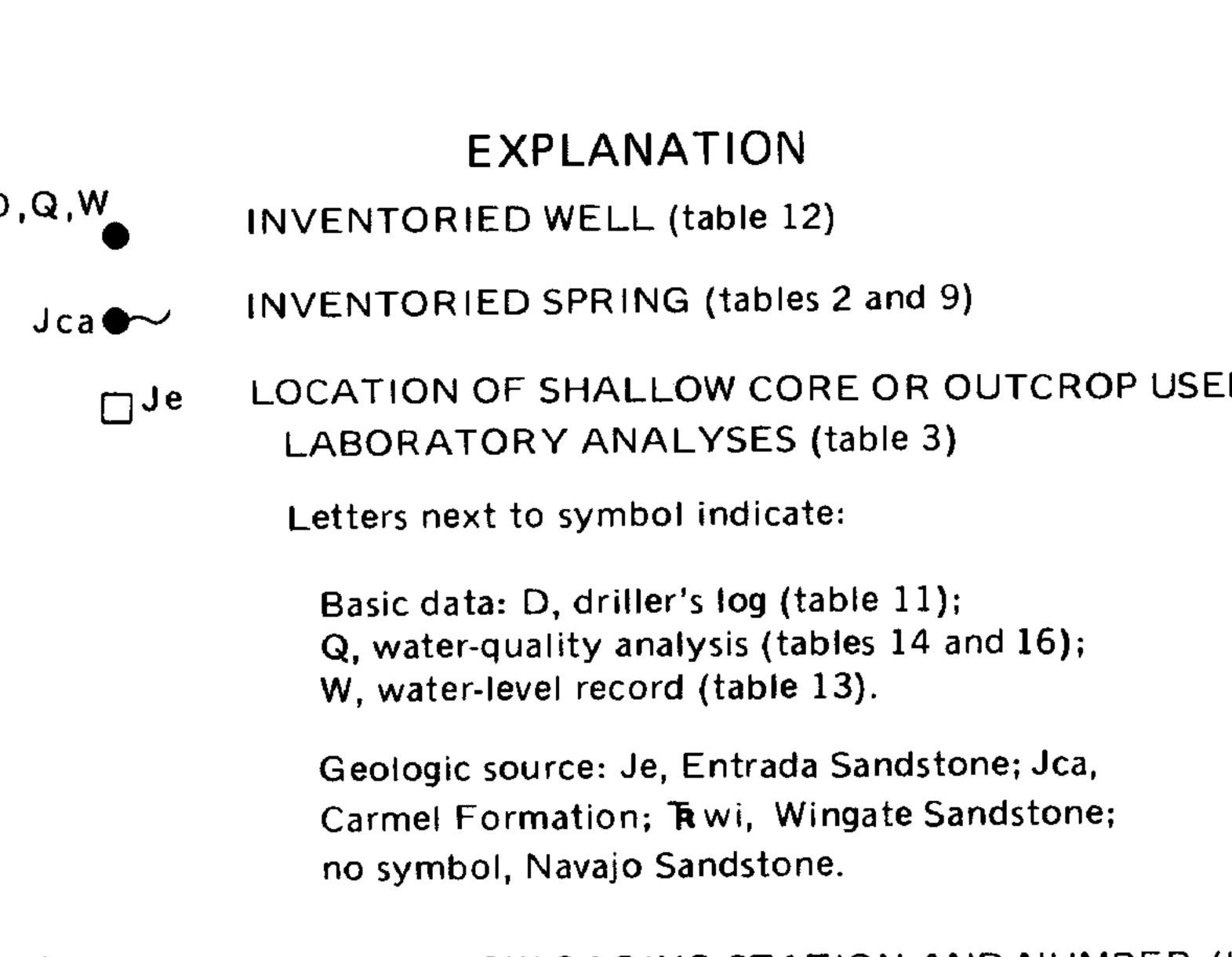
- *No. 1. Records and water-level measurements of selected wells and chemical analyses of ground water, East Shore area, Davis, Weber, and Box Elder Counties, Utah, by R. E. Smith, U.S. Geological Survey, 1961.
- No. 2. Records of selected wells and springs, selected drillers' logs of wells, and chemical analyses of ground and surface waters, northern Utah Valley, Utah County, Utah, by Seymour Subitzky, U.S. Geological Survey, 1962.
- No. 3. Ground-water data, central Sevier Valley, parts of Sanpete, Sevier, and Piute Counties, Utah, by C. H. Carpenter and R. A. Young, U.S. Geological Survey, 1963.
- *No. 4. Selected hydrologic data, Jordan Valley, Salt Lake County, Utah, by I. W. Marine and Don Price, U.S. Geological Survey, 1963.
- *No. 5. Selected hydrologic data, Pavant Valley, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
- *No. 6. Ground-water data, parts of Washington, Iron, Beaver, and Millard Counties, Utah, by G. W. Sandberg, U.S. Geological Survey, 1963.
- No. 7. Selected hydrologic data, Tooele Valley, Tooele County, Utah, by J. S. Gates, U.S. Geological Survey, 1963.
- No. 8. Selected hydrologic data, upper Sevier River basin. Utah, by C. H. Carpenter, G. B. Robinson, Jr., and L. J. Bjorklund, U.S. Geological Survey, 1964.
- *No. 9. Ground-water data, Sevier, Desert, Utah, by R. W. Mower and R. D. Feltis, U.S. Geological Survey, 1964.
- No. 10. Quality of surface water in the Sevier Lake basin, Utah, by D. C. Hahl and R. E. Cabell, U.S. Geological Survey, 1965.
- *No. 11. Hydrologic and climatologic data, collected through 1964, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.
- No. 12. Hydrologic and climatologic data, 1965, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.

- No. 13. Hydrologic and climatologic data, 1966, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1967.
- No. 14. Selected hydrologic data, San Pitch River drainage basin, Utah, by G. B. Robinson, Jr., U.S. Geological Survey, 1968.
- No. 15. Hydrologic and climatologic data, 1967, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1968.
- No. 16. Selected hydrologic data, southern Utah and Goshen Valleys, Utah, by R. M. Cordova, U.S. Geological Survey, 1969.
- No. 17. Hydrologic and climatologic data, 1968, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1969.
- No. 18. Quality of surface water in the Bear River basin, Utah, Wyoming, and Idaho, by K. M. Waddell, U.S. Geological Survey, 1970.
- No. 19. Daily water-temperature records for Utah streams, 1944-68, by G. L. Whitaker, U.S. Geological Survey, 1970.
- No. 20. Water-quality data for the Flaming Gorge area, Utah and Wyoming, by R. J. Madison, U.S. Geological Survey, 1970.
- No. 21. Selected hydrologic data, Cache Valley, Utah and Idaho, by L. J. McGreevy and L. J. Bjorklund, U.S. Geological Survey, 1970.
- No. 22. Periodic water- and air-temperature records for Utah streams, 1966-70, by G. L. Whitaker, U.S. Geological Survey, 1971.
- No. 23. Selected hydrologic data, lower Bear River drainage basins, Box Elder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1973.
- No. 24. Water-quality data for the Flaming Gorge Reservoir area, Utah and Wyoming, 1969-72, by E. L. Bolke and K. M. Waddell, U.S. Geological Survey, 1972.
- No. 25. Streamflow characteristics in northeastern Utah and adjacent areas, by F. K. Fields, U.S. Geological Survey, 1975.
- No. 26. Selected hydrologic data, Uinta Basin area, Utah and Colorado, by J. W. Hood. J. C. Mundorff, and Don Price, U.S. Geological Survey, 1976.
- No. 27. Chemical and physical data for the Flaming Gorge Reservoir area, Utah and Wyoming, by E. L. Bolke, U.S. Geological Survey, 1976.
- No. 28. Selected hydrologic data, Parowan Valley and Cedar City Valley drainage basins, Iron County, Utah, by L. J. Bjorklund, C. T. Sumsion, and G. W. Sandberg, U.S. Geological Survey, 1977.

- No. 29. Climatologic and hydrologic data, southeastern Uinta Basin, Utah and Colorado, water years 1975 and 1976, by L. S. Conroy and F. K. Fields, U.S. Geological Survey, 1977.
- No. 30. Selected ground-water data, Bonneville Salt Flats and Pilot Valley, western Utah, by G. C. Lines, U.S. Geological Survey, 1977.
- No. 31. Selected hydrologic data, Wasatch Plateau-Book Cliffs coal-fields area, Utah, by K. M. Waddell and others, U.S. Geological Survey, 1978.
- No. 32. Selected coal-related ground-water data, Wasatch Plateau-Book Cliffs area. Utah, by C. T. Sumsion, U.S. Geological Survey, 1979.
- No. 33. Hydrologic and climatologic data, southeastern Uinta Basin, Utah and Colorado, water year 1977, by L. S. Conroy, U.S. Geological Survey, 1979.
- No. 34. Hydrologic and climatologic data, southeastern Uinta Basin, Utah and Colorado, water year 1978, by L. S. Conroy, U.S. Geological Survey, 1980.
- No. 35. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah, by R. W. Mower, U.S. Geological Survey, 1981.
- No. 36. Surface-water and climatologic data, Salt Lake County, Utah, Water Year 1980, by G. E. Pyper, R. C. Christensen, D. W. Stephens, H. F. McCormack, and L. S. Conroy, U.S. Geological Survey. 1981.
- No. 37. Selected ground-water data, Sevier Desert, Utah, 1935-82, by Michael Enright and Walter F. Holmes, U.S. Geological Survey. 1982.
- No. 38. Selected hydrologic data, Price River Basin, Utah, water years 1979 and 1980, by K. M. Waddell, J. E. Dodge, D. W. Darby, and S. M. Theobald, U.S. Geological Survey, 1982.
- No. 39. Selected hydrologic data for Northern Utah Valley, Utah, 1935-82, by Cynthia L. Appel, David W. Clark, and Paul E. Fairbanks, U.S. Geological Survey, 1982.
- No. 40. Surface water and climatologic data, Salt Lake County, Utah, water year 1981, with selected data for water years 1980 and 1982, by H. F. McCormack, R. C. Christensen, D. W. Stephens, G. E. Pyper, J. F. Weigel, and L. S. Conroy, U.S. Geological Survey, 1983.
- No. 41. Selected hydrologic data, Kolob-Alton-Kaiparowits coal-fields area, south-central Utah, by Gerald G. Plantz, U.S. Geological Survey, 1983.
- No. 42 Streamflow characteristics of the Colorado River Basin in Utah through September 1981, R. C. Christensen, E. B. Johnson, and G. G. Plantz (n preparation).

No. 43 Selected well data from the MX-missile siting study, Tooele, Juab, Millard Beaver, and Iron Counties, Utah, James L. Mason, John W. Atwood, and Priscilla S. Beuttner.


#### INFORMATION BULLETINS


- *No. 1. Plan of work for the Sevier River Basin (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1960.
- *No. 2. Water production from oil wells in Utah, by Jerry Tuttle, Utah State Engineer's Office, 1960.
- *No. 3. Ground-water areas and well logs, central Sevier Valley, Utah, by R. A. Young, U.S. Geological Survey, 1960.
- *No. 4. Ground-water investigations in Utah in 1960 and reports published by the U.S. Geological Survey or the Utah State Engineer prior to 1960, by H. D. Goode, U.S. Geological Survey, 1960.
- *No. 5. Developing ground water in the central Sevier Valley, Utah, by R. A. Young and C. H. Carpenter, U.S. Geological Survey, 1961.
- *No. 6. Work outline and report outline for Sevier River basin survey, (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1961.
- *No. 7. Relation of the deep and shallow artesian aquifers near Lynndyl, Utah, by R. W. Mower, U.S. Geological Survey, 1961.
- *No. 8. Projected 1975 municipal water-use requirements, Davis County, Utah, by Utah State Engineer's Office, 1962.
- No. 9. Projected 1975 municipal water-use requirements, Weber County, Utah, by Utah State Engineer's Office, 1962.
- *No. 10. Effects on the shallow artesian aquifer of withdrawing water from the deep artesian aquifer near Sugarville, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
- *No. 11. Amendments to plan of work and work outline for the Sevier River basin (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1964.
- *No. 12. Test drilling in the upper Sevier River drainage basin, Garfield and Piute Counties. Utah, by R. D. Feltis and G. B. Robinson, Jr., U.S. Geological Survey, 1963.
- *No. 13. Water requirements of lower Jordan River, Utah, by Karl Harris, Irrigation Engineer, Agricultural Research Service, Phoenix, Arizona, prepared under informal cooperation approved by Mr. W. W. Donnan, Chief, Southwest Branch (Riverside, California) Soil and Water Conservation Research Division, Agricultural Research Service, U.S.D.A., and by W. D. Criddle, State Engineer, State of Utah, Salt Lake City, Utah, 1964.

- *No. 14. Consumptive use of water by native vegetation and irrigated crops in the Virgin River area of Utah, by W. D. Criddle, J. M. Bagley, R. K. Higginson, and D. W. Hendricks, through cooperation of Utah Agricultural Experiment Station, Agricultural Research Service, Soil and Water Conservation Branch, Western Soil and Water Management Section, Utah Water and Power Board, and Utah State Engineer, Salt Lake City, Utah, 1964.
- *No. 15. Ground-water conditions and related water-administration problems in Oedar City Valley, Iron County, Utah, February, 1966, by J. A. Barnett and F. T. Mayo, Utah State Engineer's Office.
- *No. 16. Summary of water well drilling activities in Utah, 1960 through 1965, compiled by Utah State Engineer's Office, 1966.
- *No. 17. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by O. A. Keller, U.S. Geological Survey, 1966.
- *No. 18. The effect of pumping large-discharge wells on the ground-water reservoir in southern Utah Valley, Utah County, Utah, by R. M. Cordova and R. W. Mower, U.S. Geological Survey, 1967.
- No. 19. Ground-water hydrology of southern Cache Valley, Utah, by L. P. Beer, Utah State Engineer's Office, 1967.
- *No. 20. Fluvial sediment in Utah, 1905-65, A data compilation by J. C. Mundorff, U.S. Geological Survey, 1968.
- *No. 21. Hydrogeology of the eastern portion of the south slopes of the Uinta Mountains, Utah, by L. G. Moore and D. A. Barker, U.S. Bureau of Reclamation, and J. D. Maxwell and B. L. Bridges, Soil Conservation Service, 1971.
- *No. 22. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by B. A. LaPray, U.S. Geological Survey, 1972.
- *No. 23. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by B. A. LaPray, U.S. Geological Survey, 1975.
- No. 24. A water-land use management model for the Sevier River Basin, Phase I and II, by V. A. Narasimham and Eugene K. Israelsen, Utah Water Research Laboratory, College of Engineering, Utah State University, 1975.
- No. 25. A water-land use management model for the Sevier River Basin, Phase III, by Eugene K. Israelsen, Utah Water Research Laboratory, College of Engineering, Utah State University, 1976.
- No. 26. Test drilling for fresh water in Tooele Valley, Utah, by K. H. Ryan, B. W. Nance, and A. C. Razem, Utah Department of Natural Resources, 1981.

No. 27. Bibliography of U.S. Geological Survey Water-Resources Reports for Utah, compiled by Barbara A. LaPray and Linda S. Hamblin, U.S. Geological Survey, 1980.

x



