STATE OF UTAH

JOSEPH M. TRACY, State Engineer

TECHNICAL PUBLICATION NO. 9

PROGRESS REPORT ON SELECTED GROUND-WATER BASINS IN UTAH

Prepared in cooperation with the

GEOLOGICAL SURVEY W. E. WRATHER, Director

UNITED STATES DEPARTMENT OF THE INTERIOR

TECHNICAL PUBLICATION NO. 9

. _____

PROGRESS REPORT ON SELECTED GROUND-WATER BASINS IN UTAH

CONTENTS

Page

	STATUS OF GROUND-WATER DEVELOPMENT IN FOUR IRRIGATION DISTRICTS IN SOUTHWESTERN UTAH, by
5	R. G. Butler
95	PUMPING COSTS IN SOUTHWESTERN UTAH, by W. B. Nelson
105	GROUND-WATER POSSIBILITIES OF BEDROCK AQUIFIERS IN SOUTHEASTERN UTAH, by B. E. Lofgren
110	INVESTIGATION OF GEOLOGY AND OCCURRENCE OF GROUND WATER IN THE WEBER BASIN PROJECT AREA, FARMINGTON TO WILLARD, UTAH: A PROGRESS RE- PORT by L H Eath
112	10K1, by J. 11. ICIII

Figure 1. Index map of Utah showing location of 4 ground-water areas and 14 selected observation wells. (Frontispiece.)

STATE OF UTAH

JOSEPH M. TRACY, State Engineer

STATUS OF GROUND-WATER DEVELOPMENT IN FOUR IRRIGATION DISTRICTS IN SOUTHWESTERN UTAH

By H. A. Waite, W. B. Nelson, B. E. Lofgren, R. L. Barnell, and R. G. Butler, U. S. Geological Survey

Prepared in cooperation with the

GEOLOGICAL SURVEY W. E. WRATHER, Director

UNITED STATES DEPARTMENT OF THE INTERIOR

CONTENTS

Preface	. 9
Introduction	. 10
Ground-water development, by H. A. Waite and others	. 11
Water-level trends	. 11
Climatic considerations	. 15
Inventory of ground-water use	. 16 . 17 . 17 . 18 . 18
Four pumping districts in southwestern Utah	. 19
Milford pumping district, by W. B. Nelson Ground-water development Discharge from wells Recharge Shift in area irrigated from Beaver River Water-level trends	21 21 21 21 24 43 43
Beryl-Enterprise pumping district, by B. E. Lofgren Ground-water development Discharge from wells Recharge Water-level trends	. 48 . 49 . 68 . 68 . 73
Cedar City Valley, by R. L. Barnell and W. B. Nelson Ground-water development Discharge from wells Recharge Water-level trends Possibilities of artificial recharge	75 75 76 76 83 84
Parowan pumping district, by R. G. Butler and R. L. Barnell Ground-water development Discharge from wells Water-level trends Bibliography	84 84 92 93 93

ILLUSTRATIONS

Figu	ure	Page
1.	Index map of Utah showing location of 4 ground-water areas and 14 selected observation wells	viece
2.	Annual water-level trends in 14 selected wells in Utah	13
3.	Map of Milford district showing irrigation wells, areas irrigated by wells in 1953, and water-table contours for March 1954	20
4.	Map of Milford district showing areas of water-table decline, March 1950 to March 1954, and the "closed area"	22
5.	Annual pumpage and water-level trends, Milford district, Utah	23
6.	Distribution of pumpage in the Milford district in 1953 showing (A) rate of ground-water use with respect to acres irrigated, and (B) rate of ground-water use with respect to number of pumping units	44
7.	Profile A-A' of the Milford district showing positions of water table	46
8a.	Profile B-B' of the Milford district showing positions of water table	47
8b.	Profile C-C' of the Milford district showing positions of water table	48
9.	Map of Beryl-Enterprise district showing the location of irrigation wells, areas irrigated by wells, and water-table contours for December 1953	50
10.	Distribution of pumpage in the Beryl-Enterprise district in 1953, showing rate of ground-water use with respect to the acres irrigated	69
11.	Annual water-level trends in 15 wells in the Beryl-Enterprise district, and other hydrologic data	70
12.	Profiles of the Beryl-Enterprise district showing positions of water table	71
13.	Map of Beryl-Enterprise district showing irrigation wells, areas of water-level decline December 1911 to December 1953, and distribution of pumpage	72
14.	Map of "closed area" of Cedar City Valley	74
15.	Hydrologic data for Cedar City Valley, 1930-53	75
16.	Annual water-level trends in 14 wells in Cedar City Valley, Utah	83
17.	Hydrologic data and water-level trends in Parowan Valley, 1935-54	85
18.	Map of Parowan Valley showing ground-water districts, "closed area," and loca- tion of irrigation wells	86
19.	Distribution of pumpage in Parowan Valley in 1953, showing rate of ground- water use with respect to acres irrigated	92

TABLES

Nur	nber	Page
1.	Irrigation wells and estimated annual pumpage in the Milford district, Escalante Valley, 1931-53	: . 25
2.	Measurements of water level and discharge of irrigation wells in the Milford district, Escalante Valley, 1953	1 . 30
3.	Pumpage inventory, Milford district, Escalante Valley, 1953	. 41
4.	Irrigation wells and estimated annual pumpage in the Beryl-Enterprise district, 1937-53	, . 51
5.	Measurements of water level and discharge of irrigation wells in the Beryl- Enterprise district, 1953	. 57
6.	Pumpage inventory, Beryl-Enterprise district, 1953	65
7.	Estimated pumpage from wells within the "closed area" of Cedar City Valley, 1940-53	77
8.	Measurements of water level and discharge of irrigation wells in the "closed area" of Cedar City Valley, 1953	. 80
9.	Estimated pumping from wells in Parowan Valley, 1940-53	87
10.	Measurements of water level and discharge of irrigation wells in Parowan Val- ley, 1953	. 89
11.	Pumpage inventory, Parowan Valley, 1953	91

STATUS OF GROUND-WATER DEVELOPMENT IN FOUR IRRIGATION DISTRICTS IN SOUTHWESTERN UTAH

Ву

H. A. WAITE, W. B. NELSON, B. E. LOFGREN, R. L. BARNELL, AND R. G. BUTLER

PREFACE

This report was prepared as a part of the cooperative Statewide ground-water investigation, under the direction of A. Nelson Sayre, Chief of the Ground Water Branch of the United States Geological Survey, and Joseph M. Tracy, State Engineer of Utah. The authors wish to acknowledge their appreciation to John A. Ward of the State Engineer's Office, who review the report in detail, and to the individual well owners who cooperated in every way with the field engineers.

This technical publication consists essentially of the interpretation of data collected in connection with a detailed inventory of ground-water pumpage and water-level trends in four irrigation districts in southern Utah. Much of this information was assembled in a preliminary report entitled "Inventory of ground-water pumpage in three irrigation districts in southern Utah," by H. A. Waite and others, and was used by the State Engineer in a court hearing in Parowan in February 1954.

INTRODUCTION

Ground-water investigations in Utah by the Geological Survey. United States Department of the Interior, have been in progress since 1935, in cooperation with the Utah State Engineer. These cooperative studies have included (1) determinations of the fluctuations of water level in selected wells in most of the developed and some of the still undeveloped ground-water areas of the State, based upon measurements that are tabulated and published annually by the Geological Survey, and (2) detailed investigations of specific ground-water areas to determine the quantity and quality of the ground water and its source, movement, and disposal; and to show the relation of present development to the maximum development of which those areas are capable. Reports covering the detailed studies that have been completed to date appear in technical publications and biennial reports of the State Engineer, in water-supply papers of the Geological Survey, and in scientific journals; they are listed in the bibliography at the end of this report, and many are referred to in subsequent discussions of specific areas.

During 1953 a total of 2,696 measurements were made in 874 selected observation wells throughout the State. In addition, recording gages were maintained on 39 wells. The water-level records of 277 of these observation wells, including 27 with recording gages, are included in the annual water-level reports published in water-supply papers of the Geological Survey. The records of these and other observation wells may be examined at the U. S. Geological Survey, 503 Federal Building, Salt Lake City, Utah.

The 27th and 28th Biennial Reports of the State Engineer (1950 and 1952, respectively), have included technical publications on the ground water respectively in Escalante Valley in Beaver, Iron, and Washington Counties; and in 10 selected ground-water basins in Utah, with special reference to the status of their development. These and similar reports on other areas provide data necessary to the State Engineer in his control of ground-water development in those areas, in accordance with the State's ground-water law.

Early in 1953 the State Engineer pointed out the urgent need for a comprehensive field inventory of (1) the total pumpage from all irrigation wells and (2) the number of acres irrigated by each well, in each of the principal pumping districts in southwestern Utah. This technical publication summarizes the results of the field investigations that were carried on in these districts during the 1953 pumping season. It is intended that the pumpage and irrigated-acreage inventories will be continued on an annual basis and that the results of subsequent studies will be included in future technical publications of the State Engineer.

In some of these pumping districts studies were made many years ago, as in Cedar City Valley and Parowan Valley where detailed investigations were made in 1938 to 1940; for these areas the effects of natural factors and of development are summarized for subsequent years in the 28th Biennial Report of the State Engineer. The present report supplements earlier ground-water studies that have been made by the Geological Survey in each of the areas considered herein.

This technical publication is intended to be of value to users and applicants for rights to use of ground water, particularly in the areas for which summaries of pumpage and acres irrigated have been prepared. The field investigations were designed to furnish sufficient data to enable the State Engineer to evaluate the status of development in each of the heavily pumped districts. The results of the field inventories have been tabulated and summarized, and, on the basis of the information, the State Engineer can determine the average water requirement in acre-feet per acre for the wells in a given pumping district.

GROUND-WATER DEVELOPMENT

By H. A. WAITE AND OTHERS

Of the more than 31,000 operating wells in Utah, used for irrigation, industrial, or domestic use, approximately half are flowing artesian wells and the other half are pumped. Of the total, probably not more than 100 wells derive their supply from bedrock aquifers, and only about 15 of these bedrock wells yield water in significent quantities. In general, most of the flowing wells are in the narrow, densely populated belt west of the Wasatch Mountain front and north of the city of Nephi. For the most part these wells are of small diameter and low yield, but a few large-capacity flowing wells have been drilled in recent years, mostly in Utah County (Thomas, Hansen, and Lofgren, 1952) and Salt Lake, Davis, and Weber Counties (Thomas, and Nelson, 1948) and immediately west of the Wasatch Mountains. Nonflowing wells, on the other hand, are scattered throughout the State, although they too are more concentrated in the areas of heaviest population.

The relations of ground water to surface water and to precipitation are important elements in the analysis of the status of ground-water development in the principal pumping districts in southwestern Utah. The water in all streams in this part of the State has long been fully appropriated. Any new irrigation development must necessarily be supplied from ground-water sources. During the 9-year period, 1945-1953, the pumping of ground water for irrigation has more than doubled in the southwestern part of the State.

It has been estimated that about 70 percent of all ground water pumped in the State occurs in four principal pumping districts in southwestern Utah, namely, the Milford, Beryl-Enterprise, Cedar City, and Parowan districts. The locations of these districts are shown in figure 1. More than 118,000 acre-feet of water was pumped from the 425 irrigation wells operating in 1953 in these districts; pumping lifts ranged from 30 to 150 feet. The number of wells and the pumpage in acre-feet for these four districts are shown in the following table:

Estimated pumpage from wells for irrigation in four pumping districts in southwestern Utah, 1953

Irrigation district	Number of pumped irrigation wells	1953 pumpage (acre-feet)
Milford		41,300
Beryl-Enterprise		50,000
Cedar City		15,400
Parowan		11,400
Totals	425	118,100

WATER-LEVEL TRENDS

Several areas in Utah experienced ground-water shortages during 1953. These, however, have been due largely to inadequate pumping facilities or to lowered water levels in local congested areas. No critical shortage of ground water is noted in any major region of the State. Water levels in wells, especially in areas of heavy pumping, fluctuate considerably from one season to the next. As has been pointed out by Thomas (Thomas, Nelson, et al., 1952, p. 16-18):

"Fluctuations of water levels are the chief elements used in the analyses of ground-water conditions in specific basins. These fluctuations may be traced to a variety of causes, some related to the storage and movement of ground water and the recharge to or discharge from the reservoir; others to changes in pressure upon confined water. . . With respect to annual precipitation, there is good correlation in nearly all of Utah's ground-water basins between precipitation trends and water-level trends. Inasmuch as precipitation is recognized as the ultimate source of ground water as well as stream flow, this correlation is to be expected under natural conditions, whether the ground water is derived by direct penetration of precipitation or by seepage from streams.

"The fact that water-level trends are upward in years of abundant precipitation indicates that in those years, at least, the draft from wells is not exceeding the replenishment to the groundwater reservoir. Such an area, however, will still be over-developed if the average draft exceeds the long-term average rate of replenishment, and close analysis of records is necessary to show whether this is the case."

In the same report, additional conclusions by Thomas (1952, p. 19) were as follows:

"... In an area where ground water is used chiefly for irrigation, a pronounced seasonal lowering of water levels may be expected, even though the quantity pumped each year is fully replaced by recharge to the reservoir. If wells year after year draw more water from the reservoir than is replenished, the water levels in wells will show a progressive downward trend, a trend that is inevitable in overdeveloped basins. On the other hand, a progressive downward trend of water levels may occur in an area of incomplete but rapidly increasing development, because of the increasing rate of withdrawal. Thus a downward trend is not necessarily an indication of overdevelopment."

The hydrographs of 14 observation wells (fig. 2) have been selected as being representative of ground-water conditions that prevail throughout the State. The locations of these observation wells are shown in figure 1. Significant seasonal variations in water level have been measured in each of these wells, but only the year-end measurements have been used in plotting the hydrographs, because these indicate the annual changes in ground-water storage. In general, the southern part of the State has experienced an extended drought, and widespread pumping from wells for irrigation has caused a general downward trend in water levels during the last few years. In the northern part of the State, however, precipitation has been almost normal, and water levels have not shown similar downward trends.

As noted in each of the hydrographs selected to represent conditions in northern Utah (the upper 10 wells in fig. 2), water levels either remained relatively constant, or rose slightly, during the periods of record shown. Although there has been some increase in ground-water use in recent years, recharge from precipitation has been sufficient to offset this increase.

the drought that encompassed much of southern Utah in 1943-53. Although precipitation was deficient during the latter part of that period, it was well above normal in earlier years. The trend in water level in well (C-21-5)21aba-1 near Flowell generally follows the trend in precipitation (Thomas, Nelson, Lofgren, and Butler, 1952, p. 59, 60). During the 5-year period 1944-48 the water-year precipitation at Fillmore was above average in all but one year. As a result, the water level in well (C-21-5)21aba-1 reached its highest observed stage at the beginning of 1949. Since 1948, precipitation at Fillmore has been below average every year, and this has been largely responsible for the net decline of water level in well (C-21-5)21aba-1 during the period from the end of 1948 through the end of 1953.

During 18 years of record, the water level in well (C-23-2)19dab-1 near Richfield has had a maximum range in fluctation of about 20 feet, and, as pointed out earlier, the net rise in water level during the entire period amounted to about 15 feet. This well is in a relatively small, steeply inclined ground-water basin, and the water level responds to variations either in annual precipitation or in annual runoff of the Sevier River.

Well (C-29-10)6ddc-1 is in the heart of the Milford pumping district; its water level is affected by recharge from precipitation, the Beaver River, and surface-water irrigation; and it is influenced also by pumping up from irrigation wells in the district. In general, water-level trends in the Milford district have been downward since 1939 in response to abnormally low precipitation and accelerated pumping. At the end of 1953 the water levels in many wells were at the lowest stages of record.

The water levels in well (C-35-11)33aac-1 in Cedar City Valley and in well (C-35-17)25cdd-1 in the Beryl-Enterprise district (fig. 2) declined during their respective periods of record. The net decline in well (C-35-11)33aac-1 amounted to about 21 feet from January 1933 to December 1953, and the net decline in well (C-35-17)25cdd-1 amounted to about 11 feet from January 1936 to December 1953. The water levels in several other wells in both valleys also were reported to be at record-low stages in December 1953. The hydrograph of well (C-35-11)33aac-1 can be correlated with the runoff from Coal Creek. This stream is one of the principal sources of ground-water recharge to Cedar City Valley. Water levels in the Beryl-Enterprise district, on the other hand, reflect the gradual unwatering of an exceptionally large underground reservoir, that of Escalante Valley. The hydrograph of well (C-35-17)25cdd-1, situated in the center of this extensive district, shows only minor fluctuations from one year to the next, and indicates a general downward trend that has been in effect since pumping began.

In recent years water levels have trended downward also in Parowan Valley, as suggested by the hydrograph of well (C-33-9)34dcd-1.

CLIMATIC CONSIDERATIONS

Although no ground-water basins of the State have "gone dry," water levels in several areas have declined substantially, owing in part to a deficiency of precipitation and a lack of seasonal recharge and in part to a progressive increase in the amount of water pumped for irrigation. This is especially true in several districts of southern Utah which border on the extensive drought area of the southwestern United States and which have received below-normal runoff in 8 of the last 10 years. In these areas, declining water levels are of real concern. What the future water-level trend will be in these areas under the present pumping load, even with successive years of normal or above-normal precipitation, can only be determined from subsequent studies of water-level trends.

Climatic conditions in the southwestern part of the State have contributed to the lowering of water levels in wells, mainly by reducing the amount of water available for recharge. In Cedar City Valley many landowners use wells to supplement surface-water supplies diverted from Coal Creek; thus the amount of surface-water runoff available for irrigation affects the amount of water pumped from wells. In the Milford, Parowan, and Beryl-Enterprise districts, however, most wells pump throughout the growing season each year.

Within the broad area of deficient precipitation and runoff, farms that rely on ground water for their irrigation supply, or that have an irrigation well for supplemental water, have not suffered from drought conditions as seriously as have those farms that depend solely on surface streams. Thus, while mountain streams have diminished in flow and dry farms have "burned up," farms in the principal pumping districts have not suffered from a lack of water. In these districts, the lowering of water levels in many instances has forced farmers to install deeper pumping equipment and has increased the cost of pumping water, but wells have been permitted to pump without restriction.

Extended drought conditions are having a twofold effect on groundwater conditions in southern Utah. Not only are the quantities of water available for recharge to the ground-water reservoirs materially decreased by deficient runoff, but the quantity of water pumped by wells is notably increased. Thus, with increased demand for irrigated croplands during the hot, dry summer months, and with decreased supply from deficient rainfall and diminished surface flow, irrigation wells are pumped more heavily to provide the irrigation needs of the farms.

In most of the ground-water basins a close correlation exists between the cumulative departures from normal precipitation and the waterlevel trends. Thus, declining water levels in a basin are a measure of the quantity of water drawn from underground storage. The only way that this decline can be offset is for the inflow into the basin to exceed the discharge from the basin for an extended period of time. It is interesting to note that even the abnormally high runoff of 1952 had only a temporary effect in arresting the trend of declining water levels in southern Utah.

INVENTORY OF GROUND-WATER USE

Because of the accelerated development of ground water in southern Utah in recent years and the concurrent downward trend of water levels, the State Engineer has been faced with many serious problems in administering the State's ground-water resources. There are indications in several districts that ground-water pumpage is exceeding the natural recharge, and the declining trends are creating a general feeling of insecurity.

Within the congested central sections of each of the four principal pumping districts in southern Utah, namely, the Milford, Beryl-Enterprise, Parowan, and Cedar City districts, "closed areas" have been designated by the State Engineer to restrict development. Water-level trends are being watched very carefully in each of these districts. Although the number of wells in operation in each of the "closed areas" has not increased appreciably since the restricting regulations went into effect, the quantity of water pumped from many of the wells has increased. This has been accomplished by pumping existing wells for longer hours, by installing larger pumping equipment, or by drilling replacement wells that yield more water than the abandoned well.

Early in 1953 the State Engineer was faced with the problem of determining the quantity of ground water actually used for irrigation throughout the Milford and Beryl-Enterprise districts. This basic information was needed in working out a satisfactory adjudication of water rights in Escalante Valley. The State Engineer needed up-to-date information on the "acre-feet per acre" water requirement for land irrigated from each well. In order to obtain the necessary information, a comprehensive field inventory was conducted in each of the principal pumping districts to determine (1) the amount of water pumped from each irrigation well during the season and (2) the number of acres irrigated from each well. The intensive inventory of these two districts, and also the Parowan and Cedar City Valley districts, was begun in April 1953. This program was carried on during the 1953 irrigation season and was continued in 1954.

Scope of the Field Inventory

During the period April 1 to November 1, 1953, most of the pumping irrigation wells in the Milford, Beryl-Enterprise, Parowan, and Cedar City districts were measured periodically. For each well, 1 to 5 measurements of discharge, water level, and power consumption were made during the pumping season.

None of the wells in the four districts inventoried is equipped with a meter for measuring the quantity of water pumped. Most of the irrigation wells, however, are pumped with electric motors and are equipped with electric-power meters. Thus, a convenient and reliable method of relating quantities of water pumped to the rate of power consumption was employed to good advantage. For the irrigation wells not powered by electricity, estimates of the total hours of operation of the diesel or propane engines were obtained from well owners, but these provided a less reliable determination of total pumpage.

Relation of Water Pumped to Electrical Energy Used

A pump installation driven by an electric motor and with 100-percent overall efficiency would consume 1.024 kilowatt-hours of power to pump 1 acre-foot of water through a vertical lift of 1 foot. On this same basis it would take 10.24 kilowatt-hours of electrical power to lift 10 acre-feet of water 1 foot, or to lift 1 acre-foot of water a vertical distance of 10 feet. Thus, a theoretical relationship is readily available between the electrical energy supplied to a pump installation and the energy put out by that installation in the form of water pumped.

Several sets of measurements are required to determine the ratio of electrical power input to water output for each well. Thus, it was determined in the four districts that the number of kilowatt-hours required to lift an acre-foot of water 1 foot ranged from 1.47 to 3.22, indicating that the overall efficiency of the irrigation wells in the pumping districts of southern Utah ranges from 30 to more than 60 percent. When this relationship is satisfactorily established for a well, the estimate of pumpage for this well is computed from the records of power consumption as metered by the local power company and from a computed average of the pumping lifts measured during the period of pumping.

The watt-hour meter is an integral part of each electric-pump installation and provides a convenient means of measuring electrical power input. The watt-hour or disk constant of a watt-hour meter is the registration of one revolution of the rotating element expressed in watthours. This constant must be known by the field man who seeks to determine rate of energy input to an electrically driven pump. With a stop watch the average speed of the meter disk can be determined accurately, and from this the power consumption is expressed by the formula:

t = time for total revolutions of disk, in seconds.

By using this formula, the rate of power input can be determined for a pumping well in a few minutes. Then, by measuring the water discharge from the well (method described in a later section) and the pumping depth to water in the well, the more or less constant ratio of kilowatthours per acre-foot per foot of lift can be computed. The ratio of kilowatt-hours per acre-foot per foot of lift is determined twice in a pumping season, and, if this ratio varies only slightly, the amount of pumpage from wells can be determined for the entire season merely by metering the quantities of power consumed and by periodically measuring the pumping lifts in the wells.

As some wells in the area are equipped in such a manner that a tape cannot be lowered into them to measure the pumping depth to water, a somewhat modified procedure is employed. For these wells, the relation of power input (in kilowatts) to water output (in cubic feet per second) is determined, as suggested above, at frequent intervals during the pumping season. At the close of the season, the power-meter reading (in kilowatt-hours) can be converted readily into acre-feet of water by dividing the total kilowatt-hours consumed by the kilowatthours per acre-foot. The figure for kilowatt-hours per acre-foot is computed, of course, from observations made during the pumping season.

Field Methods

In order to determine for each irrigation well the quantity of water pumped during the 1953 season and the "acre-feet per acre" use of this water, a set procedure of data collection was adopted and carried out during the field season. At the time each pumping well was visited, the following field data were collected:

- a. The rate of well discharge, in gallons per minute (gpm).
- b. The total pumping lift, in feet.
- c. The rate of power consumption for electrically driven pumps, or an estimation of the total time of operation for the enginedriven pumps.
- d. The acreage irrigated from the well.

All measurements made during the field inventory were done in accordance with standard procedures accepted by the Geological Survey. Well-discharge measurements were made in most instances using the Cox flowmeter or the Hoff current meter, either of which is capable under ideal conditions of measuring the flow of water in a discharge pipe with a high degree of accuracy, the error ordinarily being less than 5 percent. Where the local conditions were such that the use of either of these meters was not feasible, one of the other standard techniques for measuring a discharging well was employed. Depth-towater measurements during the periods of pumping were made with a two-conductor electric tape. Also, power-meter readings were made as outlined in the previous section.

The Cox flowmeter is used to determine the average discharge velocity in a pipe, which, when multiplied by the cross-sectional area of the pipe (in square feet), gives the discharge of the pipe in cubic feet per second. The Cox flowmeter, utilizing the Hall pitot tube, simplifies the task of measuring the velocity of water in discharge pipes. This meter consists essentially of four elements: (1) an inside-diameter caliper to measure the discharge pipe, (2) a modified Hall pitot tube, (3) two hose extensions, and (4) a water manometer. The water manometer is connected to the pitot tube by the rubber tubes. The manometer is direct reading and is calibrated in gpm per square inch. When the instrument is used in the field, the pitot tube is inserted into a threaded ³/₄-inch hole in the discharge pipe. The velocity of water flowing through the pipe is read directly on the calibrated rod that is part of the inverted "U"-tube assembly comprising the water manometer.

The Hoff current meter also is used for measuring yields of some of the wells, and it proved to be ideal for rapid measurements because it is quite adaptable to the different outlet conditions and to the variable discharges of some wells. The Hoff current meter is actuated by a rubberbladed propeller. The instrument is inserted in the open end of a discharge pipe, and a sound indicating the revolutions of the rotating propellor is communicated to a set of headphones. The average velocity of the water flowing through the pipe is thus determined by comparing the revolutions of the meter blade in a given time with a rating table which relates revolutions to velocity.

Ground-Water Use in Acre-Feet Per Acre

In order to determine the ground-water use in acre-feet per acre, it was first necessary to obtain the acreage served by a particular well as well as the number of acre-feet pumped. The use of ground water in the four pumping districts ranged from less than 0.5 acre-foot to more than 8.0 acre-feet per acre, and the average use varied considerably from one district to the next. These variations are related in part to the different types of crops grown in the districts, and to the intensity of cultivation of the various crops. Other closely related factors which apparently determine the quantity of water required to irrigate a field adequately are: (1) nearness of the water table to the land surface, (2) type of soil, and (3) climatic factors of precipitation, temperature, and wind. No attempt has been made in this study to analyze the effect of each of these factors on the water-use requirements.

FOUR PUMPING DISTRICTS IN SOUTHWESTERN UTAH

As stated in a previous section of the report, an estimated 70 percent of all ground-water pumped in the State of Utah is withdrawn from four principal pumping districts in the southwestern part of the State, namely, the Milford, Beryl-Enterprise, Parowan, and Cedar City districts. More than 118,000 acre-feet of water was pumped from the 425 irrigation wells in these districts in 1953. Although the central area of each of the districts is "closed" to further new development, an adequate supply of ground water is currently available to all present irrigation wells. In several congested areas, espectially in parts of the Parowan and Milford districts, the mutual interference of nearby pumping wells

Figure 3. Map of Milford district showing irrigation wells, areas irrigated by wells in 1953, and water-table contours for March 1954.

causes undue seasonal drawdowns which materially increase the cost of pumping water in these areas. These conditions, however, are of only local extent.

The remainder of this report deals with the field and interpretive data collected and analyzed during the 1953 pumpage inventory in these four districts.

MILFORD PUMPING DISTRICT

By W. B. Nelson

Ground-Water Development

Ground-water development in the Milford pumping district has increased steadily since 1943. Records of the total pumpage and of the total acreage irrigated from wells in the Milford district are not available for many of the earlier years, but partial information is available for some years. From 1931 to 1953 the number of irrigation wells doubled, and the pumpage from these wells increased more than four times. In 1948 a total of 97 irrigation wells pumped 20,300 acre-feet of ground water, whereas in 1953 more than 41,300 acre-feet was pumped from the 136 wells then in operation. The number of acres irrigated from wells has also increased during the period 1942-53, the increase ranging from about 3,500 acres irrigated in 1942 to 9,426 acres in 1953. The change-over from surface-water irrigation to ground-water irrigation is largely responsible for the increase. Figure 3 is a map of the Milford district showing irrigation wells, the areas irrigated by wells in 1953, and water-table contours for March 1954.

Prior to 1945 most of the wells were less than 100 feet deep and equipped with small-yield centrifugal pumps. Many of these wells have since been replaced by larger, deeper wells, and only a few of the outmodeled centrifugal pumps are now in operation (Fix, Nelson, Lofgren, and Butler, 1950, p. 109-210). During this transition period the average discharge of individual wells increased from about 1 to 2 cfs, and many of the replacement wells now cover the established water rights of two or more older wells.

Because of the accelerated development of ground water in recent years and because of the concurrent downward trend of water levels in the heavily pumped area, the central part of the Milford district, as shown in figure 4, was closed to further appropriation of ground water for irrigation purposes by action of the State Engineer in December 1952.

In order to observe changes in ground-water conditions in an undeveloped area south of the district of heavy pumping, 16 observation wells were drilled by contract in the late fall of 1953. These wells are 4 inches in diameter and range in depth from 100 to 207 feet. This new network of observation wells will provide much-needed waterlevel information in strategic parts of the Milford district.

Discharge from Wells

In 1953 a total of 41,300 acre-feet of water was pumped to irrigate 9,426 acres of farmland in the Milford district. The rate of water use ranged from 0.6 acre-foot to 8.4 acre-feet per acre. This water was pumped from 136 irrigation wells. The yields of irrigation wells in the Milford district range from about 100 to 2,250 gpm. The upper histogram of fig. 5 shows the increase in ground-water use since 1933.

Figure 4. Map of Milford district showing areas of water-table decline, March 1950 to March 1954, and the "closed area."

Figure 5. Annual pumpage and water-level trends, Milford district, Utah.

Table 1 lists the irrigation wells and the estimated annual pumpage in the Milford district, for several years during the period from 1931 to 1953. The estimated annual pumpage in the Milford district for every year of the period 1931-51, inclusive, was included in an earlier report published by the State Engineer (Thomas, Nelson, Lofgren, and Butler, 1952, opp. p. 54).

During the 1953 irrigation season 350 field visits were made to the 136 irrigation wells located in the district to determine the quantities of water being pumped and the acreage of land being irrigated. In addition, 305 measurements of nonpumping water levels were made in irrigation wells in the valley when they were idle. Table 2 lists the measurements of water level and well discharge for each of these wells. Table 3 includes for each well the computed ground-water pumpage, the approximate number of acres irrigated, and rate of ground-water use in acre-feet per acre. In several instances, as is indicated in the tables, the water from two or more wells was combined to irrigate a common plot of ground. In each instance, it has been impossible to separate the number of acres serviced by each well, and the two or more wells have been considered as a single pumping unit insofar as the water-use computations are concerned.

Two histograms (fig. 6) have been prepared to illustrate (1) the distribution of water use with respect to the total acres irrigated and (2) the distribution of water use in the district with repect to the number of pumping units. The upper histogram in fig. 6 A relates to the total number of acres irrigated in the district to the rate of water application in 1953. Thus, the average acre in the district received 4.4 acre-feet of water in 1953. The lower histogram, fig. 6 B, indicates the number of pumping units that fall within each category of water-use rate and shows that during the 1953 pumping season the median well in the district supplies water at the rate of 4.7 acre-feet per acre to the adjacent land which it irrigates. This diagram shows also a balanced distribution of wells falling in the categories from 2 to 7 acre-feet per acre. It is worthy of note that these two rates of ground-water use are in close agreement.

Recharge

The most important source of ground-water recharge in the Milford district, is the Beaver River. Direct precipitation on the contributing drainage area and infiltration from surface irrigation also are important sources of recharge (Fix, Nelson, Lofgren, and Butler, 1950, p. 184-194). Significant seepage losses from the Beaver River below Minersville have been measured on several occasions. The deeper aquifiers in the valley probably are recharged by water from the Beaver River in the upper reaches of the river, and the shallow aquifers probably are replenished by the stream in the lower reaches of the river. Thus, a close correlation has been observed between the fluctuations of water level in the shallow watertable wells near Beaver River in midvalley and the amount of water flowing down this stream channel.

The flow of the Beaver River at Minersville is divided into two main streams, one of which is diverted to irrigate land in the vicinity of Minersville and the other, via the Yellow Mountain Canal for use on land southeast of Milford. Water flows in the Beaver River channel below the Yellow Mountain Canal diversion only in years of unusually high water supply, when Rockyford Reservoir is filled to capacity and when enough water spills to exceed the early irrigation needs. This excess runoff can be expected about once in 10 years on the average. Excess runoff occurred in 1952 when the total runoff during the water year

Coordinate	Application				EST	IMATED	ANNUAL	PUMPAGE	E, ACRE-F	EET	
number	or claim	OWNER	Depth	1931	1935	1940	1945	1950	1951	1952	1953
(C-28-10)							<u> </u>				
16cda-1		George Mayer						20	20	20	170
1/bda-1	A 11764	Milton Poole	0.2		120	100	100	30	200	120	160
17ccc-1	A 11870	George C. Goodwin	92		130	160	300	240	140	200	165
17cdd-1	A 14673	L O Singer	170		120		590	190	260	200	275
incut i	11 11025	J. O. Singer	110					170	200	200	212
17dcd-1	C 20722	R. T. Slinkerd	156							130	120
18aca-1	C 1089	George C. Goodwin	75		150	200	100	00	00	50	1/0
18acd-1	C 1090	George C. Goodwin	100		150	200	190	80	90 50	50	160
19abd-1	C 3359	T F Walker	60				320	180	170	120	140
174041	0 3337	1. L. Walker	00				520	100	110	120	110
19acc-1	C 6563	Clauss Marshal	63	40	130	260	170	290	250	220	210
19add-1	C 6564	Clauss Marshal	65	150	140	310	190	320	280	200	130
1966-1 1966-1	C 6352	Carl Elmer	12	200	210	200	240	130	110	60	180
1960-1 1966d-1	C 3004	Juan McKnight	20	200	210	290	240	160	190	00 00	165
1/000-1	0 5771	Ivan weenign	<i>J</i> (230	290		150	100	<i><i></i></i>	150
19ccc-1	C 3992	Ivan McKnight	87	110	200	180	260				
19ccd-4	C 3993	D. I. McKnight	26		110	100	260	290	210	110	215
19dac-1	C 1088	Lester Roberts	86	110	140	190	380	370	240	130	255
19dad-1 19dac-1	C = 1000	H I Tollow	12	110	100	170	150	100	150	170	210
174001	C 2042	11. L. Toney		120	110	00	100	190	100	170	201
19ddd-1	C 2041	Floyd Wright	109				280	170	210	110	175
20bbd-1	C 5772	A. J. Kirk	90	20	220	270	290	190	190	180	210
20bdd-1	C 2043	R. W. Jones	85	30	220	320	260	440	430	270	245
20ccc-1 20aad 1	A 15157	R. W. Jones	90		140		180	190	160	90 260	255
LUCCU-I	0 2011	K. w. Jones	04		140					300	222
20cdd-1	C 197	Floyd Wright		160	120	220	20	160	160	160	105
20dcd-1	C 10286	George Mayer	65						130	120	100
20ddd-1	A 18138	George Mayer	410						410	510	185

Table 1. Irrigation wells and estimated annual pumpage in the Milford District, Escalante Valley, 1931-53.

Coordinate	Application				EST	IMATED A	ANNUAL	PUMPAGE	, ACRE-FE	ET	
number	or claim	OWNER	Depth	1931	1935	1940	1945	1950	1951	1952	1953
(C-28-10)											
21cdd-1	A 18125	George Mayer	316					90	120	20	90
28cdd-1	A 18265	James Miner									355
29add-1	A 18265	James Miner									770
29bcc-1	C 13803	McCoy Williams	257				250	170	100		265
29bcd-1	C 13804	McCoy Williams							330	380	325
29bdd-1	C 2531	Duard Evans	60	200	210	280	200	260	210	150	160
29cad-1	C 2532	J. H. Lotthouse	78	180	140	280	250	260	170	140	175
29ccc-1	C 7801	John H. Weston	74	160	20	220	170	110	160	90	90
29ccd-1	C 7800	John H. Weston	83		390	330	320	220	360	270	535
29cdc-1	A 11742	John H. Weston	77		120			130	130	70	80
29dcc-1	C 2559	Boyd Evans	77	140	170	260	160	210	180	110	75
29ddd-1	A 18265	James Miner									365
30acd-1	C 15131	McCov Williams			10			130	240	200	270
30adc-1	C 17791	McCoy Williams	101	20	160		450	250	270	230	260
30adc-2	C 17790	McCoy Williams	65						210	230	200
30bdc-1	C 14102	Ira M. Fisher	131	220	220	240	240	240	240	60	285
30bdd-1	C 13813	Parley B. Fisher	148	120	230	340	270	210	260	250	285
30000-1	A 19665	Morgan Griffiths	196						270	200	200
30cad-1	C 8900	Ivan McKnight	52	160	170	260	240	240	100	200	200
3000001	C 4056	Morgan Griffiths	54	180	160	200	250	80	190	210	240
3lacd-1	C 9911	Clair Gillins	79	110	160	200	220	150	140	190	240
31adc-1	C 7639	Guy Whitaker	136	130	140	340	370	330	210	400	535
	0 5(10				110	510	510	550	210	100	
3ladd-1	C 7640	Guy Whitaker	77	230	220	330	280	310	320		
31bac-2	C 1527	Deibert Schow	12	100	180	260		230	220	220	215
31bad-2	0 300	K. W. Jones	90	100	150	240		250	260	230	185
21L J J 1	C 2235	John 1. May	20	190	160		190	220	200	170	9 0
31Daa-1	C 9912	Clair Gillins		60	160	270	220	200	210	160	265

Table 1 (cont.). Irrigation wells and estimated annual pumpage in the Milford District, Escalante Valley, 1931-53.

31bdd-2 31cad-1 31cbd-1 31ccd-1 31ccd-1 31cdd-1	C 15171 C 10314 C 11802 C 11801 C 10315	William Naurse Clair Gillins Ernest Myers Ernest Myers Orin Puffer	100 78 71 78	70 170 250	230 190 240	180 230 310 260	170 70 190 310 210	60 200 160 210 250	230 210 160 230 200	240 180 20 370 200	270 190 460 155	
31dcc-2 31dcd-1 31ddc-2 32aac-1 32bda-1	C 2815 C 2816 A 18181 C 20597 C 8757	Orin Puffer Orin Puffer Eugene Mayer J. H. Valine Walter Yardley	138 72 195 94 84	120	260		180 150	310 220 160 70	420 180 220 110 250	160 380 170 90 320	190 365 235 20 325	R
32bbc-1 32cac-1 32ccc-1 32ccc-1	C 8756 C 305 C 2040 C 3837	Walter Yardley Don Alger Jack Hadley Lock Hodley	132 109 72	170 210 120	170 200 80 120	310	290 410	290 440	280 360	250 370	205 370	EPORT
32cde-1	C 1421	C. Edwin Paice	85	120	200	360	40	400	210	300	190	0
32dbc-1 32dcc-1	C 1423 C 1422	C. Edwin Paice C. Edwin Paice	84 68	110 180	4 00 250	340 330	280 310	300 250	150 140	190 290	165 240	F ST
(C-28-11) 24daa-1 25abd-1	C 11221 C 9402	Leo Mayer George Smith	204 77	210 80	200 310	330	290	190	290	120	255	'ATE 1
25dcd-1 25ddd-1 35aad-1	C 3392 C 4	A. R. Backus Kent Smith W. D. Stewart	431 73 51	190	220	260	240	240 270	230 260	160 190	160 210	ENGI
35add-1 35ddd-1 36aad-1	C 3 C 3619 C 7662	Lewis Stewart Mrs. W. M. Bond Gus Hooten	77 110	200	140	170	150	270 320 240	240 290 280	280 190 200	295 265 255	NEER
36add-1 36bac-1	C 20233 C 5265	W. J. Stewart	62	160	160		280	270	320	370	60 295	
36bad-1 36bdd-1 36bba-2	C 6519 C 2 C 5267	W. D. Stewart W. D. Stewart W. D. Stewart	85 230 66	140 100	140 240	170	220	170 360	10 370	320	310	
36cad-2 36cbd-1	C 19388 C 10149	Lewis Stewart Eugene Mayer	170 78	100	30	170	200	280 250	270 210	300 110	350 175	
36cca-1 36cdd-1	C 1 C 3691	Eugene Mayer John W. Stahl	84	70 140	60 200	180 270	170 410	230 550	200 380	190 470	235 470	27

Coordinate	Application				EST	IMATED	ANNUAL	PUMPAGE,	ACRE-F	EET	
number	or claim	OWNER	Depth	1931	1935	1940	1945	1950	1951	1952	1953
(C-28-11)											
36dcc-1 36dcd-1	C 5143 C 5142	Stanley B. Lewis	71	90	140 190	140 250	60 200	180	200	200	200
36ddd-1 36ddd-2	C 5296 C 5297	Dan Rollins Dan Rollins	60 80	170	120 160	180 210	190 180	210 200	$170 \\ 190$	220 190	200 150
(C-29-10)	0 5271		00	110	100	210	100	200	170	170	150
5add-1 5bac-1	A 20049 C 6839	Fowler & Pepple L.D.S. Church	50	250	210	290	290	270	210	10	530 110
5cad-1 5cdd-3	C 10285 C 7638	Jack Hadley Guy Whitaker	84 198	290	210	260	240	30 390	250 300	240 270	280 280
5dcd-1 6aad-1 6abb-1	A 19996 C 17295 a 2042	Otto Fowler Alvin Jones Gael Elmer	420 95	230	150	160	60	250 210	150 1 9 0	80 160	725 170
6aca-1 6baa-1	C 5284 C 4494	Gael Elmer Don Elmer	200	280 160	420 330	230	230	190 160	180 130	200 160	470 270
6bbd-1 6cdd-1 6dcd-1 6ddc-1	C 13109 A 17927 A 11727 C 13116	Don Elmer Rosheen Lavender Lloyd Mayer Willard Thompson	130 350 235	120	200	110	120	140 450 180 130	150 530 460 170	110 60 410 180	370 360 205
7bbd-1 7bda-1 7ddd-1	C 15658 C 13 A 13697	Arnold Lawson Arnold Lawson Russell Mayer	80 80 245	130	230 170	250 200	230 230	200 200 510	240 240 620	180 180 630	170 115 820
8cdd-1 8ddd-1 16cdc-2	A 19845 A 18484 A 18493	M. F. Persons M. F. Persons Eugene Myers	212							250) 500}	1515 595
172dd-1 17cdd-1 17ddd-1 18add-1 18add-1	A 18483 A 18481 A 18482 A 18373 A 18479	M. F. Persons M. F. Persons M. F. Persons Russell Mayer Russell Mayer	200 200 200 168 170					510 650 670 550 260	650 520 550 840 650	1130 330 850 700 460	1330 870 925 535 585

Table 1 (cont.). Irrigation wells and estimated annual pumpage in the Milford District, Escalante Valley, 1931-53.

REPORT OF STATE ENGINEER

(C-29-11) 1abd-1 1ada-2 1add-1 1bad-1 1cac-1 1cac-2 1ddd-1 2add-1 2add-1 2add-1 1aba-1 11aba-1 11aba-1 11cad-1 11cd-1 11cdd-1 11cdd-1 11ddc-1 11ddd-1 12add-1 12add-1 12add-1 23bdd-1 23bdd-1 23bdd-1 23bdd-1 27bd	C 6523 C 11579 C 10290 C 1166 C 157 C 156 A 18563 C 12797 C 2561 A 21160 C 5768 C 5769 a 2356 C 7541 C 7705 C 7540 C 1169 C 1168 A 17298 A 18266 A 18004 A 17298 A 18266 A 18004 A 17882 C 2814 C 17158 A 19840 C 13119 C 2619 C 2618 C 2617 A 18062 C 2617 A 18062 C 2620 A 20102 C 10254 OF WELLS	Basil Rollins M. K. Williams Orin Williams Max K. Price Doyle Sly Doyle Sly A. R. Backus Jimmy Sherwood Lyle Applegate Earl Limb Alvin Jones Alvin Jones Alvin Jones Cook Brothers J. L. Shepherd Russell Meyer J. L. Shepherd Cook Brothers Cook Brothers George Jessen George Jessen George Jessen Ben Lewis M. F. Persons Luther Tonn M. F. Persons Luther Tonn M. F. Persons J. H. Hankins J. H. Hankins	$\begin{array}{c} 86 \\ 58 \\ 58 \\ 140 \\ 72 \\ 225 \\ 64 \\ 52 \\ 52 \\ 64 \\ 52 \\ 64 \\ 52 \\ 64 \\ 65 \\ 83 \\ 202 \\ 276 \\ 248 \\ 65 \\ 118 \\ 200 \\ 68 \\ 203 \\ 68 \\ 203 \\ 7 \end{array}$	150 140 120 110 150 170 120 220 130 130 130 210 290 320 140 68	150 140 220 170 130 200 110 290 150 290 150 220 340 300 140 270 83	230 130 110 160 230 210 170 330 350 220 440 290 390 350 220 220 220 211 2112	220 170 190 170 160 230 260 180 380 380 380 340	240 260 320 250 240 180 350 280 160 130 140 420 330 100 250 330 20 40 270 310 170 440 220 250 320 170 580 180 124 460 130 140 180 180 180 180 180 180 180 18	160 250 260 250 240 170 320 190 160 50 320 280 280 280 280 280 210 320 260 260 260 260 260 260 260 260 260 2	270 170 190 320 180 120 800 200 190 140 110 320 270 240 140 180 240 200 310 180 380 450 280 650 250 440 250 160 840 250 160 840 250 160 840 250 130	250 125 185 370 260 325 485 170 160 240 545 310 170 160 115 335 110 250 355 450 590 775 485 435 960 530 205 130 620 400 510 135	REPORT OF STATE ENGINEER
TOTAL ACRE-FEH	ET PUMPED			10,300	15,200	17,140	18,070	30,290	32,210	32,310	41,290	29

OF STATE ENGINEER

			Static 1	neasurements		Pumping measurements	
Coordinate number	Depth (feet)	Type of pump & power ¹	Date	Depth to water ² (feet)	Date	Depth to water ² (feet)	Discharge (gpm)
(C-28-10)							
16cda-1	170	ΤD	3/16 4/7 10/8 12/9	37.36 37.20 40.92 35.58	7/13 8/27	122.0 156.1	810 970
17ccc-1	92	ΤE	3/17 10/8 12/9	5.25 9.92 9.19	5/8 7/14 8/20	21.5 23.0 24 7	550 485 460
17cdc-2 17cdd-1	170	T E T E	~~, /		5/8 5/4 7/14	29.0 24.8 28.5	605 570 505
17dcd-1	156	ΤE	3/17 10/8 12/9	17.33 22.94 20.31	6/9 7/13	29.9 39.7 41.0	485 445 410
18acd-1 19abd-1 19acc-1	100 60 63	C E C E T E			8/26 8/26 5/6 7/13	33.0 36.0	a390 a245 480 380
19add-1	65	CE	3/17 10/8	7.03 13.00	6/28 5/6 7/13	53.5 25.7 28.0	320 370
19bbc-1	72	ТЕ	14/9	10.57	7/14	20.5	315
19bcc-1	58	ΤE			8/27 7/14	22.5 29.5	325 340
19cdb-1	90	CE			8/27 6/13 8/27	30.2	320 340 325
19ccd-4		ΤE	3/17 10/14 12/9	7.97 17.18 11.93	5/6 7/14 8/26	44.0 47.5 50.0	400 350 340

Table 2. Measurements of water level and discharge of irrigation we	ells in the Milford District, Escalante Valley, 1953.
---	---

19dac-1	86	ТЕ			7/14		380	
104-4-1	72	ΤE			8/28	20.7	340	
190au-1	12	1 5			6/16	32.1	7.00	
					7/13	41.0	295	
		T P			8/28	a38.1	235	
19dcc-1		1 E			5/6	25.3	485	
					7/14	29.7	455	
					8/28	30.1	375	
19ddd-1	109	CE	3/17	8.83	5/4	30.7	405	R
			10/8	17.12	7/14 8/28	36.U 35.7	260	EF
20bbd-1	90	ТЕ	12/9	14.01	5/5	25.0	250	ğ
		_			7/14	27.5	480	RI
20bdd-1	85	ΤE			5/5	37.6	6 9 0	6
20000-1	00	CF			7/14	35.8	620 160	Ĭ
20000-1	<i>,</i> 0				8/27	34.9	155	S
20ccd-1		ТЕ			6/16	46.3		Ţ
					7/14	49.0	550	ĥ
					5/4 8/28	44.5 40.8	020 545	E
20cdd-1		ТЕ	3/17	12.19	7/13	46.2	430	E
			10/8	19.63	8/28	45.5	425	N
201-1-1	6F	Тр	12/9	16.73	6/10		200	Ë
20ddd-1	410	TE			6/10	52.8	585	Æ
20000	110	- 2			7/14	58.0	510	Ë
					8/28	59.0	475	æ
21ccd-1	316	I E	3/17	22.68	6/17	73.5	210	
			12/9	26.19	0/21	60.5	210	
28cdd-1		ТЕ	3/17	18.06	5/8	98.4	610	
			10/8	25.34				
29add-1		ТЕ	3/17	21.39 13.76	6/12		a1350	
2,444			10/8	25.38	0/12		u1550	
			12/9	18.00				లు
								<u>⊷</u>

			Static n	Pumping measurements			
Coordinate number	Depth (feet)	Type of pump & power ¹	Date	Depth to water ² (feet)	Date	Depth to water ² (feet)	Discharge (gpm)
(C-28-10) cont.							
29bcc-1		ΤE			5/12	24.7	635
					6/16	28.4	525
					7/13	29.4	460
201 1 2					8/28	31.8	360
29bcd-2		TE			5/6		590
					7/13		380
					8/28		365
29bdd-1	60	CE	3/18	12.72	5/6	28.6	460
			10/8	22.70	7/13	31.0	230
			12/9	18.56	8/28	33.4	160
29cad-1	78	CE			7/14	30.3	265
					8/31	31.5	240
29ccc-1	74	CE	3/17	12.84	6/16		a100
			10/8	20.00	7/14	29.0	165
			12/9	16.66			
29ccd-1	83	ТЕ			5/6	26.8	500
					6/16	30.5	460
					7/14	32.5	430
					8/31	335	420
29cdc-1	77	CE			5/6	55.5	320
22000	••	02			6/17		150
29dcc-1	77	CF	3/17	11.46	8/26		100
294001		0 2	10/8	10.85	0/20		190
			12/0	17.09			
29ddd-1		ТЕ	10/8	26.26	6/12		005
27000-1		1 6	12/11	20.20	0/12		885
30acd.2		ТЕ	12/11	20.36	5/12	20 C	500
Juacu-2		I E			5/12	39.0	500
					0/10	40.4	460
20ada 1		ΤE	2/17	11 (2	(/13	43.0	420
Juade-1		I E	3/1/	11.02	5/6	31.4	455
			10/8	20.40	7/13	37.5	365
			12/9	17.53	8/28	38.8	345

Table 2 (cont.). Measurements of water level and discharge of irrigation wells in the Milford District, Escalante Valley, 1953.

30bdc-1	131	ΤE			5/6 6/16 7/13 8/31	30.4 34.0 35.7	550 550 440 380
30bdd-2	148	ΤE			5/6 6/16 7/13 8/31	38.5 39.8 42.0 43.0	670 610 510 430
30c ac-1	196	ТЕ			5/7 7/15	36.0 42.0	600 520
30cad-1	52	CE			6/13	11.1	285
30cdc-1	54	тг	2/17	14.50	8/26	24.0	145
Jocutri	Эт	I L	3/1/ 10/14	14.50	5/1	34.9	445
			17/9	21.71	0/10	37.0	330
			12/)	21.51	8/31	37.0	a270
31acd-1	79	СЕ			5/7	32.0	240
31adc-1		ТЕ			5/7	47.8	1050
					6/17	52.8	
					7/16	54.4	925
31haa 2		O F			9/1	56.5	850
JIDac-2		CE			5/7	20.0	390
					7/15	38.0	270
31bad-2	90	ТЕ			0/31 5/7	39.8 26 7	210
					7/15	40.0	400 a190
					8/31	41.0	a160
31bcd-1		ТЕ			5/7	35.2	240
211 1 1 1	<u></u>				7/16	42.1	105
316dd-1	89	TR	3/17	18.31	5/7	40.0	575
			10/8	29.25	7/16	47.6	440
31bdd-2	100	тг	12/9	24.62	9/1	51.3	400
51000-2	100	IL			5/1	48.2	650
					0/1/ 7/16	49.0	400
					0/1	55.2	490
31cad-1	78	ТЕ			5/12	40.8	515
					9/1	51.5	310

_				Pumping measurements			
Coordinate	Depth	Type of		Depth to water ²		Depth to water ²	Discharge
number	(feet)	pump & power ¹	Date	(feet)	Date	(feet)	(gpm)
(C-28-10) cont.							
31ccd-1		ТЕ			6/10	41.0	870
		1.5			7/15	43.4	780
					8/31	56.1	800
31cdd-1	78	CF			6/10	3002	230
	10	02			7/15		195
					8/31	515	195
31dcd-1		чт			6/10	45.9	200
010001		1 2			7/16	19.9	430
					8/31		345
31dcc-2	138	ТЕ			6/10	57.8	665
	100				7/16	59 9	585
					8/31	64.8	525
31ddc-2	195	ТЕ			7/16	01.0	490
32aac-1	94	ĈĒ			6/17	24.0	
		0.2			8/26	21.0	510
32bda-1	84	ТЕ			5/12	28.4	510
	- •				7/17	35.6	500
32bbc-1	132	ТЕ			8/26	44.8	460
32cac-1	109	ΤĒ			5/12	31.6	590
					7/17	37.8	545
					8/31	42.8	510
32ccd-1		ТЕ			6/13	43.7	485
					7/17	45.2	445
					8/31	47.2	380
32cdc-1	85	ТЕ			5/6	34.1	505
					6/17	39.0	460
					7/17	41.0	385
32dbc-1	84	СЕ			5/6	34.0	460
					7/17	36.9	340
					8/31	37.4	260
32dcc-1	68	CE			5/6	~,	555
					7/17		410
					8/31		370
					•, • •		510

Table 2 (cont.). Measurements of water level and discharge	e of irrigation wells in the Milford District, Escalante Valley, 1953.
--	--

-

(C-28-11)							
24daa-1	204	CE	3/17 10/23	7.47 11.30 9.25	7/14 8/27	21.3 22.0	410 395
25dcd-1	431	ΤD	3/17 10/23	9.23 9.21 17.19	6/9 8/20		1800 1700
25ddd-1	73	ТЕ	12/9	14.20	7/15	38.2	235
35aad-1	51	CE			5/11 8/27	43.0	410
35add-1	77	ΤE	3/17 10/14 12/9	12.62 21.56 15.65	5/11 9/1	21.8 30.2	615 415
35ddd-2		ТЕ	12/)	13.05	6/11 7/13	39.2 41.0	380 345 335
36aad-1	110	ΤE			6/10 7/15	41.0 44.0	510 450
36add-1	62	CE	3/18 10/8	12.98 25.74	6/9 7/15	49.5 30.5 32.5	330 190
36bac-1		ТЕ	12/8	19.07	9/1 5/8 6/15	25.5 26.5	130 660 625
36bdd-1	230	ΤE			9/1 5/8 6/15	28.5 28.0 30.0 35.2	520 435 590 550
36cad-2	170	ТЕ	3/18 12/9	1 5.45 20.50	7/15 9/1 5/8 6/15	44.4 44.2 33.9 38.6	490 475 640 585
36cbd-1	78	ТЕ			7/15 9/1 6/11	44.0 46.7 29.0	530 500 390
36cca-1	84	ТЕ			7/15 9/1 6/11 7/15 9/1	30.2 35.2 32.7 35.8 36.7	365 340 480 440 405

	Static measurements					Pumping measurements	
Coordinate number	Depth (feet)	Type of pump & power ¹	Date	Depth to water ³ (feet)	Date	Depth to water ² (feet)	Discharge (gpm)
(C-28-11) cont.			~ ~ ~		<u> </u>		
36cdd-2		ΤE			5/8 7/15	49.9 54.0	905 685
36dcc-1		ТЕ			5/11 7/13	37.7 45.5	510 315
36ddd-1	60	CE	3/18 10/8	16.49 27.00	9/1 5/7 6/15	46.3 33.5 33.5	280 450
36444.2	80	C E	12/9	23.21	7/13 8/27		260 170
50000-2	80	ΤĒ			8/27	51.2	295
(C-29-10)					6 19		
Sadd-I		ΤĘ	4/7 10/9 12/9	36.42 44.38 40.28	6/9 7/17	100.0	1380 1300
5bac-2		ТЕ	12, 2	10.20	7/23	a55.0	395
5cad-1	84	ТЕ			9/2 5/10 7/17	50.2 42.6 51.9	355 600 495
5cdd-3	198	ТЕ	3/17 10/9	41.02 48.00	9/2 5/8 6/16	54.7 48.0 54.6	295 770
			12/9	44.15	7/17 8/26	63.7 64.0	515 a470
5dcd-1	420	ТЕ			6/13	93.8	2000
6aad-1	95	CE			7/17 6/13 7/23	99.0 47.6 a47.0	480 165

Table 2 (cont.). Measurements of water level and discharge of irrigation wells in the Milford District, Escalante Valley, 1953.

REPORT OF STATE ENGINEER

баса-1 бbаа-2	200	Т Е Т Е			5/5 6/17 7/18 9/1 6/10 6/17	59.5 63.3 63.9 64.6 54.0 56.8	1090 910 880 770 705
бcdd	350	ТЕ			7/15 8/28 5/6 7/20 9/1	58.6 61.8 75.6 77.0 77.9	660 610 1550 1330 1200
6dcd-1	235	ТЕ			7/20	67.5	680
6ddc-1		ТЕ	3/16 10/9	34.10 44.58 40.53	6/12 7/18	50.5 51.0	500 470
7bbd-1	80	ΤE	12/9	-0. <i>33</i>	6/12 7/18	48.5	305 280 235
7bda-1	80	CE			6/12	47.7	265
7ddd-1	245	ΤD			7/18 6/12 7/20	48.8	170 1520 1370
8cdd-1		ТР			9/2 7/22		1350 1580
8ddd-1		ТР			7/22	a97.0	1870
16cdc-1	212	ТЕ			9/2 6/12 7/22	a96.0	1670 1360 1240
17add-1	200	ΤE	3/10 10/9 12/9	64.05 77.80 70.47	9/2 5/8 6/16 7/22	83.7 91.0 94.7	2120 2040 1930
17cdd-1	200	ТЕ			8/19 6/12 7/20 9/2	96.5 93.0 96.5 97.0	1880 2250 2220 2200
			Static 1	neasurements		Pumping measurements	
-----------------------------	-----------------	--------------------------------------	--	-------------------------	-----------------------------	---------------------------------------	----------------------------
number	Depth (feet)	Type of pump & power ¹	Depth to water ² Date (feet)		Date	Depth to water ² (feet)	Discharge (gpm)
(C-29-10) cont.							
17ddd-1	200	ТЕ	3/17 10/23 12/9	74.28 84.60 80.40	5/8 6/12 7/22 8/14	94.0	1610 1610
18add-1	168	ΤD	3/17 10/23 12/9	53.79 61.85 60.00	6/12 7/20		1330 1020 960
18ddd-1	170	ΤD	12/9	00.00	6/12 7/20 9/2	a78.0 a65.0	1460 1340 1310
(C-29-11) Iada-2	86	ТЕ			5/11 7/20		460 310
1abd-1	86	ΤE			9/1 5/11 7/20	32.1 39.9	235 340
1add-1	58	ΤE	3/17 10/14	24.02 32.85	9/1 5/7 7/18	43.5 40.4	345 400 340
1bad-1	140	ТЕ	12/8	29.50	9/1 5/11 6/15	42.2 47.6	350 705
lcac-1	72	ТЕ			9/1 6/11	49.9 51.5 33.7	610 590 400
1cad-2	225	ТЕ			6/3	41.0	625
1ddd-1		T D			9/1 6/9 7/18 9/1	42.8	600 1780 1540 915

Table 2 (cont.). Measurements of water level and discharge of irrigation wells in the Milford District, Escalante Valley, 1953.

2aac-1	64	ТЕ			5/11 6/15	36.2 37.0	205
2add-1	52	CE	12/9	18.44	5/11	31.7	205
2ddd-1		CE			7/13 5/11 7/13 9/1	32.0 31.3 35.0	255 260 230
11 a ad-1		ТЕ	3/17 10/20 12/9	19.15 23.47 22.20	6/11 7/20 8/20	52.4 59.5 60.7	1060 1080 1060
11acd-1	82	C E T E	·		6/15 7/18 9/2	31.5 41.3 40.8	610 555 500
11baa-1		ТЕ	3/17 10/13 12/9	8.73 13.18 11.67	7/13 9/1	25.5 26.7	325 310
11cad-1	96	ТЕ			6/11 7/18 9/2	37.9 43.2 42.8	680 750 680
11ccd-1	62	ТЕ			7/20	12.0	420
11cdd-2		ТЕ	3/17 10/13 12/9	20.26 22.79 22.35	6/11 7/18	36.9 38.2	405 640 620
11ddc-1	65	ТЕ	12/ 5	22.55	7/18	35.0	265
11ddd-1	83	CE			9/2 5/11	40.3	255 640
12add-1	202	ΤD	3/17	32.00	9/2 7/23	38.0	630 1070
12ddd-1		ΤD	10/9	38.50	9/2 8/27	38.7 a78.0	1250 1710
13add-1	276	ТЕ	3/17 10/9	39.26 45.54	9/2 6/12 7/23	a78.0 68.0 67.6	1730 1380 1310
13ddd-1	248	ТЕ	3/17 10/9 12/8	47.48 53.22 51.52	9/2 5/7 7/23 9/2	67.5 62.0 64.1 65.5	1305 1480 1350 1300

.

Discharge (gpm)	
880 645 710 685	
a1910 1690 1720 865 810 535 1250 1230 1215 750 750	

Pumping measurements

|--|

Static measurements

Depth (feet) Coordinate Type of Depth to water² Depth to water² number Date (feet) Date (feet) pump & power1 (C-29-11) cont. 22.95 26.52 26.55 22.63 23.85 5/11 7/22 9/2 7/20 3/17 10/13 14aad-2 ΤE 31.9 33.5 35.4 12/9 3/17 22add-1 65 ΤE 38.7 12/9 T D T E 60.3 58.0 55.3 23bdd-1 8/27 7/20 9/2 7/23 9/2 7/20 6/11 7/22 9/2 6/11 7/20 9/2 6/11 7/20 9/2 23cad-1 27bad-1 200 ТΕ 27bdd-1 27dad-1 T E T E 3/17 10/8 12/9 35.24 37.13 36.48 55.3 55.9 57.0 300 27dcb-1 ΤЕ 750 745 935 970 975 28add-2 ΤЕ 46.0 45.5 45.4 ===

¹ Pumps: T, turbine; C, centrifugal. Power: E, electric motor; D, diesel engine; P, propane engine. ² Below land surface. *a* Accuracy questionable.

Coordinate	Application		Pumpage	Acres	Acre-feet
number	or claim	OWNER	(ac. ft.)	irrigated	acres
(C.28.10)					
16cda-1		George Mayer	170	66	2.6
17bda	A 11764	Milton Poole	20	14	1.4
17ccc-1	A 11870	G. C. Goodwin	. 1607		
17cdc-1	C 1087	G. C. Goodwin	. 165	54	6.0
17cdd-1	A 14623	Dr. Kohler	. 275	53	5.2
17dcd-1	C 20722	R. T. Slinkard	. 120	30	4.0
18acd-1	C 1090	G. C. Goodwin	. 160	40	4.0
19abd-1	C 3359	T. E. Walker	. 140	40	3.5
19acc-1	C 6563	Clauss Marshall	. 2101	105	
19add-1	C 6564	Clauss Marshall	- 130}	105	3.2
19bbc-1	C 6352	Carl Elmer	. 1807	122	27
19bcb-1	C 5340	Luon Maknight	- 102)	133	2.1
19000-1	C 3002	loss Maknight	- 150(77	17
1900a-4	C 1098	Jess McKinght	- 2155	"	7.7
190aC-1	C 1086	Lester Roberts	210	85	55
10dco.1	C_{2042}	H I Tolley	285	40	5.8
19ddd.1	A 21700	Floyd Wright	175	36	40
20bbd-1	C 5772	L A Kirk	210	30	54
20bdd-1	C 2043	R. W. Jones	245]	57	5.1
20000-1	A 15157	R. W. Jones	65	150	4.4
20ccd-1	C 2044	R. W. Jones	355	100	
20cdd-1	Č 197	Floyd Wright	. 105	38	2.8
20dcd-1	C 10286	Mayer Brothers	. 100}		
20ddd-1	A 18138	George Mayer	. 185\$	142	2.0
21cdd-1	A 18125	Mayer Brothers	. 90	46	2.0
28cdd-1	A 18265	James Miner	. 355	a5 80	2.6
29add-1	A 18265	James Miner	. 770	a	
29bcc-1	C 13803	McCoy Williams	. 265	b166	6.7
29bcb-1	C 13804	McCoy_Williams	. 325	Ь	
296dd-1	C 2531	Duard Evans	. 160	55	2.9
29cad-1	C 2532	J. H. Lotthouse	. 175	37	4.7
29ccc-1	C 7801	Waldo Yardley	. 90	114	<i>c</i> 2
29ccd-1	C 7800	Waldo Yardley	. 535}	114	6.2
29cac-1	A 11/42	Paul Europ	. 601	47	16
29000-1	A 19765	James Miner	. 15	77	1.0
30acd.1	C 15131	McCov Williams	. 303	а 1	
30adc-1	C 17791	McCov Williams	260	b	
30bdc-1	C 14102	Ira Fisher	. 285	59	4.8
30bdd-2	C 13813	Parley Fisher	. 285	69	4.1
30cac-1	A 19665	Morgan Griffith	. 200	c98	4.5
30cad-1	C 8900	Ivan McKnight	. 150	38	4.0
30cdc-1	C 4056	Morgan Griffith	. 240	с	
31acd-1	C 9911	Clair Gillins	110	d	8.0
31adc-1	C 7639	Guy Whitaker	. 535	64	8.4
31bac-2	C 1327	Delbert Schow	. 215	37	5.8
31bad-2	C 306	R. W. Jones	. 185	31	6.0
31bcd-1	C 2233	J. I. Nay	. 90	38	2.4
31bdd-1	C 9912	Villins	. 265	_d	60
31bad-2	C 15171	Clain Cilling	. 270		0.9
31ccd-2	C 10314	Ernest Mayer	460	26 76	61
31cdd-1	C 10315	O T Puffer	155]	10	0.1
31dcd-2	C 2815	O. T. Puffer	190	118	60
31dcd-1	Č 2816	O. T. Puffer	365		0.0
31ddc-2	A 18181	Mayer Brothers	235	76	3.1
32aac-1	C 20597	J. H. Valine	20	36	0.6
32bda-1	C 8757	Walter Yardley	325	_	
32bbc-1	C 8756	Walter Yardley	2055	88	6.1
32cac-1	C 305	Don Alger	. 370	63	5.9
32ccd-1	C 3837	Gus Hooten	. 190	38	5.0

Table 3. Pumpage inventory, Milford District, Escalante Valley, 1953.

Coordinate	Application		Pumpage	Acres	Acre-feet
number	or claim	OWNER	(ac. ft.)	irrigated	acres
(C-28-10)					
32cdc-1	C 1421	C. E. Paice	190]		
32dbc-1	C 1423	C. E. Paice	165}	148	4.1
32dcc-1	C 1422	C. E. Paice	240]		
(C-28-11)					
24daa-1	C 11221	Leo Mayer	255	57	4.5
25dcd-1	A 19995	A. R. Backus	750	238	3.2
25ddd-1	C 3392	Kent Smith	160	43	3.1
35add-1		W. D. Stewart	210	42	7.0
35ddd.1	C 3619	Mrs W/ M Bond	295	42	7.0 5.4
36aad-1	C 7662	Gus Hooten	205	78	33
36add-1	C 20233	Leo Mayer	60	35	1.7
36bac-1	C 5265	W. J. Stewart	295]		
36bdd-1	C 2	W. D. Stewart	310	157	6.1
36cad-3	A 19388	Lewis Stewart	350]		
36cbd-2	C 10149	Eugene Mayer	175)		2.0
30cca-1	C = 1	Eugene Mayer	2353	114	3.6
30caa-2 36daa 1	C 5143	H. S. Thompson	470	71 41	0.0
36ddd-1	C 5296	Dan Rollins	$\frac{200}{200}$	71	7.7
36ddd-2	C 5297	Dan Rollins		79	4.4
$(C_{2}, 29, 10)$,		
5add-1	A 20049	Fowler & Pepple	530	e314	4.0
5bac-2	C 6839	L. D. S. Church	110	33	3.3
5cad-1	C 10285	Alden Hadley	. 280	76	3.7
5cdd-3	C 7638	Guy Whitaker		75	3.7
5dcd-1	A 19996	Fowler & Pepple	725	e	
6aad-1	C 17295	Alvin Jones	170	38	4.5
baca-1	C 5284	Gael Elmer	4/01	170	EO
6cdd-1	A 17027	Mover Brothers	. 270)	207	5.0 1.8
6dcd-1	A 11727	Mayer Brothers	360	79	4.6
6ddc-1	C 13116	H. S. Thompson	. 205	75	2.7
7bbd-1	C 15658	Arnold Lawsen	. 170)		
7bda-1	C 13	Arnold Lawsen	. 115)	91	3.1
7ddd-1	A 13697	Russell Mayer	820	f550	3.5
8cdd-1	A 19845	M. F. Persons	. 1515	g1122	4.1
8ddd-1 16odo 7	A 18484	M. F. Persons		120	5.0
17add.1	A 10495	M E Demons		120	5.0
17cdd-1	A 18481	M F Persons	870	s o	
17ddd-1	A 18482	M. F. Persons	925	s g	
18add-1	A 18373	Russell Mayer	535	ĥ	
18ddd-1	A 18479	Russell Mayer	. 585	f	
(C-29-11)					
labd-1	C 6523	Basil Rollins	. 250	35	7.2
lada-Z	C 11579	Mayer Brothers	. 125	50	2.5
1add-1	C 10290	May V Drice	. 165	41 73	4.5
lcac-1	C 157	Dovle Sly	260)	(.)	5.1
lcad-1	C 156	Doyle Sly	325	119	4.9
1ddd-1	A 18563	A. R. Backus	485	235	2.1
2aac-1	C 12797	Jimmy Sherwood	. 170	50	3.4
2add-1	C 2561	Lyle Applegate	. 160	31	5.2
2dcd-1	A 21160	Earl Limb	. 240	56	4.3
11aad-2	C 5768	Alvin Jones	. 5451	100	7.0
11acd-2	C 5/69	Aivin Jones	. 310}	108	(.9 4 5
11cad-1	C 7541	I I Shepherd	160	50 h78	т.) 64
11ccd-1	Č 7705	Russell Mayer	115	28	4.1
11cdd-2	Č 7540	J. L. Shepherd	335	ĥ	
		· · · · · · · · · · · · · · · · · · ·	-		

 Table 3 (cont.). Pumpage inventory, Milford District, Escalante Valley, 1953.

Coordinate	Application		Pumpage	Acres	Acre-feet
number	or claim	OWNER	(ac. ft.)	irrigated	acres
(C-29-11)					
11ddc-1	C 1169	R. E. Connally	. 1107		
11ddd-1	C 1168	R. E. Connally	. 250 (74	4.9
12add-1	A 17298	A. R. Backus	. 3551		
12ddd-1	A 18266	A. R. Backus	. 450)	157	5.1
13add-1	A 18004	George Jesser	. 590)		
13ddd-1	A 17882	George Jesser	. 775	267	5.1
14aad-1	C 2814	Ben Lewis	485	72	6.7
28add-1	C 17158	M. F. Persons	. 435	70	6.2
23bdd-1	A 19840	Luther Tonn	. 960	157	6.1
23cad-1	C 13119	M. F. Persons	. 530	77	6.9
27bad-1	C 2618	J. H. Hankins	. 205)		
27bdd-1	C 2617	J. H. Hankins	. 130§		
27dad-1	A 18062	J. H. Hankins	620)	234	5.8
27dcb-1	C 2620	J. H. Hankins	. 400∫		
28add-2	C 10254	Otto Kesler	. 510	68	7.5
TOTAL			41,290	9,440	Avg. 4.4

Table 3 (cont.). Pumpage inventory, Milford District, Escalante Valley, 1953.

Water from 3 wells commingled to irrigate 580 acres.

Water from 4 wells commingled to irrigate 166 acres. b

Water from 2 wells commingled to irrigate 98 acres. d Water from 3 wells commingled to irrigate 71 acres.

Water from 2 wells commingled to irrigate 314 acres.

Water from 3 wells commingled to irrigate 550 acres.

Water from 5 wells commingled to irrigate 1122 acres.

g Water from 5 wens comminged to irrigate 78 acres.

(October 1, 1951, to September 30, 1952) was 49,970 acre-feet measured at the gaging station at Minersville. Of this quantity, an estimated 19,450 acre-feet was used during the year in the Minersville area and about 17,720 acre-feet was diverted into the Yellow Mountain Canal. There was a runoff of 11,570 acre-feet from the area as measured at the gaging station on Beaver River 3 miles north of Milford. Of this total of 11,570 acrefeet, an estimated 2,770 acre-feet occurred as spring snow melt from the flat valley floor. Thus, as much as 4,000 acre-feet of water was lost from the stream channel and much of this water served to recharge the underground reservoir.

Recharge to the ground-water reservoir occurs also in areas where considerable amounts of water are lost by seepage from canals and irrigated lands. Records of water-level fluctuations in wells show that this deep percolation results in substantial recharge to the ground-water reservoir.

Shift in Area Irrigated from Beaver River

Beginning in about 1952 a general shift in surface-water use in the Milford district began, and this change should have a significant effect on future ground-water conditions in the valley. It has been brought about primarily by the intensive farming practices that have been adopted in the farming area south of Milford, and by the conversion of the principal water supply from surface streams diverted from Beaver River to large irrigation wells. Thus, surface water that formerly was spread for irrigation on the broad, flat bottom lands south of Milford and thereby recharged the shallow water body in that area is now being diverted for use in other parts of the valley, notably in the vicinity of Minersville. As yet no marked effects of this shift in the area of groundwater recharge have been noted; however, it could add to the complexity of the ground-water problems in the next few years.

Figure 6. Distribution of pumpage in the Milford district in 1953 showing (A) rate of ground-water use with respect to acres irrigated, and (B) (opposite page) rate of ground-water use with respect to number of pumping units.

As pointed out earlier, 16 new observation wells were drilled in 1953 in the Minersville-Thermo vicinity to keep track of water-level changes in this part of the valley. Many of the new observation wells were installed in and near the recently opened irrigation area west of Minersville and in bordering areas of the valley where points of observation were needed. It is believed that the water-level records from these wells will become increasingly valuable as development in the southeastern part of the valley continues, and the effects of the shift in the area irrigated from the Beaver River become significant.

It is interesting to note that in 1952 during the period of high spring runoff only a small marginal area east of the Milford pumping district received surface-water irrigation, with the bulk of the runoff being permitted to flow through and leave the areas of the valley recharge via Beaver River. In former years of high runoff, excess stream flow was used to irrigate extensive areas on the valley floor with the result that most of the floodwater percolated into the ground to recharge the underground reservoir. The effects of these shifts in ground-water recharge and the effects of more intensive use of ground water in the valley are being studied carefully.

Water-Level Trends

The modified hydrographs of 10 selected observation wells in the Milford district are shown in figure 5. These show only the year-end water levels in wells located within the district of heavy pumping, and the close correlation between water-level trends in each of these wells and the record of ground-water pumpage is noteworthy. Wells outside the zone of influence of these pumped irrigation wells have shown little change over the period of record. Thus, water levels in these outlying wells were about the same at the end of 1953 as they were at the end of 1935. The end of 1953 marked a 6-year period of increased pumping, however, whereas an extended drought was terminated in 1935.

Water levels in the pumping district reflect somewhat the trend of runoff of the Beaver River. Thus in 1952, a year of exceptionally high runoff, a slight arresting of the downward water-level trends was noted in many of the wells, even though much of this floodwater passed the areas of ground-water recharge rather than being spread over them. Similarly, the trend of water levels during 1938 (fig. 5) showed a marked rise in response to the exceedingly high runoff of the Beaver River that year and to the large amount of surface spreading of this floodwater for cropland irrigation. In this year, little or no water passed Milford in the Beaver River, and the quantity of ground water pumped during this year (fig. 5) was greatly decreased. In 1952, only a few wells on the eastern margin of the pumping district showed marked water-level rises, this being the only area in which extensive water spreading took place.

Figure 7. Profile A-A' of the Milford district showing positions of water table.

Water levels in most of the wells in the pumping district have declined every year since 1948. The greatest declines have occurred in the past 4 years, during which the annual pumpage from the district has exceeded 30,000 acre-feet each year. Thus, heavy pumping has lowered the year-end water levels as much as 12 feet during the past 4 years, and has steepened the water-table gradient toward the center of pumping. Three cross sections have been drawn to show the effect that sustained ground-water pumping is having on the water table. In each of these are profiles based on water-level records of March 1950, October 1953, and March 1954. Thus, profile A-A' (fig. 7) shows the position of

Figure 8a. Profile B-B' of the Milford district showing positions of water table.

the water table along a "dog-leg" line of observation wells trending south, and then southeast from Milford toward Minersville. The other two profiles of the water table in the Milford district are shown in fig. 8. Profile B-B' extends northeastward from the Hay Springs vicinity and profile C-C' extends southeastward from Hay Springs. These two profiles do not cross the water-table contours at right angles, but they give some idea of the position of the water table in these directions. The locations of profiles A-A', B-B', and C-C' are shown in figure 3.

It is assumed that ground-water pumping within the "closed area" of the Milford district is rapidly approaching its maximum. Any new developments in the district are expected to be located outside of the area of heavy pumping, and it is believed that any such new developments will not seriously change the existing conditions in the valley. With continued pumping at the 1953 rate, however, water levels can be expected to decline until a hydrologic balance is reached between the recharge to the ground-water basin and natural and artificial discharge.

Figure 8b. Profile C-C' of the Milford district showing positions of water table.

BERYL-ENTERPRISE PUMPING DISTRICT By B. E. Lofgren

The Beryl-Enterprise pumping district in southern Escalante Valley is the largest pumping district in the State. In 1953 more than 50,000 acrefeet of ground water was pumped from wells for irrigation. Except in three small areas at the mouth of Shoal, Pinto, and Mountain Meadow Creeks, respectively, all water for irrigation, stock watering, and domestic uses is necessarily obtained from wells. The surface streams serve only a small portion of the district, chiefly in the vicinity of Enterprise and Newcastle, and even in these areas stream supplies have been supplemented by water pumped from wells. Any increase in agricultural acreage or population in the future will be dependent upon the continued availability of ground-water supplies.

The ground-water reservoir that supplies water to wells in the valley has a surface area of more than a quarter of a million acres, and an average saturated thickness of at least several hundred feet. Thus, the total volume of water in storage in the valley alluvium must exceed several million acre-feet. As has been pointed out in earlier studies (Fix, Nelson, Lofgren, and Butler, 1950, p. 146-180; Thomas, Nelson, Lofgren, and Butler, 1952, p. 40-48), the annual discharge of ground water from the basin greatly exceeds the natural recharge, and the water developed by wells is drawn largely from underground storage. In other words, it has been mined from the ground-water reservoir. As a consequence, water levels in the heavily developed areas of the valley have declined progressively as pumping has continued. Because the overall size of the ground-water reservoir is exceptionally large as compared with the amount of water pumped each year, water levels have not declined seriously except in the central area of heavy pumping. As pointed out in the progress report cited above (1950, p. 175-179):

"However, there is no likelihood of early or sudden exhaustion of the ground-water reservoir unless the rate of pumping is increased markedly above that in 1950 (50,000 acre-feet). The quantity of water in that reservoir is not yet known, but present information shows that there is probably at least several million acre-feet, and each million acre-feet would be enough for about 2 decades of pumping at 1950 rates. Further, the water table in the pumping district is declining at a rate of less than 2 feet a year, so that the energy requirement for lifting the water is increasing only rather slowly. If the reservoir extends to sufficient depth, the economic factor of pumping cost, rather than the hydrologic factor of reservoir exhaustion, may set the date for reduction or cessation of pumping."

Ground-Water Development

In 1953 there were 161 pumped irrigation wells in operation in the Beryl-Enterprise district, of which 24 used internal-combustion engines for power. In addition, 59 irrigation wells remained idle during the year, making a total of 220 units in the valley. During the year, a computed 50,045 acre-feet of water was pumped for the irrigation of 15,347 acres of cropland. Figure 9 is a map of the Beryl-Enterprise district showing the location of irrigation wells, areas irrigated by wells, and water-table contours for December 1953.

Because of the accelerated exploitation of the ground-water resources in Escalante Valley after World War II, all of Escalante Valley in Washington and Iron Counties, together with its tributary drainage basin, and including the entire Beryl-Enterprise district, was closed to further appropriation of water (except for domestic and stock-watering purposes) by proclamation of the Governor in April 1946 (Tracy, 1950, p. 22). In February 1953 the northern part of this "closed area" was reopened to permit further drilling of water wells. This reopened part, however, was considerably northeast of the pumping district shown in figure 9, and beyond the range of interference of pumping wells in the Beryl-Enterprise district. During 1952-53 only a few large-diameter wells were drilled within the "closed area," bringing nearly to an end the list of undrilled applications for irrigation wells that had been approved prior to the closing of the area.

During the 5-year period from 1945 to 1950 the number of acres irrigated by wells jumped from less than 5,000 to more than 16,000 acres, and the quantity of ground water pumped for irrigation increased in about the same proportion. Since the peak year of 1950, little change in ground-water use has taken place. Most of the speculative development of the postwar years has run its course, and the farms now in operation are for the most part permanent installations. Thus, the number of acres irrigated by wells is about the same each year. Table 4 lists the irrigation wells in the Beryl-Enterprise district and includes the estimated annual pumpage for several years during the period 1937-53. The estimated annual pumpage for all years during the period 1937-51 has been published in an earlier report of the State Engineer (Thomas, Nelson, Lofgren, and Butler, 1952, opp. p. 42).

Figure 9. Map of Beryl-Enterprise district showing the location of irrigation wells, areas irrigated by wells, and water-table contours for December 1953.

Coordinate	Application		Diameter	Depth			Estimated a	nnual pump	age, acre-fee	et	
number	or claim	OWNER	(inches)	(feet)	1937	1940	1945	1950	1951	1952	1953
(C-33-14)											
6acb-1	A 14501	J. H. Johnson	12	230				¹ 220			
(C-33-15)											
31bcc-1	A 16458	George C. Dodson	12	275							
(C-33-16)		-									
23abb-1	A 17162	William H. Wood	16	203				1400	1400	¹ 400	1400 ¹
30aac-1	A 15878	Joseph Del Vecchio	14	154				¹ 200			
(C-34-16)											
2bcc-1	A 16236	C. R. Burns	16	240				170	175		
28acc-2	A 16178	Donald Horsley	ĩž	130	70	90	¹ 150	240	112	230	230
28bcc-2	C 20672	I. Matson	12	67	20		150	210		200	-50
28bcc-3	C 20672R	I. Matson	16						20	100	
28dcc-2	C 10426	Loren Reber	12	84				550	54 0	650	460
29ccc-1	A 16524	Monte Miller	14	203					430	400	275
30adc-2	C 17699	D. F. Shelley	12	90							
30ccc-1		D. F. Shelley	12	250							
30dcc-1	A 15615	D. F. Shelley	12	250				620	49 0	670	285
30ddc-2	$C \Pi I I I$	D. F. Shelley	12	100	~~~	20		10			90
31000-3	A 1566A	S. B. Endicott	12	160	80	30		250	150	F (0	275
31cdc.1	A 13004	Deward Hall	12	160				850	450	560	275
31dcc-1	A 17011	John Jordan	16	248					100	50	
32bcc-1	A 15770	R. A. Gardner	16	199				¹ 60	120	450	65
32cdc-1	A 14829	R. A. Gardner	16	200				520	470	550	370
(C 24 17)			••	200				520	110	550	510
24200-2	C 16680	H I Austin	12	105				200	220	250	205
24bcc-2	C 16679	H I Austin	12	105				200	220	250	295
33dcc-1	A 17269	Wallace MacFarlane	14	220				510	2 4 0	200	105
36acc-1	A 17080	lack Rall	16	184					210	300	15
36bdc-1	A 17081	,	16	200					10 ش	500	90
36dcc-1	A 17071	Carl Anderson	14	232						60	
36ddc-1	A 17070	Albert Schwartz	14	150				220	330	250	260

Table 4. Irrigation wells and estimated annual pumpage in the Beryl-Enterprise District, 1937-53.

Coordinate	Application		Diameter	Depth			Estimated a	nnual pump	age, acre-fee	et		
number	or claim	OWNER	(inches)	(feet)	1937	1940	1945	1950	1951	1952	1953	
(C-35-15)										,		
3dcc-2	C 3788	E. J. Graff	. 16	350	20			340	190	430	275	
3ddc-1	C 3789	E. J. Graff	. 16	350	220		1200			100	320	
7cdd-1		Erwin Schmidt										F
10acc-1	C 3784	E. J. Graff	16	334	460			1300	300	300	130	Ē
10acd-1	C 3785	E. J. Graff	. 16	280			700	1300	300	250	375	ĥ
10adc-1	C 3786	E. J. Graff	. 16	400				330	440	490	170	 C
10add-1	C 3787	E. J. Graff	16	350				150	80	250	300	2
10bdc-1	A 12134	Walter Martin	. 16	271		350	'350	890	780	750	645	H
11bcc-1	A 16934	E. J. Graff	. 16	310							95	C
16ddd-1	A 12838	E. F. Stark	. 16	300								5
22dcd-1	A 16703	Kumen Gardner	. 14	257				40	80	110	135	\mathbf{z}
28acc-2	A 12095	Robert Reeve	12	163				340				Ē
28adc-1	A 15021	Robert Reve	. 14	200				280	260	280	220	₽
28bdc-1		Deward Spendlove						280	140	30		1
33cdc-1		Melvin Hewlet									390	P
33dcd-1	a 2448	Mike Torres	14	254				190	120	150	270	Ŀ
(C-35-16)												1
` 3bdd-1	A 17350	R. I. Kaltenborn								50	10	- 9
3cdc-1	A 17350	R. J. Kaltenborn								410	320	- 5
3dcc-2	A 15616	R. J. Kaltenborn								80	290	Ē
5add-1	A 12758	Norval Bracken	16	40		50		250	240	170	125	Ŀ
6bbc-2	C 19503	W. W. Staheli						470	190	300	415	2
бссс-1	C 9748	N. E. Jones	12	80	2							
7ььь-1	C 13661	H. L. Austin	16	95	70	20						
7bcc-1	C 13660	H. L. Austin	12	65	60	120		280	310	200	240	
7bdb-1	C 14227	Parley Moyle	12	75	40	130	¹ 200	170	280	160		
7ccc-1	C 17796	Arnold Barlocker	12	104	80	50	¹ 100	210	50	90	245	
9aad-1	A 15777	H. J. Beecher	16	150		-		¹ 300	300		300	
9add-1	A 15945	George Clove	16	150				270	190	310	320	
9cbc-1	A 15707	Normand Laub	12	126						230	390	
9dac-1	A 16011	Clark & Monroe						320	170			
10acb-1	C 10338	Edmond Thomas	12	103	75	10		490	620	300		

Table 4 (cont.). Irrigation wells and estimated annual pumpage in the Beryl-Enterprise District, 1937-53.

10bda-1	A 13760	H. B. McReynolds	14	117	60	30		'2 4 0				
14ccc-1	A 16535	Hunter Brothers	14	192				120	9 0	120	30	
14dcc-1	A 16223	P. M. Smith	14	167								
14ddc-1	A 15946	John McGarry	14	100					10	70	50	
15abc-1		M. F. Dewey	12	120	185				120	140	110	
15bba-1	C 20262	Dee Burgess	12	133				340	310	310	340	
16add-1	A 17436	Neal Bracken	14	116				40	80	80	170	
16bbc-1	A 16835	Marion Beckstrom	14	174				110	190	270	250	
16bdd-1	A 16834	L. M. Thomas	14	163				100	200	130		
16cac-1	A 16537	G. T. Wertz	12	122				130	140	130	160	
16cdd-1	A 14347	Ray Hunt	12	125				340	260	380	385	R
16dda-1	A 15948	Calvin Lewis	12	125				110	130	190	250	E
16ddc-1	A 15947	Niels Nielson	14	152				190	190	220	245	P
17acc-2	A 13523	Ray Hunt	20	70		40	1200	360	380	430	210	G
17add-2	A 13459	Marion Beckstrom	13	103		50		490	420	370	170	3
17bad-1	C 2230	M. Vicerra	12	120	130	150	180	130	110	180	140	
17cda-2	C 16463	Roy Pectol	12	70	50	100		300	180	50	260	<u>o</u>
17ddd-1	C 17282	lames Dell	12	25		30						- T
18ccb-1	A 15980	J. C. Bosshardt	14	160				300	370	370	335	S
18cdc-1	C 20391	J. C. Bosshardt	14	95				370	320	300	300	E.
20dad-1	A 16018	James Wagner	12	200				150	80	120	95	8
21acd-1	A 17208	Milford Barnum	12	105				280	270	200	335	H
21bcc-1	A 15313	A. D. Movle	14	120				440	370	370	620	
21bdc-1	A 14471	A. D. Moyle	16	178								8
21cac-1	A 15786	A. V. Piper	14	155				310	200	240	210	Z
21dcc-1	A 14471	A. D. Movle	16	204				590	570	490	625	- 83
21ddc-1	A 15787	D. L. Love	14	156						40		z
22add-1	C 10337	Dewey Goddard	12	147	130	130	¹ 200	340	270	300	305	E
22ccd-1	A 16931	Lyman Sevy	14	206						170		Ξ
22dcc-1	A 16930	Lyman Sevy	12	130								z
23bcd-1	A 15644	Á. L. Graff	12	160				240	470	340	545	
28bdc-1	A 15771	Bruno Biasi	18	200				460	600	500	590	
28cdc-1	A 16866	C. T. Holland	18	185				1350	160	260	435	
29acc-1	A 15788	F. O. Barker	16	194				690	270	630	865	
29ccd-1	A 16863	Floyd Ence	16	194				210	340	330	510	
29dcc-1	A 14570	C. A. Thomas	12	140				230	180	170		
29ddc-1	A 14569	C. A. Thomas	14	200				160	60	40		
30dcc-1	A 17490	C. E. Mitchell	16	155				160	170	140	110	
31abc-1	A 16800	C. E. Mitchell	16					320	310	300	410	6 P
								-				5

Coordinate	Application		Diameter	Depth			Estimated a	nnual pump	age, acre-fee	t	
number	or claim	ÓWNER	(inches)	(feet)	1937	1940	1945	1950	1951	1952	1953
(C-35-16)											
31acc-2	A 17490	C. E. Mitchell	14	147				530	350	370	300
31bdc-1	A 16654	L. V. Robinson	12	155				170	170	180	175
31cbb-1	A 16872	Chester Whitelaw	16	195				270	300	400	405
31ccc-1	A 15906	Marvin Miller	12	209				250	110	140	
31cdc-1	A 15907	Dan Murphy	16						170	180	125
31ddd-1	A 15905	F. B. Dalton	14	160				360	380	480	590
32acc-1	A 16829	Tony Alberto	16	167				340	260	210	230
32bcb-1	A 16830	Adams & Pedersen	16	173				510	550	480	680
32ccc-1	A 16621	Sullivan Brothers	14	176				360	460	470	625
32cdc-1	A 16621	Sullivan Brothers	14	176				180	270	260	205
32dcd-1	A 16831	John C. McGarry	16	452				90	100	100	265
33bcc-1	A 16662	Cliff Quinn	12	140				390	70	170	70
33ccb-1	A 16662	Cliff Quinn	12	130				330	160	140	10
$(C_{2}35_{2}17)$											
1acc-?	C 17961	H I Bennett	16	265				190			
1bcc-1	A 15654	John C. McGarry	16	130				170	20		
1bcc-2	11 15051	John C. McGarry	10	150					20		90
lcdc-1	A 22953	Dean Forsyth	12	114				630	410	300	300
Idee-1	A 17073	Jack Reber	16	260				200	320	270	395
lccc-1	A 16928	W. W. Price	16	207				200	520	210	90
2dcc-1	A 17121	Vern Frailey	16	160				260	230	240	230
3ccc-1	A 17133	G. M. Sevy	12	240				200	250	210	230
4acc-1	A 17268	H. F. Christensen	14	176				280	320	360	135
4dcc-1	A 17286	MacFarlane Bros.	14	240				320	190	200	190
7daa-1	A 17290	W. W. Adams	12	200				170	230	200	140
12abb-1	A 14523	I. B. Movle	12	200				1.0	200	350	120
12acc-1	A 14229	I. B. Movle		20				210	140	150	175
12bcc-1	A 14024	F. S. Price	14	161				130	190	240	465
12bdc-1	A 12677	A. L. Daniel	12	86	10			-90 -90	10	120	220
12dcd-1	A 11564	Albert Feldsted	14	202						40	25
12ddc-1	A 14714	Arnold Barlocker	16	200				320	400	350	400
13acc-1	A 13014	J. E. Moyle	18	101		180	¹ 300	590	460	520	210

Table 4 (cont.). Irrigation wells and estimated annual pumpage in the Beryl-Enterprise District, 1937-53.

13adc-1 13bcc-1 13bdc-1	A 13996 A 13990	J. E. Moyle A. D. Moyle	13 13	182 183	70	120	1200 1200	400 250	300	350 300	225 35	
13cbc-1	C 12346	H. G. Moyle	10	95 150	70 60	150	1200	330	330	330	225	
13000-1	A 12346	H. G. Moyle	16	200	00	100	200	220	170	250	140	
14000-1	A 16833	C. H. Frailey	16	300				1240	170	230	205	
21bda-1	C 16438	G. I. Busher	10	500				270		20	190	
22bcc-1	A 16526	P. L. Morris	16	163				1120	50	20 50	210	
22bdc-1	A 16525	loe Green	12	200				260	250	100	60	
23acb-1	A 14749	H. G. Movle	12	125				310	100	310	400	
25dca-2	C 10296	Charles Bosshardt	12	110	10	10	¹ 150	380	340	390	415	<u> </u>
25dcd-1	A 16205	Charles Bosshardt	~2	110	10	10	150	140	50	50	20	RI
36dcc-1	A 16425	M. H. Crosier	16	200				540	20	200	190	뎕
(C-36-15)			-0	200				510	20	200	170	ŏ
4cdd-1	A 15828	W. Leo Knell	16	245							750	R
4dcd-1	A 14051	W. Leo Knell	14	235				¹ 670	650	600	150	Т
7dba-1		Sterling Tullis						010	050	000	95	0
7dcc-1		Vern Pickerell									140	Ŧ
18bda-1	A 16398	Vern Pickerell	16	400				270	320	300	200	70
18caa-1	A 16395	Vern Pickerell	16	233				210	120	350	200	Ĩ
19ccc-1	A 14057	A. C. Christensen	16	217				310	310	210	210	A
22cdd-1	A 15590}	New Castle	12	75				1150	250	5 0	150	13
27abb-1	A 16434∫	Reclamation	16	66				¹ 150	300	120	1200	E1
(C-36-16)											200	ভ
1ddd-1	A 16852	Vern Pickerell	16	200						50		z
3a-1	A 14709	G. E. Smith	12	115				30	80	150	110	ភ្ល
3c-2	A 16860	Vern Pickerell	20	196				1300	200	240	245	E
4a-2	A 16699	Vern Frailey	16	207				¹ 240	150	200	120	Ē
4b-3	C 1396	Willard Randall	12	144		290	160	410	390	440	410	E
4b-4	A 16218	G. S. Holt	16	250				240	220	180	290	Ŗ
4b	A 12422	Wayne Holt								100	210	
4d	A 12282	Heber Sevy	16	220						120	280	
5a-1	C 16592	W. T. Hunt	12	112		250		330	330	320	350	
5a-8	A 15124	George Crawford	12	180			260	290	410	410	345	
5a-9	A 15774	Leonal Gardner	12	200			90	320	290	370	555	
5a-12	A 19947	Bryant Beacham					250	290	300	250	305	
56-1	A 15147	Gordon Clark	12	150				340	280	350	315	
2b-2	A 15384	Heber Sevy	12	156			320	390	350	360	585	
20-3	A 16700	Heber Sevy	16				-320	440	390	420	580	
DC-1	A 15772	Leonal Gardner	12	160				250	310	210	315	Si Ci
												-

Coordinate	Application		Diameter Depth	Depth	Estimated annual pumpage, acre-feet						
number	or claim	OWNER	(inches)	(feet)	1937	1940	1945	1950	1951	1952	1953
(C-36-16)											
6b-3	A 12859	Escalante Farm	16	270					120	230	150
6b-4		Escalante Farm									120
6c-2	A 17121	Escalante Farm	16	290						130	200
6c-3	A 17121	Escalante Farm	16	200					150	300	200
9acd-1	A 16244	Joseph Judd	14	214				360	430	350	635
9bcd-1	A 16253	Wilson Scott	14	272			40	350	510	600	830
10		Vern Pickerell									
10bbd-1	A 16042	N. J. Barlow	14	290				240	70	240	295
10bdc-1	A 16043	N. J. Barlow	14	340				290	330	240	105
11caa-1	A 16857	Vern Pickerell	16	210							270
11dcd-1	A 16856	Vern Pickerell	16	206							250
12bdd	A 16854	Vern Pickerell	16	230							245
13ddc	A 15150	Vern Pickerell	16	207					330	200	235
15cdd-1	C 13998	A. C. Christensen	5	200				140 ¹ 40	40	30	30
17dbb-1	A 14642	Weyl Zuckerman	16	404				610	300	160	
19abb-1	A 15511	T. W. Jones	16	352				260	510	420	580
20abb-1	A 16418	Weyl Zuckerman	16	400				540	445	360	500
20dbb-1	A 14642	Weyl Zuckerman						530	470	330	310
21abc-1	A 16342	T. W. Jones	16	351			70	520	410	290	715
(C-37-17)											
12acc-1	A 16231	Grant Clove	16	320				240	270	340	290
12bdc-1	A 14183	Charles Side	14	170				180	170	240	175
12cbd-1	A 15585	Charles Side	14	150			210	210	180	240	110
12cdd-2	A 16183	Arthur Thomas	16	132			10	190	100	120	95
14acb-1	C 17896	Enterprise Town	10	185			250	260	300	250	250
14bac-1	A 16090	Jacob Busher	14	100			20	220	230	220	100
14dcd-1	A 14213	Roland Bowler	12	152			130	100	60	120	65
15bab-3	C 7157	Nelson Thomas	10	125				90	40	20	10
TOTAL NUN	MBER OF WEL	LS PUMPED			22	24	37	163	165	178	176
TOTAL NUM	MBER OF ACR	E-FEET PUMPED			2,942	257	5,830	51,320	45,020	46,990	50,045

Table 4	(cont.).	Irrigation	wells and	l estimated	annual	pumpage	in the	Beryl-Enterprise	District,	1937-53.
---------	----------	------------	-----------	-------------	--------	---------	--------	------------------	-----------	----------

¹ Estimated.

			Static r	neasurements		Pumping measurements	
Coordinate number	Depth (feet)	Type of pump & power ¹	Date	Depth to water ² (feet)	Date	Depth to water ² (feet)	Discharge (gpm)
(C-34-16) 28acc-2	130	ТЕ			7/10	22.5	650
29dcc-2	84	ТЕ			8/20 7/10	29.0	550 710
29ccc-1	203	ТЕ	3/19	11.59	8/20 7/10	56.0	980 980
30dcc-1	250	ТЕ	12/5	12.86	7/10	62.1 60.0	725
30ddc-2 31ccc-1	100 160	T D T E			7/10 7/10 7/10	58.0	990 730
32cdc-1	200	ТЕ			7/10		900
(C-34-17) 24acc-2	105	C E			7/9 8/20	23.2 23.8	510 490
24bcc-2	120	CE			7/9 8/20	39.8 38.8	520 540
33dcc-1 36acc-1 36ddc-1	224 150	Т Е Т Е Т Е			8/20 8/20 8/20	64.3	770 690 690
(C-35-15)							
3dcc-2	350	ТЕ	3/19 12/6	13.45 15.06	7/10	43.3	1220
3ddc-1 10acc-1 10acd-1 10adc-1 10add-1	350 334 280 400 350	T D T D T E T E T E	12/6	16 82	7/10 7/10 7/10 7/10 7/10	39.8 49.3	1200 990 1250 600 1070
10bdc-1	271	ΤĔ	3/18 12/6	14.12 15.90	7/10 8/25	46.4 47.8	1080 1480

Table 5. Measurements of water level and discharge of irrigation wells in the Beryl-Enterprise	District,	1953.
--	-----------	-------

57

			Static m	neasurements	Pumping measurements			
Coordinate number	Depth (feet)	Type of pump & power ¹	Date	Depth to water ² (feet)	Date	Depth to water ² (feet)	Discharge (gpm)	
(C-35-15)			······					
22dcd-1	257	ТЕ	12/6	-35.50	7/10	79.0	640	
					8/25	72.2	730	
28adc-1	163	ΤĒ			8/25		430	
33ddc-1		ТЕ			7/10	115.2	620	
(C-35-16)		ТD			0/25		1010	
JCac-1 3dod 1					8/20	43.0	1720	
4dcc-1					8/25	50.1	930	
5add-1	40	C F			8/20	50.1	700	
6bbc-2	10	ΤĒ	12/5	23.62	7/10		835	
			, 4	2000	8/19		850	
7bcc-1	65	ТЕ			7/10		530	
7ccc-1	104	ТЕ			7/10		650	
9aad-1	150	ТЕ			7/9		945	
					8/21		840	
9add-1	150	ТЕ	12/6	24.04	7/8	33.5	710	
0 1 1					8/21	35.8	660	
9cbc-1	120				1/8	39.5	665	
15abc-1	120				8/21	27.2	820	
1500a-1 16add-1	133				0/21 8/21	57.2	000 760	
16bbc-1	174	ΤĒ	3/19	24 72	8/21		540	
1000001	111	A E	12/6	26.60	0/21		540	
16cac-1	122	ТЕ	~~, 0	20.00	7/8	45.0	600	
16cdd-1	125	ΤĒ			7/9	1310	650	
					8/21		630	
16dda-1	125	ТЕ			7/9	48.5	610	
					8/21	49.8	605	
16ddc-1	152	ТЕ			7/9	45.0	725	
17 0	70	0.7			8/21	45.5	700	
17acc-2	70	CE			7/9		a400	
1/add-2	103	CE			7/8		660	

Table 5 (cont.). Measurements of water level and discharge of irrigation wells in the Beryl-Enterpris	e District, 1953.
---	-------------------

17bad-1 17cda-2 18ccb-1 18cdc-1 20dad-1	120 70 160 95 200	C E T E T E T E T E T E	12/5 12/5	24.61 32.30	8/18 8/18 8/19 8/19 7/9	38.0 43.2 60.0 40.5	540 1060 600 550	
21bcc-1 21dcc-1 22add-1	120 204 147	T E T E C E			8/21 6/21 6/21 7/9	41.4 52.3	725 1280 1080 830	
23bcd-1	160	ТЕ			8/18 7/9	40.2 47.0	730 845	R
28bdc-1	200	ТЕ	3/19 10/7 12/5	33.47 37.58 36.45	8/18 7/9 8/18	46.0 49.0 49.0	870 1960 1850	EPOR
28cdc-1	185	ТЕ	12/ 5	50.75	7/2	50.5	1140	T (
29acc-1 29ccd-1	194	T E T E	12/5	42.70	8/18 8/18 7/8	50.7 53.5 56.5	1040 1700 1180	OF SI
30dcc-1		ТЕ			9/28 7/9	57.8 51.0	965	AT
31abc-1	150	ΤE	3/19 10/7 12/6	42.40 47.67 45.32	8/17 6/22 8/17	51.5 58.7 60.4	910 1240	EEN
31acc-2 31bdc-1 31cbb-1	147 155 195	T E T E T E	12/0	+3. <i>3L</i>	8/17 8/13 6/30	61.1 66.3 75.0	955 550 1030	GINE
31cdc-1		ТЕ			8/13 6/30	73.1 73.5	980 580	ER
31ddd-1	160	ТЕ			8/13 6/30	69.3 62.5	585 980	
32acc-1	167	ТЕ			8/13 6/22	63.4 55.7	950 1570	
32bcd-1	173	ТЕ	10/7	52.15	7/8	50.7	1670	
32cdc-1	176	ΤE	12/6	53.15 50.72	6/30 8/13 8/13	59.5 60.7	1170 1150 440	5

			Static m	easurements]	Pumping measurements	
Coordinate number	Depth (feet)	Type of pump & power ¹	Date	Depth to water ² (feet)	Date	Depth to water ² (feet)	Discharge (gpm)
(C-35-16) 32dcd-1	452	ТЕ	10/7	48.01	6/29	57.3	1180
33ccb-1	130	ΤG	12/0	40.14	7/9	51.2	435
(C-35-17) 1bcc-2 1ccc-1 1cdc-1	114	T E T E T E			7/9 7/9 7/9	92.5 71.8 86.0	1050 720 655
1dcc-1	260	ΤE			8/19 7/9	73.2 57.6	705 840
2dcc-1	160	ТЕ	3/19 10/7	36.73 41.74 30 38	8/19 7/9 8/19	58.0 83.0 84.1	850 725 670
4acc-1 4dcc-1 12abb-1	176 240	T E T E T E	12/5	96.76	8/20 8/20 7/9	69.0 66.6	800 680 615
12acc-1 12bcc-1	90 161	T E T E	10/7	42.95 38 74	8/19 7/9 7/8	63.8	635 1080
12bdc-1 12dcd-1		T D T E	12/3	30.11	7/9 7/9 8/10	62.0	700 580
12ddc-1		ТЕ	12/5	32.72	7/9	54.1	505
13acc-1 13adc-1	101 182	T E T E			8/19 7/9 7/9 8/18	53.2	630 a670 680
13bcc-1 13cbc-1	183 150	T E T E			8/19 7/8 8/19	60.5 60.5	a670 720 650

•

Table 5 (cont.). Measurements of water level and discharge of irrigation wells in the Beryl-Enterprise District, 1953.

.

13ccc-1	200	ΤE	10/7	41.58	7/8	68.0	850
14ccc-1 21acb-1	300 125	T E T D	12/3	39.93	7/8 7/8	72.3	1430 1360
22bcc-2	163	ТЕ	3/19 10/7	56.65 57.92	8/19 7/8 8/19	69.0 66.5	950 1010 580
22bdc-1 23acb-1 25dca-12	200 110	T E T E T E	12/5	·57.90	7/8 8/19 7/8	58.9 67.5	620 1000 840 म
25dcd-1		ΤD	10/7 12/6	50.72 49 61	8/17 7/1	66.0 80.4	845 EFC 760 FC
36dcc-1	200	ТЕ	3/19 10/7	55.64 59.06	6/30 8/17	77.3 78.8	750 745
(C-36-15)			12/0	58.29			- F
4dcd-1 7dba-1 7dco-1	235	T D T D T D	12/11	112.88	7/10 8/25	128.7	1010 V 1240
18bda-1	400	T D	10/7 12/6	83.7 83.37	6/29 6/29 8/12	103.5 107.3 a122.5	1880 1120 990
18ca a-1	233	ΤD	, -		6/29	94.0	1300 문
19ccc-1	217	ΤE	3/19 12/6	84.84 87.76	8/12 7/10 8/25	94.3 159.0 160.5	900 425 330
(C-36-16)					-,		E
3a-1	115	ΤE	3/19 10/7 12/5	41.00 43.70 43.20	6/29 8/25	76.7 77.6	630 H.K 670 K
3c-2	196	ТD	12/ 5	15.20	6/29	74.5	2340
4a-2	207	ΤD	3/19	54.69 57.56	9/4 7/1 8/12	65.7 70.3 70.8	1550 780 760
4b-1 4b-3	144	T E T E	6/22	52.13	8/12 6/30	62.1	780 1040
4b-4	250	ТЕ	3/19 12/6	49.54 53.58	8/12 6/29 8/12	62.5 63.7	880 840

			Static n	neasurements		Pumping measurements	
Coordinate number	Depth (feet)	Type of pump & power ¹	Date	Depth to water ² (feet)	Date	Depth to water ² (feet)	Discharge (gpm)
(C-36-16)							
4d-1		ΤΈ			7/1		1100
5a-1	112	ТЕ			6/30	63.0	540
5a-8	180	ΤĒ			7/2	0010	870
					8/12		850
5a-9	200	ΤE			8/13	57.0	780
5a-12		I E			6/30		445
5h-1	150	ТЕ	12/7	63.87	0/15 6/30	76.0	560
1001	150	I E	14/ (05.82	8/13	70.0	820 750
5b-2	156	ТЕ	12/6	55.22	6/30	67.0	860
56-3		ΤĒ	12/6	57.88	6/30	71.6	1000
			, _		8/13	71.7	940
5c-1	160	ТЕ			8/13		680
6b-3		ΤD	12/6	67.28	7/1	71.3	1140
6b		<u>T</u> G			8/12	80.6	1110
6c-3		I G	12/6	76.35	7/1	82.0	940
6-2		ΤD			8/12	82.1	730
0c-Z	214				7/1	79.0	630
yacu-1	214	I E			6/29	76.0	845
9bcd-1	272	ΤF	10/7	68.97	6/12 6/20	(0.1 73.0	1150
ybeu I	212	1 2	12/6	64 14	8/12	75.0	1150
10bbd-1	290	ТЕ	12/6	57 73	7/2	17.2	715
		- 5	12/0	01110	8/12		705
10bdc-1	340	ТЕ			6/29		645
					8/12		630
llcaa-l	210	TD	12/6	52.20	8/12		a900
12bdd-1	230	ΤD	12/6	60.74	6/29		615
13ddc-1	207	ТЕ			7/8		410
					8/25		330

Table 5 (cont.). Measurements of water level and discharge of irrigation wells in the Beryl-Enterprise District, 1953.

٠

19abb-1	352	ТЕ	3/20	87.72	7/7	102.2	925
20 a bb-1	400	ΤE	3/20 10/7	91.32 79.52 101.60 82.22	7/7 8/17	102.0 104.0	2120 2640
20двь-1		ТЕ	12/0	02.22	7/7	96.5	1430
21abc-1	351	ТЕ			8/17 7/8	91.9	1160
21cdd-1	254	ТЕ			8/13 7/1		820
29bab-1	401	ТЕ			8/13 7/7 8/17	106.0	820 1720 1770
29daa-1	381	ТЕ	3/20	96.58	7/7	138.2	965
30acb-1	402	ТЕ	3/20	93.71 97.57	8/17	111.4	1900
30bab-1	401	ТЕ	12/0	91.51	7/7	115.0	1860
30cab-1 30ccc-1	381 400	T E T E T F			8/17 7/7 8/25	115.3 128.0	1840 1480 430
31aba-1	349	T E T E			7/7 7/7	129.0 127.5	1880 1270
31aca-1 31add-1	407 381	T E T E	3/20	104.57	8/14 7/7 7/7	129.6 125.0	2210 1140
31bab-1	419	ΤE	12/6	111.12	8/13 7/7 8/17	129.0	955 1400 1420
31bdd-1	398	ТЕ	3/20	113.20	0/17 7/7 8/13		1450
31cdc-1 31ccc-1	393 222	T D T E	3/20 12/6	121.14 126.68	7/7 6/22 7/1	123.0 143.9 144.8	600 510
32aaa-1 (C-36.17)	401	ТЕ			8/13 7/7	146.6 169.5	480 510
36add-1	202	ΤE	12/6	121.93	7/1	164.2	730
36ddb-1	382	ТЕ			8/13 8/13	165.4 160.4	760 470

		th Type of et) pump & power ¹	Static measurements]	Pumping measurements	
Coordinate	Depth			Depth to water ²		Depth to water ²	Discharge
number	(feet)		Date	(feet)	Date	(feet)	(gpm)
(C-37-16)							
6cac-1	304	ТЕ			7/2	133.0	820
6ccc-1	200	ΤĒ	3/20	86.52	6/22	114.0	020
			10/7	102.70	7/1	116.2	520
			12/6	100.45	8/14	125.2	575
(C-37-17)			,		-,		
1ccd-1	438	ТЕ	3/20	49.86	6/22	109.4	
			12/6	62.65	7/2	109.7	380
1dcd-1	250	ТЕ	6/22		7/2	99.0	510
			10/7	76.99	8/14	101.2	530
			12/6	71.44	-,		500
1ddc-1	205	ТЕ	12/6	74.41	7/2	100.0	415
					8/14	101.1	380
11dad-1	86	ТЕ			8/14		265
11ddb-1	223	ТЕ			8/14		a180
12acc-1	318	ТЕ	12/6	43.09	7/2	100.0	450
					8/14	105.7	445
12bdc-1	170	ТЕ	12/6	34.16	7/2	49.0	. 15
					8/14	52.0	a345
12cbd-1	150	ТЕ			8/14	67.2	240
12cdd-2	132	ТЕ				•••-	- 10
14bac-1	100	ТЕ	10/7	32.01	7/9	78.0	710
			12/6	31.63	8/14	78.4	630
14dcd-1	152	ТЕ			7/9	91.0	140
15bab-3	125	ТЕ			8/14	63.5	150

Table 5 (cont.). Measurements of water level and discharge of irrigation wells in the Beryl-Enterprise District, 1953.

¹ Pumps: T, turbine; C, centrifugal.
Power: E, electric motor; D, diesel engine; G, gasoline engine.
² Below land surface.
a Accuracy questionable.

Coordinate	Application		Pumpage	Acres	Acre-feet
number	or claim	OWNER	(ac. ft.)	irrigated	acres
(C-33-16)					
23abb-1	A 17162	William H. Wood	a400	a200	
(C-34-16)					
28acc-2	A 16178	Donald Horsley	230	60	3.8
28dcc-2	C 10426	Lorin Reber	460	130	3.5
29ccc-1 30daa 1	A 10524	D E Shalley	275	95	2.9
30ddc-2	C 11721	D F Shelley		155	2.4
31ccc-1	A 15664	D. L. Hall	275	160	1.7
32bcc-1	A 15770	R. A. Gardner	65]		
32cdc-1	A 14829	R. A. Gardner	370∫	255	1.7
(C-34-17)	0.1000		205	10	
24acc-2	C 16680	H. L. Austin	295	40	/.4 / 7
33dcc-1	Δ 17260	Wallace MacEarlane	105	55	4.2 1 A
36acc-1	A 17080	Carl Anderson	90	59	15
36ddc-1	A 17070	Albert Schwartz	260	58	4.5
(C 35 15)					
3dcc-2	C 3788	E. J. Graff	275)		
3ddc-1	C 3789	E. J. Graff	320		
10acc-1	C 3784	E. J. Graff	130		
10acd-1	C 3785	E. J. Graff	. 375 }	320	5.2
10adc-1	C 3786	E. J. Graff	. 170]		
1Uadd-1	C 3/8/ A 16034	E. J. Graff	300		
10bdc-1	A 12134	Paul Martin	95) 645	160	4 0
22dcd-1	A 16703	Kumen Gardner	135	90	1.5
28adc-1	A 15021	R. J. Reeve	. 220	60	3.7
33cdc-1		Melvin Hulet	390	80	
33dcd-1	a 2448	Jerome Tullis	270	127	2.1
(C-35-16)					
3bdd-1	A 17350	R. J. Kaltenborn	. a10]		
Jcdc-1	A 17350	R. J. Kaltenborn	a320	206	
Sacc-2	A 15010 A 12758	K. J. Kaltenborn	a290J	40	2.1
6bbc-1	C 19503	W. W. Staheli	415	40 97	5.1 4.3
7bcc-1	C 13660	H. L. Austin	. 240	39	6.2
7ccc-1	C 17796	Arnold Barlocker	. 245	54	4.5
9aad-1	A 15777	Leon Bowler	300	68	4.4
9add-1	A 15945	George Clove		75	4.3
14000-1	A 16535	Hupter Bros		80	4.9
14ddc-1	A 15946	John C. McGarry		a30	
15abc-1	11 135710	M. F. Dewey	110	80	1.4
15bba-1	C 20262	Dee Burgess	. 340	85	4.0
16add-1	A 17436	Neal Bracken	. 170	75	2.3
16bbc-1	A 16835	Marion Beckstrom	. 250	70	3.6
Ibcac-1	A 16537	G. I. Wertz	. 160	74	2.2
10caa-1 16dda 1	A 14347 A 15048	Nay Hunt	385 250	70 70	5.5
16ddc-1	A 15947	Niels Nielsep	245	80	3.0 3.1
17acc-2	A 13523	Ray Hunt	210	40	5.2
17add-2	A 13459	Marion Beckstrom	. 170	89	1.9
17bad-1	C 2230	M. Vicerra	. 140	32	4.4
17cda-2	C 16463	D. L. Sargent	. 260	39	6.7
10000-1 18cdc 1	A 15980	John Bosshardt	. 3351	136	17
20dad-1	A 16018	Order of Aaron	. 5003	130	4./ 10
21acd-1	A 172.08	Milford Barnum	335	84	4.0
21bcc-1	A 15313	A. D. Moyle	620	152	4.1

Table 6. Pumpage inventory, Beryl-Enterprise District, 1953.

Coordinate	Application		Pumpage	Acres	Acre-feet
number	or claim	OWNER	(ac. ft.)	irrigated	acres
(C-35-16)					
21090-1	A 15786	A V Piper	210	75	28
21dcc-1	A 14471	A. D. Movle	625	159	3.9
22add-1	C 10337	Dewey Goddard	305	100	3.1
23bcd-1	A 15644	A. I. Graff	545	140	3.9
28bdc-1	A 15771	Bruno Biasi	590	193	3.1
28cdc-1	A 16866	C. T. Holland	435	141	3.1
29acc-1	A 15788	R. W. Smith	865	157	5.5
29ccd-1	A 16863	Floyd Ence	510	149	3.4
30dcc-1	A 17490	C. E. Mitchell	110	56	2.0
31abc-1	A 16800	C. E. Mitchell	410	103	4.0
31acc-2	A 17490	C. E. Mitchell	300	56	5.4
31bdc-1	A 16654	L. V. Robinson	175	54	3.2
31cbb-1	A 16872	C. W. Whitelaw	405	126	3.2
31cdc-1	A 15907	Dan Murphy	125	55	2.3
3Iddd-I	A 15905	F. B. Dalton	590	145	4.1
32acc-1	A 16829	I. C. Alberto	230	95	2.4
32bcd-1	A 16830	Adams & Pedersen	680	151	4.5
32ccc-1	A 16621	Sullivan Brothers	6251	105	
32cac-1	A 16021	Sullivan Brothers	205)	185	4.5
320c0-1	A 10031	Cliff Output	205	60	4.4
3300CC-1	A 16662	Cliff Quinn	<i>a1</i> 0	03	
550001	A 10002	Chin Quinn	alu	51	
(C-35-17)					
1bcc-2	A 15654	John C. McGarry	90	80	1.1
1ccc-1	A 16928	W. W. Price	90	79	1.1
1cdc-1	A 22953	Dean Forsyth	300	77	3.9
ldcc-1	A 17073	Jack Reber	395	79	5.0
2dcc-1	C 17127	Vern Frailey	230	118	2.0
4acc-1	A 17268	Hale Christensen	135	80	1.7
4dcc-1	A 17286	Macharlane Brothers	190	80	2.4
/daa-1	A 17290	W. W. Adams	140	80	1.8
IZabb-1	A 14523	J. B. Moyle	1201		
12acc-1	C 14229	J. B. Moyle	175)	139	2.1
12000-1	A 14024	F. S. Price	465	/8	6.0
12Dac-1	A 12077	W. W. Mathews	a220	11	0.5
12dca-1	Δ 14714	Arnold Barlocker	400	48 79	0.5
13200-1	A 13614	I F Movle	210)	70	5.1
13adc-1	A 13996	L F Moyle	225	220	20
13bcc-1	A 13990	A. D. Movle	351	220	2.0
13cbc-1	C 12346	H. G. Moyle	225	71	3.6
13ccc-1	A 12346	H. G. Moyle	140	70	2.0
14ccc-1	A 16833	C. H. Frailey	395	96	4.1
21bda-1	C 16438	Jacob Busher	a180	60	
22bcc-1	A 16526	Harry Randall	a210	66	
22bdc-1	A 16525	Joe Green	60	76	0.8
23acb-1	A 14749	H. G. Moyle	400	64	6.3
25dca-2	C 10296	Charles Bosshardt	415	83	5.0
25dcd-1	A 16205	Charles Bosshardt	20	17	1.2
36dcc-1	A 16425	Calvin G. Mettler	190	63	3.0
(C-36-15)					
4dcd-1	A 15828	Leo Knell	750	412	3 .6
7dba-1		Sterling Tullis	95	b	b
7dcc-1	A 16825	Vern Pickerell	140	40	3.5
18bda-1	A 16398	Vern Pickerell	a200	60	
10000-1	A 10395	vern Pickerell	a200	200	
19000-1	A 14057	A. C. Christensen	210	c140	3.2
22cua-1 27abb 1	A 1539U	Newcastle Reclamation Co	200	b 1	b
27a00-1	A 10404	newcastle Reclamation Co	200	ь	ь

Table 6 (cont.). Pumpage inventory, Beryl-Enterprise District, 1953.

Coordinate	Application		Pumpage	Acres	Acre-fee
number	or claim	OWNER	(ac. ft.)	irrigated	acres
(C.36.16)					
3a-1	A 14709	C. E. Smith	110	58	1.9
3c-2	A 16860	Vern Pickerell	a245	148	
4a-2	A 16699	Vern Frailey	a120	40	
4b-2	A 12422	H. W. Holt	210	78	2.7
4h-3	C 1396	Willard Randall	. 410	113	3.6
4b-4	A 16218	G. S. Holt	. 290	76	3.8
4d-1	A 12282	Heber Sevy	280	110	2.4
5a-1	C 16592	W. T. Hunt	350	75	4.7
5a-8	A 15124	George Crawford	345	80	4.3
5a-9	A 15774	Edward Gardner	. 555	153	3.6
5a-12	A 19947	Bryant Beacham	305	72	4.2
5b-1	A 15147	Gordon Clark	315	68	4.6
5b-2	A 15384	Heber Sevy	585	158	3.7
5b-3	A 16700	Heber Sevy	580	133	4.4
5c-1	A 15772	Leonal Gardner	315	149	2.1
6b-3	A 12859	Escalante Farm	a150	80	
6b-4		Escalante Farm	. a120	40	
6c-2	A 17121	Escalante Farm	a200	80	
66-3	A 17121	Escalante Farm	a200	64	
9acd-1	A 16244	Joseph Judd	635	148	4.3
9bcd-1	A 16253	Wilson Scott	830	115	7.2
10bbd-1	A 16042	N. B. Barlow	295)	115	1.2
10bdc-1	A 16043	N B Barlow	105	160	2.0
11caa.1	A 16857	Vern Pickerell	a270	120	2.0
11dcd.1	A 16856	Vern Pickerell	a250	104	
12644.1	A 16854	Vern Pickerell	a245	160	
12000-1	A 15150	A C Christensen	235	100	
15 add 1	C 13008	A C Christensen	30	10	
10-14 1	A 15511	T W Janea	. 50	200	1.0
19abb-1	A 16419	Went 7 male and an	- 500	12200	1.9
20abb-1	A 10410	Weyl-Zuckerman	. 500	a2200	3.0
20000-1	A 14042	weyl-Zuckerman	. 310	d	25
Zlabc-1	A 16342	1. W. Jones	. 715	203	3.5
Zicdd-I	A 16317	Arthur Barlocker	- 220	160	1.4
29bab-1	A 16415	Weyl-Zuckerman	. 590	d	
29daa-1	A 16189	Weyl-Zuckerman	. 455	d	
30aab-1	A 16414	Weyl-Zuckerman	. 365	d	
30bab-1	A 16413	Weyl-Zuckerman	. 720	d	
30cab-1	A 16189	Weyl-Zuckerman	. 535	d	
30000-1	A 15833	Raymond Staneli	. 210	(4	2.8
30dab-1	A 16189	Weyl-Zuckerman	. 550	d	
3laba-l	A 14642	Weyl-Zuckerman	. 325	d	
3laca-1	A 14/86	Weyl-Zuckerman	. 720	d	
Jladd-l	A 14197	Weyl-Zuckerman	. 425	d	
31bab-1	A 14197	Weyl-Zuckerman	. 410	d	
31bdd-1	A 14197	Weyl-Zuckerman	. 405	d	
31ccc-1	A 16153	Leland Huntsman	. 215	153	1.4
31cdc-1	A 16416	Weyl-Zuckerman	. 55	d	
32aaa-1	A 14642	Weyl-Zuckerman	. 165	d	
(C 26 17)					
(C-56-17) 36add 1	A 16101	Normal Breaken	275	73	4 7
36446 1	A 16338	Albert Ualt	. 333	12	4.7
10000-1	A 10550	Albert Holt	. 305	80	4.0
(C-37-16)					
6cac-1	A 16118	Truman & Jones	345	91	3.8
6ccc-1	A 15509	Adams Brothers	325	120	27
				120	2.1
(C-37-17)					
1ccd-1	A 15465	Heber Truman	130	ь	b
1dcd-1	C 19149	Jones, Barlow & Holt	320	ь	b
1ddc-1	A 16339	Leland Holt	210	Ь	\tilde{b}
11dad-1	C 18727	A. E. Pickering	95	b	\tilde{b}
11ddb-1	C 3139	A. P. Windsor	95	45	2.1
					~

Table 6 (cont.). Pumpage inventory, Beryl-Enterprise District, 1953.

Coordinate number	Application or claim	OWNER	Pumpage (ac. ft.)	Acres irrigated	Acre-feet acres
(C-37-17)					
12acc-1	A 1965	Grant Clove		b	b
12bdc-1	A 14183	Charles Sides	175	Ь	Ь
12cbd-1	A 15585	Charles Sides	110	b	ь
12dbc-2	A 16183	Arthur Thomas		ь	b
14acb-1	C 17896	Enterprise Town	250	b	b
14bac-1	A 16090	Jacob Busher	100	b	b
14dcd-1	A 14213	Hunt & Simpkins	65	35	1.9
15bab-3	C 7157	Nelson Thomas	10	20	0.5
Т	OTAL		50,045	15,347	
Т	otal of selected rate-of-water u	wells used to determine se	42,970	13,333	Avg. 3.2

Table 6 (cont.). Pumpage inventory, Beryl-Enterprise District, 1953.

a Estimated.

b Pumped water supplemental to surface streams.

c Water from 2 wells commingled to irrigate 140 acres.

d Water from 15 wells commingled to irrigate 2,200 acres.

Discharge from Wells

During the 1953 irrigation season, a detailed inventory of groundwater use was made in the Beryl-Enterprise district. A total of 242 field measurements were made during the season on the pumping irrigation wells. In addition, static water levels were measured in selected observation wells after pumping had stopped, to determine the effect that seasonal pumping had on water levels throughout the valley. The field measurements made during this inventory are listed in table 5.

Table 6 lists all the irrigation wells in the Beryl-Enterprise district that were measured during the 1953 pumpage inventory. This tabulation indicates that a total of 50,045 acre-feet of ground water was pumped from irrigation wells in the valley, providing the sole source of irrigation supply for 15,347 acres of farm land and the supplemental supply for an estimated 1,000 additional acres located principally at the mouths of Shoal and Pinto Creeks. The rate of ground-water use was computed only for the farms where accurate measurements of both pumpage and irrigated acreage were available for the entire year. Thus, as shown in table 6, a total of 42,970 acre-feet of ground water was pumped during the year to irrigate 13,333 acres of farm land which were selected for this rate-of-use determination. This indicates an average use of 3.2 acre-feet per acre.

The distribution of the rate of water use with respect to the number of acres irrigated is shown in figure 10, which indicates that 41 percent of the irrigated lands included in this inventory received between 3 and 4 acre-feet of water per acre during the pumping season.

Recharge

In the progress report of ground-water investigations in the Beryl-Enterprise district, published in 1950 (Fix, Nelson, Lofgren, and Butler, 1950, p. 146-180), the authors concluded in part as follows:

"Available hydrologic data show that water is contributed to the ground-water reservoir of the Beryl-Enterprise district both by

Figure 10. Distribution of pumpage in the Beryl-Enterprise district in 1953, showing rate of ground-water use with respect to the acres irrigated.

precipitation and irrigation within the district and by surface or subsurface inflow from the tributary drainage basin. The possible sources of ground-water recharge are distributed widely but irregularly around the margins of the valley and over the valley floor. So numerous are these possible sources, and so variable are the effects of climate and permeability upon the amount of recharge, that a quantitative determination of the total recharge in any period would require an immense amount of field study."

Because of the serious deficiency of precipitation that has occurred in the watershed area of the Beryl-Enterprise district during the past 15 years, recharge to the ground-water reservoir has likewise been deficient. Recharge to the valley is derived principally from Shoal, Pinto, and

Figure 11. Annual water-level trends in 15 wells in the Beryl-Enterprise district, and other hydrologic data.

Mountain Meadow Creeks, and from numerous minor tributary dry washes that enter the valley.

Because of the large storage capacity of the underground reservoir, water levels in the district change only slightly as a result of abnormally high or extremely low stream runoff, except along the watercourse of Shoal Creek where the water-level changes in nearby wells can be correlated with the amount of water flowing in the stream. This is clearly demonstrated for the high runoff year of 1952, when an estimated 15,000

Figure 12. Profiles of the Beryl-Enterprise district showing positions of water table.

Figure 13. Map of Beryl-Enterprise district showing irrigation wells, areas of water-level decline December 1951 to December 1953, and distribution of pumpage.

acre-feet of spring floodwater drained into the valley from Shoal Creek alone. During that year, the amount of recharge to the ground-water reservoir was several times greater than it had been in recent years. It is quite probable that runoff from Shoal Creek during 1952 would have extended as far north as Beryl had not the large storage reservoirs in the mountains and the several large ponds in the valley retained the bulk of the spring flood flow. Other streams also extended far beyond their usual limits of flow. Nevertheless, few wells in the district were influenced significantly by this above-average runoff.

Water-Level Trends

Water levels in wells throughout most of the Beryl-Enterprise district continued to decline during 1952-53. This downward trend is attributed largely to the accelerated use of ground water in the district, and to some extent to the cumulative deficiency of precipitation in the region. Figure 11 shows the annual water-level trends in 15 selected observation wells in the Beryl-Enterprise district, and other hydrologic data. Thus, as noted in figure 11, pumpage has increased nearly 900 percent in the district since 1945, during a period in which an accumulated deficiency of about 13 inches of rainfall was recorded. As a result, the water levels in most of the wells in the district have trended downward since heavy pumping began in 1946.

The hydrographs (fig. 11) show a declining trend during the period of record, except for two wells in the northeast part of the valley. Thus, the hydrographs of wells (C-33-15)31ccb-1 near Beryl and (C-35-15)3dcc in the vicinity of the Clark Ranch both showed net rises in water level during their respective periods of record, although the hydrograph of the latter well shows a downward trend during 3 of the last 4 years. The hydrographs of two wells of the group, (C-37-16)6ccc and (C-37-17) 12cbc-1, respectively, show rises in water level in response to the high runoff of Shoal Creek in the years 1949 and 1952; however, the longterm trends of the water levels in these wells have been decidedly downward. One well in the Shoal Creek area recorded a 37-foot rise in water level during the 3-week period of high runoff in 1952.

The declining trend of water levels, especially in the areas of heavy pumping, is clearly illustrated in the two profiles of figure 12. These two profiles show the positions of the water table below the land surface along two sections through the pumping district as of April 1939, December 1949, December 1951, and December 1953. The locations of the two profile sections A-A' and B-B' are shown in figure 9. It is interesting to note that during each of the periods 1949-51 and 1951-53 there has been as much change in water table along these profile lines as occurred during the period 1939-49. The net effect of this decline has been one of lowering and flattening of the water table in the area of the principal irrigated acreage; there has been little or no effect in the northern part of the valley. The decline has also had the effect of steepening the water-table gradient northward from Enterprise into the valley. The effect of the heavy runoff of 1952 is clearly shown in the south end of section B-B', where a well-defined ground-water mound in 1953 projects above the position of the water table of 1951.

The extent of the water-table decline during the period December 1951 to December 1953 is further illustrated in figure 13. This figure is a map of the Beryl-Enterprise district showing irrigation wells, areas of water-level decline from December 1951 to December 1953, and the distribution of ground-water pumpage by sections. Thus, it is demonstrated
that the areas of decline include the sections of significant pumping. In the central part of the valley water levels declined as much as 5 feet, whereas in a small area along Shoal Creek north of Enterprise water levels rose more than 7 feet. In conformity with the trend begun in 1946, the area of declining water levels continues to expand. Even in 1952, when above-normal recharge occurred, water levels throughout most of the valley maintained their downward trend. This suggests that, even in this year, more water was being pumped from the ground-water basin than was replenished by recharge.

Figure 14. Map of "closed area" of Cedar City Valley.

CEDAR CITY VALLEY

By R. L. BARNELL AND W. B. NELSON

Ground-Water Development

After a detailed investigation of the ground-water resources of Cedar City Valley, Thomas (Thomas and Taylor, 1946; and Thomas, Nelson, Lofgren, and Butler, 1952) divided the valley into 8 groundwater districts, their separation being based principally on natural barriers and differences in ground-water occurrence. Parts of four of these districts are shown in figure 14 — namely, the Iron Springs, Coal Creek, Midvalley, and Enoch districts. The first three of these districts are situated on the alluvial fan of Coal Creek, which extends far into the valley, and the trends of water levels in these districts are closely related to the runoff of this stream. The fourth district, namely, the Enoch

Figure 15. Hydrologic data for Cedar City Valley, 1930-53.

district, is hydrologically unrelated to the other three, receiving its recharge mainly from the mountains to the east.

Because of the downward trend of water levels, especially in the vicinity of heavily pumped wells, part of the Iron Springs, Coal Creek, and Midvalley districts, including most of the large irrigation wells in the valley, was closed to additional development of ground water, except for domestic and stock wells. The present extent of the "closed area" is shown in figure 14. Since this closure, a large municipal supply well has been drilled within the "closed area," and several irrigation wells have been drilled slightly beyond the boundary.

Since 1938 the total number of irrigation wells in operation in the "closed area" has ranged from 52 to 64, and ground-water pumpage has ranged from 9,100 to more than 17,700 acre-feet per year. This record, together with other hydrologic data pertaining to Cedar City Valley, is shown in figure 15. Wells constitute the only source of irrigation water on many farms; they are supplemental to surface water on other tracts. Thus, the quantity of ground water pumped varies greatly from year to year, depending largely on the availability of water diverted from surface streams for irrigation.

Discharge from Wells

As listed in table 7, a total of 15,410 acre-feet of ground water was pumped from the 63 irrigation wells in the "closed area" of Cedar City Valley in 1953. This pumpage is about 20 percent greater than the pumpage in 1940, but considerably less than the pumpage in both 1950 and 1951. The decrease in pumpage in 1953 from that of 1950 and 1951 can be attributed partly to a regional lowering of water level which has the effect of decreasing the discharge of each well. It is interesting to note that, in the high-runoff year of 1952, only 11,480 acre-feet of ground water was pumped, equivalent to only 65 percent of the pumpage of the previous year, which was deficient in stream runoff.

During the 1953 irrigation season a total of 143 field measurements were made on the pumping wells in the "closed area" of the valley to determine the rate of well discharge. In addition, more than 100 measurements of static water level were made in the area during periods of no pumping, to determine ground-water trends throughout the valley. Part of these data are listed in table 8.

Recharge

Cedar City Valley is situated within an extensive drought area which prevails in the southwestern part of the United States. Precipitation at Cedar City during the past few years has been the lowest on record, with 20.7 inches of cumulative deficiency from normal precipitation having been recorded during the period 1947-53, inclusive. In general this trend of deficient rainfall has been in effect since 1932, only 5 of the succeeding years having had above-normal precipitation. During the 48 years of record, precipitation at Cedar City has ranged from 6.66 inches in 1950 to 18.76 inches in 1941, with a mean annual average of 12.55 inches.

As noted in figure 15, there are a few years in which a poor correlation exists between annual precipitation as measured at Cedar City and the total runoff in nearby Coal Creek. This is notably the case in 1952 when precipitation at Cedar City was considerably less than normal yet the runoff from Coal Creek was nearly the highest of record. In many of these years a closer correlation is maintained between the records of snow accumulation as measured on selected snow courses on the

Coordinate	State		Depth	ES	TIMATED	ANNUAL	PUMPAGE,	ACRE-FEET		
number	number	OWNER	(feet)	1940	1945	1950	1951	1952	1953	
		COAL C	REEK DISTRICT							
(C-35-11)										
21ccd-1	C 4880	George Parry	172	140	230	220	200	90	130	
21cdb-1	C 9926	Rulon Esplin	176	210	110	270	140	130	145	_
21dbd-2	C 1222	Ezra Rollo	232	160	240	210	180	100	110	꼽
21dcc-1	C 11597	Wilford Fife		170	160	170	100	110	25	
27aca-1	C 5222	Walker Well		240	330	360	500	330	480	ŏ
27acc-1	C 382	Fernleigh Gardner	113	190	180	270	280	150	150	ਲ
27acd-1	C 5224	Bower Well	114	170	420	270	210	200	415	Ē
27adc-1	C 8127	Owen Matheson		180	130					\circ
27bab-2	C 1215	Grant Hunter		330	310	290	330	130	170	Ť
27bbc-1	C 8175	Munford Well	117	310	290	370	370	230	160	70
27bdb-1	C 1216	Grant Hunter	156	220	290	220	250	90	270	- re
27cdd-1	C 8182	Bulldog Well	147	280	290	290	480	160	540	A
27dbb-1	C 5223	Luke & Halterman		430	360	330	430	210	310	H
27dcd-1		Ren Luke	150	440	290	480	440	300	180	E
28aac-1	C 14222	Perry Brothers		190	250	260	260	250	245	Ħ
28dab-1	C 6491	Ray Melling	162	190	220	230	180	130	150	Ĕ
29add-1	C 11606	K. L. Jones		140	170	280	550	360	400	ត្ត
32abd-2	C 14003	Orson Bryant	256	350	290	390	370	110	250	
32aca-1	A 12242	John Sherratt	223	260	240	350	330	300	360	- H
32acd-1	C 8176	Kimball Jensen, et al		290	270	380	430	250	355	Ē
32add-1	C 6935	Corry & Davis		430	360	420	520	580	605	Ħ
32daa-1	C 490	E. T. Higbee			270	260	350	290	365	•
33aac-1	C 5126	Cottonwood Well		340	230	330	320	210	540	
33abd-1	C 11590	W. K. Granger		170		310	400	230	345	
33bac-1	C 5131	Fred Biederman		400	230	300	370	200	300	
33dbc-1	C 14012	W. H. Wood		170	410	420	350	1.30	155	
33cdd-1	C 411	Richard Leigh		110	200	110		70	10	
(C-36-11)										
5abd-1	A 12255	Fred Perry			120	370	360	240	380	
5baa-1	A 12636	Fred Perry			80	290	330	150	240	_
5bdd-1	C 13503	Sidney Ashdown	144	290	150	260	290	200	240	77

Table 7.	. Estimated pumpage from wells within the "close	d area'' of Cedar City Valley, 1940-53.

Coordinate	State		Depth	EST	TIMATED	ANNUAL	PUMPAGE,	ACRE-FEET		
number	number	OWNER	(feet)	1940	1945	1950	1951	1952	1953	
(C-36-11)										
5cab-1	C 13509	Kent Smith	230	340	20	350	280	110	460	
5cac-1	C 13510	Kent Smith	220	260	300	330	210	90	345	
5dcb-1	C 5091	Warren Bullock	144	290	360					
5dcc-1	C 13487	Leonard Bullock	150	310	250	410	400	380	345	
8bb a-1	A 11977	Alfred Stucki	158	410	180	290	400	200	435	
8bba-2	C 13983	E. B. Williams		220	90	170	250	120	260	i
8bda-1	C 6560	E. B. Williams	150	110	270	100	150	50	60	-
8bda-2	C 6561	E. B. Williams	80				30	30	10	
8cab-1	C 8180	Higbee, Smith & Jones	200	220	310	310	290	210	75	
8cbb-1	C 317	Lehi Jones	60	50	230	270	270	140	225	9
18ada-1	C 4881	Branch Agricultural College	100	100		140	220	150	95	
18ada-4	C 15422	Branch Agricultural College	245		130	290	280	130		į
		IRON SPRIN	GS DISTRICT							
(C-35-11)										
29acd-1	C 13512	K. L. Jones	300	230	320	340	300	250	230	
29dbd-1	C 1230	Alex Williams	91	120	50	200	230	220	240	
31acd-1	C 13498	Kimball Jensen	472	120	200	260	220	280	270	
32bda-1	A 11872	John H. Beal	200			210	410	370	445	1
32ccd-1	C 5098	Corry, Palmer & others	287	430	460	490	440	280	395	
(C-35-12)		.,								
34dcd-1	C 4873	Reuben T. Shay	120	10						
36daa-1	A 11745	Joseph Foster	400			90	100	40	100	
(C-36-12)										
laaa-2	C 13995	Irad DeMill	366	100	110	210	210	170	80	
12dba-1	C 15411	Branch Agricultural College	600	170	280	210	260	150	270	
		MIDVALLE	Y DISTRICT							
(C-35-11)										
8ddd-1	C 11596	John Sherratt		60	80	150	170	100	120	
9ccc-1	A 12069	John Heaton	.300	~~	••	140	260	160	170	
10ccc-1	C 6739	Charlotte Esplin	459	30		1,0	200	100	110	
10cdd-1	C 6740	Elwin Armstrong	499	80	160	130	170	10	140	

Table 7 (cont.). Estimated pumpage from wells within the "closed area" of Cedar City Valley, 1940-53.

REPORT OF STATE ENGINEER

16acd-1 17dcd-1	C 3390 A 12341	Cline Bauer Conrad Bauer	268 200	290	250 150	260 140	330 190	160 110	360 100	
		ENOCH DIS	TRICT ¹							
(C-35-10)										
7 cad-1	A 12056	Francis Matheson	101	200	200	190	200	160	120	
7cdd-1	C 15342	Parson Webster	70	40		20	30	30		
18bbc-1	A 12114	Stanley Smith			250	180	190	40	75	
18cca-1	A 22528	Cedar City	285						185	
(C-35-11)										
12ddd-2	A 12320	C. S. Smith	238		200	170	120	80	145	R
12ddd-1	A 12455	West Enoch Irrigation Co.	250	440	320	320	280	310	265	臣
13ada-1	A 12093	West Enoch Irrigation Co.	279			300	280	240	290	õ
13cac-3	C 19305	Norman Bullock	,			40	40	20		Ř
13dda-1	A 11849	East Union Irrigation Co.	206		120	330	320	250	425	Ĥ
13ddb-2	C 8178	East Union Irrigation Co.	166	260	270	370	370	210	290	
13dbd-3	C 491	East Union Irrigation Co.	166	290	330	400	400	260	220	¥
14aac-1	C 13713	W. H. Grimshaw	334	220	120	40	50	60	70	
14ddd-3	C 14002	David Murie	158	110	130	70	70	20	70	ST
		PUMPAGE, BY GROUND WATH	ER DISTRI	CT, IN A	CRE-FEET					ATE
Coal Creek dist	rict			9,110	9,260	11,370	12,110	7,510	10,335	H
Iron Springs dis	strict			1,270	1,420	2,010	2,170	1,760	2,030	Ż
Midvalley distri	ct			460	640	820	1,120	530	890	G
Enoch district ¹				1,560	1,940	2,430	2,350	1,680	2,155	E
TOTA	L			12,400	13,260	16,630	17,750	11,480	15,410	EE
		NUMBER OF WELLS PUM	PED FOR	IRRIGATI	ON					R
Coal Creek dist	rict			36	38	38	.38	40	39	
Iron Springs dis	strict			9	7	9	9	8	8	
Midvalley distri	ct			4	4	5	5	5	5	
Enoch district ¹				7	9	12	12	12	11	
τοται	L			56	58	64	64	65	63	

¹ Part that is within the closed area.

	Static m	easurements	Pumping measurements					
Coordinate number	Date	Depth to water ¹ (feet)	Date	Depth to water (feet)	¹ Discharge (gpm)			
(C-34-10) 30ddc-1 31caa-1			6/23	67.5	565			
(C-34-11)	2/13	1.40	6/22	50.0	205			
50000-1	12/7	11.93	8/4	68.0	197			
36cdd-2			9/15 6/22 8/4 9/15	67.5 67.4 93.0 92.1	324 512			
(C-35-10)			-,					
7cad-1	3/13 12/7	33.69 37.12	6/23 9/3	50.2 51.0	247			
18bbc-1	1-/ 1	5112	6/23 8/10	70.5 73.0	216 148			
(C-35-11)			-,					
8ddd-1			6/19 8/10	51.0 50.4	160 170			
9ccc-1	3/13 12/7	11.56 17.49	6/22 8/4	74.9 70.0	202 207			
10cdd-1	/ •		9/15 6/22	74.3	207 184			
12ddd-1			8/4 6/22		157 355			
12ddd-2			8/4 6/23	69.0	350 274			
13ada-1	3/13	41.89	8/4		257			
	12/7	51.85	8/4 9/15	87.2 85.5	457			
13cac-3 13dda-1			9/3 6/23	90.0	50 930			
			8/4 9/15		853 785			
13ddb-2			6/23 8/4		360 288			
13ddb-3			6/23 8/5		234 234			
14aac-1			9/3		230			
14ddd-3 16acd-1			6/22 6/22		148 450			
			8/4 9/15		450 455			
17dcd-1	12/7	22.39	6/19 8/10	66.5 55.5	70 212			
21ccd-1			6/22 7/30	70.5 70.0	216 238			
21cdb-1			6/22 7/30	71.5 72.4	284 274			
21dbd-2	12/7	35.88	6/15 8/10	46.8 57.5	328 328			
21dcc-1	3/13 12/9	31.55 38.18	6/22 7/30	52.5 54.6	270 202			
27aca-1			6/15 7/30 9/15	61.3 66.1	665 634 600			

Table 8. Measurements of water level and discharge of irrigation wells in the "closed area" of Cedar City Valley, 1953.

	Static me	easurements	Pumping measurements			
Coordinate number	Date	Depth to water ¹ (feet)	Date	Depth to wate (feet)	r ¹ Discharge (gpm)	
(C-35-11)						
27acc-1	3/13	43.46	6/15	61.3	234	
	12/7	52.07	6/23	61.5		
			9/15	65.5 63.8	216	
27acd-1			6/16	72.3	575	
271 1 2			6/23	71.9	224	
2 (bab-2			$\frac{6}{13}$	52.3	524	
			7/30	53.2	270	
27bbc-1	12/7	46.23	6/17	49.0	500	
27bdb.1			6/15	49.5	638	
21000-1			7/30	57.5	584	
27cdd-1	12/6	68.48	6/15	85.3	862	
			9/15	87.1	822	
27dbb-1			6/16	00.7	445	
27dcd-1			6/16	07.0	540	
28aac-1			6/16	07.8 50.4	412 447	
28dab-1			6/17	63.0	342	
20 11	2 /12	25 52	7/30	66.3	180	
29acd-1	3/13	35.73	6/19 8/4	74.4 75.7	288	
			9/14	74.8	300	
29add-1			6/19	71.8	490	
			8/4 9/14	73.9	463	
29dbd-1			6/19	68.2	243	
			8/4	73.2	306	
31acd-1			9/14	78.0 64.1	355	
Jiacu-1			8/3	65.0	346	
22.1.1.2			9/14	65.0	333	
3Zabd-Z			6/19 8/10	71.5	625 615	
			9/14	73.0	015	
32aca-1	3/13	46.71	6/19	66.9	423	
	12/1	22.02	0/4 9/14	70.5	392 410	
32acd-1			6/19	10.5	485	
22-111			8/3	75.2	423	
52 a dd-1			8/4	75.5 78.6	685	
221.1.4			9/14	78.4		
32bda-1			6/13	65.2 67.0	685 560	
32ccd-1			6/22	01.9	503	
22 - 1			8/3	76.0	497	
32daa-1			0/19 7/23	70.2 80.5	588 540	
33aac-1	12/7	75.80	6/17	88.4	805	
			7/30	92.7	785	
33abd-1			9/3 6/17	91.3	785 596	
			7/30		557	
33bac-1			6/17	73.2	525	
2211 2			6/17	10.0	770	

Table 8 (cont.). Measurements of water level and discharge of irrigationwells in the "closed area" of Cedar City Valley, 1953.

	Static me	asurements	Pumping measurements				
Coordinate		Depth to water ¹		Depth to water ¹	Discharge		
number	Date	(feet)	Date	(feet)	(gpm)		
(C-35-12)							
36da a -1	12/7	20.00	6/22	75.3	122		
(C-36-11)							
5abd-1	3/13	57.41 67.37	6/19 8/5	78.4 80.2	805 785		
5b a a-1	12/1	01.57	6/18	70.0	585		
5bdd-1			8/10 6/18	66.2	515 410		
5cab-1			8/3 6/18	67.0 74 6	378 625		
Seatori			8/10	76.3	625		
5cac-1			9/14 6/18	75.5 68.3	638		
5dcc-1			8/10 6/18	68.3 69.2	634 453		
			8/3	77.3	413		
8bba-1			6/18	65.6	570		
			8/3 9/14	66.0 64.3	543		
8bba-2			6/19 8/3	62.2 63.7	490 462		
8bda-1			8/3	05.1	200		
80da-2 8cab-1	3/13	38 64	6/18 8/3		45 190		
8cbb-1	3/13	50.01	6/18	61.0	280		
18ada 1	12/7	44.09	8/10	61.0	252		
10404-1	12/7	44.08	8/3	68.4	90		
(C-36-12)			9/14	67.4			
laaa-2	3/13	12.72	6/22	52.6	103		
12dba-1	3/13 12/7	16.22 22.35	6/18 8/10	52.5 46.4 46.9	346 360		

 Table 8 (cont.). Measurements of water level and discharge of irrigation wells in the "closed area" of Cedar City Valley, 1953.

¹ Below land surface.

All wells are powered by electric motors.

watershed areas. Thus, as shown in figure 15, the bar graph of water content of snow as measured on Webster Flat seems to correlate closely each year with the runoff graph for Coal Creek, and it is probably more directly related to water-level conditions in the valley than is the Cedar City precipitation record.

Streamflow records, which are available for Coal Creek for the years 1916-20 and 1935-53, are shown for the latter period in figure 15. Considering only the years for which a complete water record is available, runoff from Coal Creek has ranged from a maximum of 41,060 acre-feet in 1941 to only 9,080 acre-feet in 1951 and averaged 24,600 acre-feet for the period. During 7 of the last 11 years, the runoff of Coal Creek has been below this average value.

Figure 16. Annual water-level trends in 14 wells in Cedar City Valley, Utah.

Water-Level Trends

As shown in figure 16, the water levels in most of the wells in the valley fluctuate in about the same manner in response to changes in the runoff of Coal Creek. Thus, high runoff recharges the underground water basin, results in a reduction in pumping, and contributes to a general rise in water levels. Conversely, the extended period of deficient runoff of the past several years caused heavy draft on the ground-water reservoir resulting in the lowest water levels on record in many of the wells. The lowering of water levels has also reduced the yields of wells.

The irrigated areas in the vicinity of Cedar City serve as a recharge area for districts farther down the fan. Thus, there is a marked correlation between the quantities of water spread for irrigation in the upper areas and the trend of water levels in the lower districts. This is clearly shown by comparing the records of 1947 and 1949. During these two years the total runoff of Coal Creek was about the same, and the total pumpage from wells was comparable. The runoff characteristics in these two years, however, were considerably different, resulting in entirely different water-level conditions in the lower districts of the fan. In 1947 the early spring runoff occurred too early to be of value to the farmers in the area, and much of the water wasted past the potential recharge areas unused. In 1949, however, the high spring runoff of Coal Creek occurred several weeks later in the season, and all the flood water was used for irrigation on the recharge areas. The additional recharge in 1949 resulted in a rise in water levels in wells, which were 3 to 4 feet higher than in 1947. In 1952, a year of abnormally high stream runoff, most of the spring runoff was not diverted for irrigation, and average water levels failed to reach the high levels attained in 1949, a year when less than half the 1952 spring runoff occurred.

Possibilities of Artificial Recharge

The close relation between ground-water conditions and the streamflow characteristics of Coal Creek suggests the possibility that the quantity of water stored in the ground-water reservoir could be materially increased by artificial recharge. It is believed that far more water could be placed in underground storage in some years by the planned spreading of surplus stream runoff.

PAROWAN PUMPING DISTRICT

By R. G. BUTLER AND R. L. BARNELL

Although Parowan Valley is only 19 miles north of Cedar City Valley, the two areas are separate and distinct and are here discussed as two independent ground-water basins. Not only are the irrigation wells and the croplands in the two basins dissimilar, as to both size and type, but also the records of precipitation and conditions of ground-water recharge differ.

As noted in figure 17, the annual precipitation at Parowan varies only slightly from one year to the next, in marked contrast to the other basins of southern Utah. This is further illustrated in the curve of accumulated departure from normal precipitation, which indicates a rainfall deficiency at Parowan of only 2.7 inches during the period 1947-53, as compared with an accumulated departure of 20.7 inches at Cedar City. Likewise, during the two years of exceptionally high stream runoff, 1949 and 1951, respectively, precipitation at Parowan was considerably above normal, whereas at Cedar City a below-normal rainfall was recorded.

Ground-Water Development

The several ground-water districts in Parowan Valley are outlined in figure 18. This map shows also the location of all irrigation wells in the valley and the area in the central part of the district that is "closed" to further ground-water appropriation. The boundaries of the "closed area" were first established in 1935 and have been enlarged on several occasions to encompass the present area delineated in figure 18. Within this "closed area," few wells have been drilled since 1940, and these were for the most part replacement wells for nearby abandoned installations. Since 1940, 19 irrigation wells have been drilled beyond the boundaries of the "closed area," clustered in 3 groups in the Buckhorn, Paragonah, and Summit districts.

In 1940 there were 395 known wells in Parowan Valley, of which about 300 flowed by artesian pressure during at least part of each year. Thirty wells were pumped for irrigation during 1940, with a combined discharge of 6,030 acre-feet. Subsequent drilling increased the number of irrigation wells in operation to a total of 50 in 1953, and the total pumpage from these wells amounted to 11,460 acre-feet. As noted in figure 17, the annual pumpage ranged from about 10,000 to 11,500 acre-feet during

Figure 17. Hydrologic data and water-level trends in Parowan Valley, 1935-54.

the period 1950-53, inclusive, and in no year during the past 9 has the annual pumpage deviated more than 15 percent from the annual average of 10,000 acre-feet. Apparently, seasonal variations of rainfall and surface runoff have little influence on the quantity of ground water pumped each year. This is probably due to the fact that irrigated acreage varies but little from one year to the next, and few fields in the valley use ground water to supplement a surface stream supply.

It is estimated that in 1940 less than half the water that entered the ground-water reservoir in Parowan Valley was used beneficially (Thomas and Taylor, 1946, p. 198). In that year, estimates showed 6,400

area," and location of irrigation wells.

acre-feet of water pumped from wells for irrigation, about 700 acrefeet derived from flowing wells for irrigation, a small quantity withdrawn from flowing wells for beneficial purposes other than irrigation, and about 1,400 acre-feet wasting from flowing wells, the total discharge from all wells being about 8,500 acre-feet. The ground-water discharge by springs and by evapotranspiration was estimated to have been about 10,700 acrefeet; thus, the total ground-water discharge in 1940 was about 19,000 acre-feet. Although some development has taken place since these estimates were compiled, it is probable that each year as much water discharges from the ground-water reservoir without being put to beneficial use as is put to such use.

Coordinate	State		Depth	ES	TIMATED	ANNUAL	PUMPAGE,	ACRE-FEET	
number	number	OWNER	(feet)	1940	1945	1950	1951	1952	1953
		PAROWAN	DISTRICT						
(C-33-8)									
31bcc-1	A 21305	H. M. Adams					200	220	375
31ccc-1	A 17398	Charles Burton				300	290	210	420
(C-33-9)									
25cdd-4		A. H. Orton		160	250	310	260	230	160
25dcc-3	C 7898	S. P. Pritchard		60	200	210	250	230	200
26cac-8	C 6759	Wm. M. Evre			200	100	150	190	200
26ddd-1	C 13807	M. E. Trimmer		190	340	100	190	10	200
34aad-1	C 1227	Eugene Warren		30	130	180	140	150	170
34daa-3	C 13495	Rulon Dalton		110	110	140	150	100	35
34dbd-1	C 493	O. M. Lyman	425	170	190	150	140	200	130
34dbd-4	A 13395	O. M. Lyman		140	160	140	240	250	165
34dcd-1	C 6750	C. L. Robinson		270	340	430	360	360	325
34ddd-1	C 13496	Rulon Dalton	515	220	190	240	230	200	160
35aad-4	C 16414	Harold Dalton	515	2.70	210	250	270	210	235
35acd-1	C 13810	W. Scott Day	500	270	4 50	280	310	250	280
35bac-1	C 11216	Clark Orton	500	160	190	220	230	200	175
35bad-1	C 7848	Reid Orton	608	120	120	190	250	170	175
35cbb-1	Č 4554	W. Scott Day	300	50	80	70	90	90	115
35ddd-1	C 13812	W. Scott Day	500	410	400	370	410	310	200
36bbc-1	C 1264	Harold Dalton	560	70	350	220	150	180	165
36dcd-1	Č 494	H. L. Adams	499	140	210	180	200	190	75
(() 34 8)	0 171		177	110	210	100	200	170	0
(C-34-0)	A 22001	Inter S. Europa							
10001	A 22091	H I Adama						150	145
		II. L. Adams						150	540
(0-34-9)	o 000								
3bcd-1	C 920	S. A. Halterman	560	400	260	330	400	440	365
Jcba-J	C 20834	S. A. Halterman			180	210	170	140	160
3cdd-2	C 1170	Clair Rowley	355	190	220	230	250	40	250
8dad-1	C 495	LeRoy Stubbs			180	220	250	230	235
9aad-1	C 13987	L.D.S. Church	126	200	250	270	290	290	180
9baa-4	a 2297	Harley Dalton		140	280	380	440	390	325
966d		J. N. Evans				60	210	300	245
9bbd-1	C 5786	J. N. Evans	600	210	380	300	300	180	155
9bca-4	C 4871	Peter Gurr		300	350	290	240	330	255
9bcc-1	C 4870	Peter Gurr	540	260	380	280	240	280	175
9dbc-1	C 1224	F. H. A	540				120	120	125
10bdd-1	C 8801	Clair Rowley	500		180	200	220	30	120
11		Claude Lister						20	245
16cdd-2	A 22566	Joseph Holyark					200	250	215

Table 9. Estimated pumpage from wells in Parowan Valley, 1940-53.

REPORT OF STATE ENGINEER

Coordinate	State		Depth	1	ESTIMATED	ANNUAL	PUMPAGE,	ACRE-FEET	
number	number	OWNER	(feet)	1940	1945	1950	1951	1952	1953
		LITTLE	SALT LAKE DISTRIC	т					
(C-33-9)		210.522		-					
28dcd-1	C 1231	Arthur B. Evans		200					
32cdd-4	C 19512	Edgar Benson			170	120	130	110	75
32ddd-1	C 10620	C. L. Robinson			130	220	70	160	120
33aad-1	C 1233	John P. Bayles		290	300	240	, 260	220	175
33abd-1	C 1232	Arthur B. Évans			210	230	270	2 4 0	270
34bad-1	C 3717	Dee Evans			170	150	110	80	75
34cbd-4	C 5694	Dee Robinson		350	360	420	340	250	4 05
(C-34-9)									
5bda-1	C 5089	H. F. Bayles		420	500	430	430	430	525
5dad-1	C 5089	L.C. Robinson	665	540	520	580	540	460	410
7ccc	A 21797	Peter Gurr		510	520	200	320	180	260
		0	INNER DISTRICT						
(C.34.10)		5	UMMIT DISTRICT						
13cca-1	C 17658	Ray Lyman	107			110	170	260	225
23ada-1	A 17047	Ray Lyman	101			280	260	180	250
24226-1	A 16640	I vie Farrow				180	210	190	320
24abc-1	A 12115	Farl Bunn	104			50	100	40	
24bbd-1	A 22520	Ray Lyman				50	210	270	280
24cah-1	A 16803	Raymond Farrow				120	130	190	240
24cbc-1	A 12241	John Farrow	247	50		160	120	80	150
24cbc-2		John Farrow		50		100	180	130	300
							200		
		PUMPAGE, BY GROU	IND WATER DISTRIC	T, IN A	CRE-FEET				
Parowan	•••••••••••••••••••••••••••••••••••••••			4,180	6,580	6,750	7,650	7,140	7,380
Little Salt Lake				1,800	2,360	2,390	2 ,47 0	2,130	2,315
Summit				50	330	900	1,200	1,340	1,765
τοται				6,030	9,270	10,040	11,320	10,610	11,460
		NUMBER OF W	ELLS PUMPED FOR T	RRIGAT	ION				
Parowan			SECTORIED FOR L	24	27	29	32	35	34
Little Salt Lake					-1		~ 9	Ĩ9	Ğ9
Summit				1	4	6	7	8	7
TOTA	· · · · · · · · · · · · · · · · · · ·			20	30	42		57	50
IUIA				50	59	43	40	52	50

Table 9 (cont.). Estimated pumpage from wells in Parowan Valley, 1940-53.

REPORT OF STATE ENGINEER

	Static mea	surements	Pum	ping measureme	nts
Coordinate number	Date	Depth to water ¹ (feet)	Date	Depth to water ¹ (feet)	Discharge (gpm)
(C-33-8) 15ccd-1 ²	3/12	16.70 19.06			
21dcc-1 ^a	12,0	17100	6/28	87.0	1050
21ddd-1 ³			8/11	05.0	850
28cda-1-			6/27 9/3	85.0 79.6	1030
31bcc-1			6/26	56.0	635
			8/7	54.6	680
31ccc-2			9/16 6/25	55.0 61.9	560
(C-33-9)			9/16	64.9	545
25cdd-4			6/26	39.8	215
25dcc+3	12/7	7 34	8/1 6/26	39.8 49.5	215 445
Didde 5	12/1	1.51	8/7	44.4	430
26cac-8			6/26		345
32cdd-4			8/7	32.6	340
Jecuurt			8/11	40.3	95 95
			9/16	40.0	//
32ddd-1			6/25		270
33aad-1			8/6 6/25	40 5	250
55440-1			8/7	63.4	365
			9/16	59.0	380
33abd-1	12/8	1.68	6/25	60.2	350
			8/11	62.6 62.0	340
34aad-1			6/25	46.5	250
			8/7	48.1	235
34bad-1 34cbd 4			8/7	75.3	360
54000-4			6/24 8/11	64.0 86.0	035
			6/25	00.0	100
2411.1.1			8/7		105
34dbd-1			6/25		180
			9/16	55.9	100
34dbd-4			6/25		290
34ded-1			8/7	62.0	280
Jucuri			8/6	63.U 64 7	46U 485
			9/16	68.3	105
34ddd-1			6/25	64.5	345
			8/11	6 4. 6	340
35aad-4			6/26	09.0	410
~~			8/7		390
35acd-1			6/26	62.5	375
35bac-1	12/8	8.82	6/26	07.5 52.3	330 280
			8/7	52.7	265
35had 1			9/16	49.0	250
JJDau-1			0/20 8/7		250
35ddd-1			6/25	44.5	360
			8/7	44.8	345
36bbc-1	12/8	14.36	9/16 6/26	40.3 48.0	315
	-2,0	* 1120	8/11	49.0	300
261-11	2 / 2	11.00	9/16	45.9	
Joaca-1	3/12 12/8	44.69 51.77	6/25	71.0	155
	14/0	27+11	0/1	(3.3	140

Table 10. Measurements of water level and discharge of
irrigation wells in Parowan Valley, 1953.

with the second s	Static me	asurements	Pumping measurements				
Coordinate	D-+-	Depth to water ¹	Data	Depth to water ¹	Discharge		
number	Date	(ieet)	Date		(SPIII)		
(C-34-8) 6bdd-1	12/8	62.20	6/26 8/7	96.3 94.6	415 415		
(C-34-9) laac			6/25	70.5	870		
3bcd-1			8/7 6/24 8/6	77.5 73.8 75.4	815 565 480		
3cba-3			9/17 6/24 8/11	76.7 53.8 54.1	475 220 220		
3cdd-2			9/17 6/24 8/6	53.1 84.1 84.5	400 370		
5bda-1			8/11 9/16	59.3 57.5	590		
5dad-1			6/24	66.0	520		
7ccc-1	3/12	7.82	8/6 6/24	68.2 76.5	815		
8dad-1	12/8	10.37	8/6 6/24 8/11	74.5	830 330 275		
9aad-1			8/31 6/24 8/4		265 215 215		
9baa-4	12/8	11.61	6/24 8/6 9/17	51.0 51.5 54.0	435 430		
9bbd			6/24 8/6 9/17	70.2 67.8 66.4	310 400		
9bbd-1			6/24 8/6	00.1	190 215		
9bca-4			6/24		395		
9bcc-1			6/24 8/6		405 340 350		
9dbc-1	3/12	29.85 34.22	6/24	73.5	310		
10bdd-1	3/12 12/8	57.92 67.39	6/24 8/6	78.6 81.6 79.6	165 150		
11bca-1	4/10	84.20	6/24 8/6	104.1	1280		
16cdd-2	3/12 12/8	49.63 59.09	6/24 8/6 9/17	106.2 105.0 101.1	410 330		
13cca-1	12/8	43.04	6/23	62.3	485		
23add-1			6/23	0.00	390 435		
24aac-1	3/12	54.01	6/23		585		
24bbd-1	12/8	50.72	6/23 8/5 9/17	82.4 82.3 78 5	555 500 465		
24cab-1 24cbc-2	3/12	92.60 95.17	6/24 6/23 8/5	120.9	460 530 560		
24cbc-1	12/0		6/23 8/5	110.5	260 275		

,

Table 10 (cont.). Measurements of water level and discharge of irrigation wells in Parowan Valley, 1953.

¹ Below land surface.
² Powered by diesel engine.
⁸ Powered by gas engine.
⁴ Powered by propane engine.
All wells not otherwise indicated are powered by electric motors.

Coordinate	Application		Pumpage	Acres	Acre-feet
number	or claim	OWNER	(ac. ft.)	irrigated	acres
(C-33-8)					
31bcc-1	A 21305	Howard M. Adams	375	146	2.6
31ccc-2	A17398	Charles Barton	420	129	3.3
(C-33-9)					
25cdd-4		A. H. Orton	160	60	2.7
25dcc-3	C 7898	S. P. Pritchard	200	55	3.6
26cac-8	C 6759	W. M. Eyre	200	64	3.1
32cdd-4	C19512	Edgar Bensen	120	38 78	2.0
32000-1 33000-1	C 1233	Lohn P Bayles	175	91	1.9
33abd-1	C 1235	Arthur B. Evans	270	120	2.2
34aad-1	C 1227	Eugene Warren	170	78	2.2
34bad-1	Č 3717	Dee Evans	75	38	2.0
34cdb-4	C 5694	Dee Robinson	405	150	2.7
34daa-3	C13495	Rulon Dalton	. 35	a155	1.3
34dbd-1	C 493	O. M. Lyman	130)		
34dbd-4	A13395	O. M. Lyman	<u>165</u> ∫	158	1.9
34dcd-1	C 6750	C. L. Robinson	325	155	2.1
34ddd-1	C13496	Rulon Dalton	160	a	4.2
25 and 1	C10414	W Seett Dev	200	127	4.2
35bac.1	C11216	Clark Orton	175	132	2.2
35bad-1	C 7848	Reid Orton	175	72	2.4
35ddd-1	C13812	W. Scott Day	200	180	Ĩ.1
36bbc-1	C 1264	Harrell Dalton	165	90	1.8
36dcd-1	C 494	H. L. Adams	75	225	
(C-34-8)					
6add-1	A22891	Jay S. Evans	145	69	2.1
(C-34-9)					
laac		H. L. Adams	540	160	3.4
3bcd-1	C 920	S. A. Halterman	365)		
3cba-3	C20834	S. A. Halterman	1605	277	1.9
3cdd-2	C 1170	Clair Rowley	250	102	2.4
5bda-1	C 3716	H. E. Bayles	525	116	4.5
7000-1	A 21707	P H Gurr	260	230	1.7
8dad-1	C 495	LeRov Stubbs	235	117	2.0
9aad-1	C13987	L. D. S. Church	180	150	1.2
9baa-4	A 2297	Harley Dalton	325	120	2.7
9bbd-1		J. N. Evans	245)		
9bbd-1	C 5786	J. N. Evans	155\$	140	2.9
9bca-4	C 4871	P. H. Gurr	255		
9bcc-1	C 4870	P. H. Gurr	1755	160	2.7
9dbc-1	C 1224	F. F. A. Chapter	125	88	1.4
10bdd-1	C 8801	Clair Kowley	120	100	1.2
16cdd-2	A22566	Joseph Holyark	245	85	2.5
(C-34-10)					
13cca-1	C17658	Ray Lyman	225	80	2.8
23ada-1	A17047	Ray Lyman	250	b160	33
24aac-1	A16640	Lyle Farrow	320	65	4.9
24bbd-1	A22520	Ray Lyman	280	Ъ	1
24cab-1	A16803	Raymond Farrow	240	118	2.0
24cbc-2	A22575	John Farrow	3001		
24cbc-1	A12241	John Farrow	150∫	118	3.8

Table	11.	Pumpage	inventory,	Parowan	Valley,	1953.

a Water from 2 wells commingled to irrigate 155 acres. b Water from 2 wells commingled to irrigate 160 acres.

Figure 19. Distribution of pumpage in Parowan Valley in 1953, showing rate of ground-water use with respect to acres irrigated.

Discharge from Wells

Most of the wells in Parowan Valley flow at the land surface for a few weeks in the spring of each year. During the season of heavy pumping, however, drawdowns of 40 to 70 feet occur in most wells in the district. Many of the wells are equipped with electric pumping equipment. During the 1953 irrigation season a total of 11,460 acre-feet of water was pumped from 53 irrigation wells. In addition, 15 irrigation wells were known to be idle during the year, making a total of 68 units in the valley.

Table 9 lists the 54 irrigation wells from which significant quantities of ground water were pumped in the past 5 years. It shows for each well the compartive pumpage for the years 1940 and 1945-53. Notably, this table

does not include 5 wells in the Buckhorn district (see fig. 18) and 4 wells in the Paragonah district. These wells are new installations and were not pumped for irrigation in 1953, except well (C-33-8)28cda-1 which was pumped sporadically at about 2¹/₄ cfs., and for which no accurate measurements are available. This table also summarizes by districts the number of wells pumped for irrigation and the quantity of ground water pumped for each of the past 5 years.

As part of the 1953 ground-water inventory, periodic measurements of water level and pumping discharge were made of all irrigation wells in Parowan Valley. The data from this inventory are given in table 10. The information is summarized in table 11, which lists for each well the annual pumpage in acre-feet, acres irrigated, and the rate of ground-water use in acre-feet per acre. It is noted that water use in the valley ranged from 1.1 to 4.9 acre-feet per acre, with an average use of 2.4 acre-feet per acre. The pumpage-distribution diagram of figure 19 shows the rate of ground-water use in acre-feet per acre with respect to the number of acres irrigated. It also indicates that more than 80 percent of the total area in the valley used between 1 and 3 acre-feet of ground water per acre of cropland.

In the western part of the valley the water table at the beginning of each irrigation season is near the land surface, and subirrigation from the shallow water table supports much of the demand of the croplands. As the water table declines during the pumping season, however, surface irrigation is required. Thus, some land in the area gets by with one or two irrigations during the year, whereas farms on the higher lands require 5 to 8 waterings in a season. No attempt was made in this study to evaluate these variables.

Water-Level Trends

The hydrographs of 9 scattered observation wells, based on waterlevel measurements in March of each year, are shown in figure 17. In general, the same trend prevails in all wells; however, the magnitude of the fluctuations varies considerably. Wells in this valley fluctuate as much as 60 feet during a season, but in most instances return to about the same water level each year after pumping stops.

During the past 4 years, water levels in wells and seasonal precipitation have generally trended downward. This trend is apparent in the hydrographs of wells (C-33-9)34cbd-2 and (C-33-9)34dcd-1. These wells, although less than a quarter of a mile apart are separated by a fault, and their seasonal fluctuations are not alike. There is, however, a general downward trend of water levels in both wells. Water levels in wells (C-33-9)36dcd-1 and (C-34-9)10bdd-1 showed a net decline of 11 to 20 feet in the past 4 years, and are now at the lowest observed stage of record. Similarly, the water level in well (C-34-8)5bca-1 has declined about 6 feet, despite the fact that its level is 5 feet higher than the low point of 1937.

BIBLIOGRAPHY

- Fix, P. F., Nelson, W. B., Lofgren, B. E., and Butler, R. G., 1950, Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah: Utah State Eng. 27th Bienn. Rept., p. 109-210.
- Thomas, H. E., and Taylor, G. H., 1946, Geology and ground-water resources of Cedar City and Parowan Valleys, Iron Co., Utah: U. S. Geol. Survey Water-Supply Paper 993, 206 p.

Thomas, H. E., Hansen, G. H., and Lofgren, B. E., 1952, Deep water wells in Utah County, Utah: Geol. Soc. America Bul., vol. 63, No. 12, part 2, p. 1373-74. Thomas, H. E., Nelson, W. B., Lofgren, B. E., and Butler, R. G., 1952, Status of

Thomas, H. E., Nelson, W. B., Lotgren, B. E., and Butler, R. G., 1952, Status of development of selected ground-water basins in Utah: Tech. Publ. 7, Utah State Eng. 28th Bienn. Rept., p. 112-206.

Eng. 28th Bienn. Rept., p. 112-206. Tracy, J. M., 1950, 27th Biennial Rept. of the State Engineer to the Governor of Utah, 210 p.

STATE OF UTAH

JOSEPH M. TRACY, State Engineer

PUMPING COSTS IN SOUTHWESTERN UTAH

By W. B. Nelson U. S. Geological Survey

.

Prepared in cooperation with the GEOLOGICAL SURVEY

W. E. WRATHER, Director

UNITED STATES DEPARTMENT OF THE INTERIOR

REPORT OF STATE ENGINEER

CONTENTS

Introduction	97
Overall pumping efficiency	97
Cost of pumping water in district A	9 8
Cost of pumping water in district B	101
Conclusions	104

ILLUSTRATIONS

Fig	pure Pag	е
1.	Curves showing cost per horsepower of pumping for irrigation in district A using local power rates	9
2.	Curves showing cost per acre-foot of pumping water for irrigation in district A for different pumping lifts and four different efficiencies. (Based on rates of local power company and on an assumed 25 days of operation per month.) 100	0
3.	Curves showing cost per horsepower of pumping for irrigation in district B using local power rates	2
4.	Curves showing cost per acre-foot of pumping water for irrigation in district B for different pumping lifts and four different efficiencies. (Based on rates of	

local power company and on an assumed 25 days of operation per month.) 103

PUMPING COSTS IN SOUTHWESTERN UTAH

By W. B. Nelson

INTRODUCTION

In computing the costs involved in pumping ground water for irrigation, two types of costs must be considered. The first is fixed costs which are only indirectly related to the actual quantities of water pumped and which include such items as initial purchase price of well, pump, motor, etc., interest on the investment, and depreciation. The second type of costs includes the actual operating costs of the pumping plant, including such items as outlays for fuel or electricity, maintenance and repairs, etc. These operating costs are more or less directly related to the quantity of water pumped and are affected by the overall plant efficiency, total pumping lift, cost of fuel or electricity, and care given the plant. Too frequently many of the hidden costs related to pumping a well are underestimated in determining the cost of water for irrigation.

An attempt is sometimes made to set definite limits to the pumping lifts which are economical under given conditions. This is difficult to do, because many factors enter into the consideration, and the actual cost of the water per acre-foot is only one of them. Thus, a well used to supply water for livestock may be operated profitably at a greater cost per acre-foot for water than an irrigation well used to water ordinary crops. The yield of and the price received from any crop will frequently be the limiting factors in determining economical pumping lifts.

Because of the complexity of the cost structure related to pumping a well, no attempt is made in this report to evaluate all the cost factors that must be considered by a well owner. For a thorough discussion of these aspects the reader is referred to publications of the United States Department of Agriculture, bulletins of the Utah State Agricultural College, and handbooks put out by the various pump manufacturers. In this study, only the costs that are charged by local power companies for electrical energy consumed are considered. The study is limited also to two typical pumping districts in southwestern Utah, identified as district A and district B, and to the electric power supplied by two companies, one in each district. As most of the water in these districts is pumped with electrical energy supplied by these two companies, the purposes of this study will be met even though the scope of the report is thus limited.

OVERALL PUMPING EFFICIENCY

Because of its close relation to the cost of operating pumps, the overall efficiency of a pump installation is important. The perfect plant would have a 100-percent overall efficiency, but such an efficiency has never been achieved. In actual practice, the plant efficiencies will range from 30 to 70 percent, depending on the size, design, state of repair, and operating speed of the equipment. The difference between the actual and the theoretical performance is represented by plant losses, such as mechanical friction of the moving parts of the motor and pump, hydraulic friction of the water in the pump column, transformer losses, etc. By careful design and proper maintenance, these losses can be cut to a minimum.

In general, the overall efficiency of a pumping unit is a ratio of power input to water output, usually expressed as a percentage. This is sometimes referred to as the "wire-to-water" efficiency, and it refers to the percentage of the power consumed, in foot pounds of energy, that is effective in lifting water from the well, also in terms of foot pounds of energy. Thus, it is determined that an electric-pump installation having an overall efficiency of 100 percent would consume 1.024 kilowatt-hours of power to pump 1 acre-foot of water through a vertical lift of 1 foot. On this same basis, it would take 10.24 kilowatt-hours of power to pump 10 acre-feet of water 1 foot, or 1 acre-foot of water a vertical distance of 10 feet. A pumping unit having an overall efficiency of only 50 percent would consume twice as much electric power to accomplish the same water output.

The overall efficiency of a pump installation is materially affected by (1) the pumping lift in the well, (2) the quantity of water pumped, and (3) the mechanical condition of the motor and pump installation; and it may change significantly from one season of the year to the next. Thus, as the water levels in the well decline as pumping continues, and as the mechanical parts of the equipment become worn and out of repair, the "wire-to-water" efficiencies may fluctuate through a wide range. This is especially true of the old centrifugal-pump installations that at one time predominated in the pumping districts of southwestern Utah, and of any installations that are operated in a range of extreme underload or overload.

COST OF PUMPING WATER IN DISTRICT A

In 1954, 136 wells were pumped for irrigation in district A. Of this total, 125 wells were powered with electricity and 11 wells were powered with diesel or gas engines. The wells powered with electricity had electric motors ranging from 5 to 75 horsepower. The discharge of the wells ranged from 0.5 cfs (cubic feed per second) to 4.5 cfs. Pumping lifts ranged from 25 feet to 110 feet.

The local power company has set up electrical power rates which apply to irrigation wells between April 1 and September 30 of each year. These rates are based on (1) kilowatt-hours used, and (2) horsepower demand. A power-company representative visits each well monthly and at that time records the number of kilowatt-hours consumed during the month and recomputes the horsepower demand. The horsepower demand is the actual horsepower the electric motor is using. It may be above or below the rated horsepower of the motor.

The monthly billing for power used by each well is based on a charge of \$2.50 per horsepower demand plus \$0.01 per kilowatt-hour for the first 275 kilowatt-hours per horsepower demand plus \$0.005 per kilowatt-hour for all remaining power consumed. The longer a well is pumped, the cheaper the daily rate becomes. Figure 1 (a) shows the monthly billing rate per horsepower demand for irrigation wells in district A using local power rates. For each horsepower of demand, curve (a) starts with an initial cost of \$2.50, continues at the rate of \$0.01 per kilowatt-hour for 15.4 days (a demand of 1 hp equals 17.9 kwh in 1 day or 275 kwh in 15.4 days), then changes to a rate of \$0.005 per kilowatt-hour for the remaining days of the month. Curve (b) shown in figure 1 indicates the average cost per day for each horsepower of demand. For example, a well installation having a 10-horsepower demand and operating 24 hours per day for 10 days would have an average power cost of \$4.30 per day. This same installation if operated at this same horsepower demand for a period of 25 days would have an average power cost of \$2.46 per day, or an average cost of slightly more than half the cost for the 10-day period. The average daily cost for any particular pumping plant can

Figure 1. Curves showing cost per horsepower of pumping for irrigation in district A using local power rates.

Figure 2. Curves showing cost per acre-foot of pumping water for irrigation in district A for different pumping lifts and four different efficiencies. (Based on rates of local power company and on an assumed 25 days of operation per month.)

be obtained by multiplying the value taken from curve (b), shown in figure 1, by the number of horsepower consumed by the motor. Figure 2 was constructed on the basis of this rate of power use and 25 days per month of pumping. The cost per acre-foot of water pumped was determined for pumping lifts ranging from 0 to 180 feet and for overall efficiencies of 45, 50, 55, and 60 percent, respectively. No allowances were made for discounts of any kind.

The curves in figure 2 show that the overall efficiency of a pumping installation is closely related to the cost of pumping water. The cost per acre-foot of water gets progressively greater as pumping lifts increase and as overall efficiencies decrease. For example, at a pumping lift of 40 feet the cost per acre-foot is \$0.93 at 60-percent overall efficiency, whereas at 45-percent overall efficiency the cost per acre-foot is \$1.23, an increase in cost of \$0.30 per acre-foot. At a pumping lift of 100 feet the cost per acre-foot is \$2.34 at 60-percent overall efficiency, and at 45-percent overall efficiency the cost per acre-foot is \$3.10, an increase of \$0.75 per acre-foot. Also, the cost per acre-foot would be the same for two wells, one operating at 45-percent overall efficiency and with a pumping lift of 64.5 feet and the other one operating at 60-percent overall efficiency and with a pumping lift of 85.5 feet.

The cost of pumping water for periods other than 25 days can be determined from figure 1(b). For example, if a 10-horsepower motor with an actual 11.0 horsepower demand ran for only 20 days, the cost would be computed as follows: 11 X (0.285-0.246)=11.0 X 0.39=0.43. Thus, it would cost 0.43 a day more to operate for 20 days than it would to run for 25 days. If it were pumping 675 gpm, which is 1.5 cfs or 3 acre-feet per day, the cost per acre-foot would increase by 0.43/3=0.14. If the pump ran the full month (30 days) instead of 25 days, the decrease in cost per day would be 11.0 X (0.246-0.220)= 11.0 X 0.246-0.220)= 11.0 X 0.29 per day. If 3 acre-feet of water a day were pumped, the saving per acre-foot would be 0.29/3=0.097 per acre-foot.

COST OF PUMPING WATER IN DISTRICT B

In district B the local power rates are based on monthly use, and no demand charge is assessed. For the first 120 kilowatt-hours per horsepower of demand the cost is \$0.02 per kilowatt-hour and the cost for the remainder of the month is \$0.015 per kilowatt-hour. Figure 3(a) is a curve showing the monthly billing rate for pumping for irrigation in district B, based on local power rates. For each horsepower of demand, 17.9 kwh is consumed in a 24-hour day, thus it takes 6.7 days of pumping before the rate per horsepower changes from \$0.02 to \$0.015 per kilowatthour. Figure 3(b) shows the average cost per horsepower per day of pumping for irrigation in district B, based on local power rates. The average cost per day changes very little beyond 25 days. Between 20 and 25 days the average cost per day changes from \$0.298 to \$0.292 per horsepower.

Most of the pumps serviced by the local power company in district B are run almost continuously during June, July, and August and intermittently during April, May, and September. A period of 25 pumping days a month was used in calculating the cost of pumping. Figure 4 includes 4 curves showing cost per acre-foot of pumping water for irrigation in district B, based on local power rates. The curves show cost for pumping lifts of 0 to 180 feet and for four different overall efficiencies, namely, 45, 50, 55, and 60 percent. No allowances were made for discounts. The curves emphasize that overall efficiencies play a large part in the cost of pumping water. For example, at a pumping lift of 40 feet,

Figure 3. Curves showing cost per horsepower of pumping for irrigation in district B using local power rates.

REPORT OF STATE ENGINEER

Figure 4. Curves showing cost per acre-foot of pumping water for irrigation in district B for different pumping lifts and four different efficiencies. (Based on rates of local power company and on an assumed 25 days of operation per month.)

the cost per acre-foot at 60-percent overall efficiency is \$1.10, whereas at 45-percent overall efficiency the cost per acre-foot is \$1.48. At a pumping lift of 100 feet, the cost per acre-foot at 60-percent overall efficiency is \$2.78, whereas at 45-percent overall efficiency the cost per acre-foot is \$3.70. The cost of pumping of water is the same for two pumping units, one pumping from 67.5 feet at 45-percent overall efficiency and the other pumping from 90 feet at 60-percent overall efficiency.

CONCLUSIONS

In district A, the cost per horsepower of pumping for irrigation is about \$5.20 for the first 15 days and about \$1.40 additional for the last 15 days of the month. In district B the cost per horsepower of pumping for irrigation is about \$4.60 for the first 15 days and about \$4.00 additional for the last 15 days of the month. This comparison shows that in the case of a well operating in district A there is little incentive for turning off the pump during the last half of the month even though the irrigation requirement may have been satisfied or nearly satisfied during the first half. Because the initial demand charge represents at least 38 percent of the monthly power bill, the water pumped during the last 15 days costs less than one-third as much as water pumped during the first 15 days of the month. On the other hand, in district B the cost of power for pumping is more uniform throughout the month. Although the operating cost for the first 15 days of a well in district B is somewhat less (\$4.60) than for a similar well in district A (\$5.20), the uniformity of the monthly rate makes water during the last half of the month cost nearly as much as during the first half of the month. This, of course, would tend to discourage unnecessary pumping.

In analyzing the field data and power costs of wells operating in two pumping districts of southwestern Utah, it was noted that overall pumping efficiencies range from as low as 35 to nearly 70 percent. Although many farmers are conscious of increased costs resulting from increased pumping lifts, relatively few fully appreciate the relation of inefficient pump installations to increased pumping costs. This relationship is clearly indicated in figures 2 and 4.

STATE OF UTAH

JOSEPH M. TRACY, State Engineer

GROUND-WATER POSSIBILITIES OF BEDROCK AQUIFIERS IN SOUTHEASTERN UTAH

By B. E. Lofgren U. S. Geological Survey

Prepared in cooperation with the GEOLOGICAL SURVEY W. E. WRATHER, Director

UNITED STATES DEPARTMENT OF THE INTERIOR

REPORT OF STATE ENGINEER

CONTENTS

Page

Introduction	107
Purpose and scope	107
Precipitation	110
Ground-water development	110
Occurrence of ground water	112
Shallow wells east of Monticello	112
Wells in the Montezuma Creek area	114
Wells in the Bluff area	117
Summary	117
Bibliography	118

ILLUSTRATIONS

Fig	pure Pa	age
1.	Geologic map of the Blanding-Montezuma Valley area, Utah, showing the loca- tion of water wells drilled	108
2.	Average monthly precipitation at Monticello and Blanding, Utah	111
3.	Relation of precipitation in southeastern Utah to station elevation	111
4.	Generalized geologic section of southeastern Utah, showing the formations having favorable ground-water possibilities	113

TABLES

Nu	umber	Page
1.	Average monthly and annual precipitation at 6 stations in southeastern Utah dur- ing their respective periods of record	109
2.	Records of 12 wells drilled in the Montezuma Creek area	. 116

GROUND-WATER POSSIBILITIES OF BEDROCK AQUIFIERS IN SOUTHEASTERN UTAH

By B. E. LOFGREN

INTRODUCTION

Throughout the vast region of southeastern Utah the scant desert vegetation and the network of rugged dry washes attest the scarcity of rainfall and the deficiency of natural stream runoff. This deficiency of water is the dominating factor in the restricted development of the region, and the never-ending quest for more water has prompted exploration of the water-bearing bedrock formations as a possible source of future supply. The area is characterized by flat-lying sedimentary rocks, which are only partially covered by a thin veneer of alluvium. The monotonous flatness of the region is interrupted only locally by the igneous mountain masses which project above the skyline, and by the complex network of steep-walled canyons which make traveling through the area sometimes difficult.

Numerous wells have been drilled in the region to supplement the limited surface supply. These, however, have been largely restricted to the sandy alluvium overlying the shallow bedrock. Especially in areas near Moab, LaSal, Monticello, and Blanding have these "alluvial" wells been in use for many years. For the most part, however, these wells have furnished only small quantities of water of relatively poor quality.

Although the availability of good-quality ground water from buried bedrock aquifers has been recognized since 1908, when scattered oiltest wells throughout the area yielded artesian flows from deep sources, it was not until the summer of 1951 that the success of two flowing wells in the Montezuma Creek valley demonstrated the economic feasibility of "bedrock" water as a source of irrigation supply. Several deep wells drilled a number of years ago in the Bluff area have flowed for many years and have been used for domestic and garden supplies. The success of the two wells in the Montezuma Creek valley, however, and of several others drilled subsequently in the immediate vicinity, has so stimulated the interest for further drilling that there is now some concern as to the possible overdevelopment of the area. The locations of several wells in the Montezuma Creek valley are shown in figure 1.

PURPOSE AND SCOPE

As part of the Statewide ground-water investigation being made by the United States Geological Survey, in cooperation with the State Engineer of Utah, a program of water-level measurements in selected observation wells in southeastern Utah has been in progress since 1935. Records of water levels and artesian pressures in these scattered wells are available in the open file in the Salt Lake City office of the Ground Water Branch of the Geological Survey. This report is an attempt to summarize the general occurrence of ground water in the broad area extending from Moab on the north to the Arizona State line and from the Colorado border westward to the Comb Ridge monocline. The geology and the general features of the area have been discussed in several published reports of the U. S. Geological Survey (Baker, 1933; Dane, 1935; and Gregory, 1938). An unpublished report by G. A. Waring entitled "Ground-water in part of southeastern Utah and southwestern Colorado" covered much of the area considered in this report and served as a helpful reference.

in cooperation with the Atomic Energy Commission.

I	Years of record	Elevation (feet)	January	February	March	April	May	June	July	August	September	October	November	December	Annual	Average summer precipitation (May thru Sept.)
Blanding	45	6,035	1.05	1.20	1.08	0.94	0.76	0.58	0.99	1.24	1.47	1.29	0.82	1.35	12.77	5.04
Bluff	29	4,320	0.60	0.73	0.70	0.53	0.41	0.32	0.67	0.74	0.87	0.80	0.41	0.71	7.49	3.01
Moab	61	4,000	0.73	0.69	0.88	0.73	0.72	0.43	0.81	0.79	0.98	0.99	0.65	0.86	9.26	3.73
Monticello	31	7,060	1.25	1.44	1.57	1.09	0.87	0.72	1.51	1.88	1.62	1.86	1.09	1.36	16.25	6.60
Montezuma Creek	7	6,780	1.73	1.12	1.06	1.03	0.88	0.88	1.08	1.30	1.02	1.09	0.53	1.40	13.13	5.16
Thompson	29	5,150	0.59	0.56	0.73	0.67	0.51	0.51	0.85	0.91	0.97	1.10	0.49	0.72	8.60	3.75

Table 1. Average monthly and annual precipitation at 6 stations in southeastern Utah during their respective periods of record. From records of the U.S. Weather Bureau.

REPORT OF STATE ENGINEER
PRECIPITATION

Precipitation in southeastern Utah is characterized by wide variations in seasonal and annual rainfall, and by long periods of deficient rainfall. Summer storms are infrequent and short. Scattered showers lasting for an hour or less and furnishing rain to only a few square miles frequently contribute the entire precipitation for a month at a given station. Few days in each year have precipitation. As noted in table 1, the average annual precipitation ranges from less than 8 inches at Bluff to more than 16 inches on the eastern flank of the Abajo Mountains as recorded at Monticello. Figure 2 shows the monthly precipitation at Monticello and Blanding.

The influence of altitude on precipitation is shown in figure 3 by two curves which are based on a correlation of the data from the 6 precipitation stations in the area. The relationship that exists between the average precipitation as measured at the 6 stations and the respective station elevations approximates a straight line. In general, in an average year, an increase of 1 inch of rainfall occurs with each 440 feet of rise in elevation throughout the area. It is also noted (fig. 3) that a proportionately larger percentage of the summer precipitation occurs at the lower elevations, the summer storms contributing about the same pattern of rainfall at all elevations.

As rainfall throughout most of the area is inadequate for the growth of crops, irrigation is necessary in all localities except in a small area east and southeast of Monticello. An important use of ground water in this area is for a supplemental water supply to meet the requirements of the farm crops.

GROUND-WATER DEVELOPMENT

As early as 1908, during the "oil boom" of southeastern Utah, scattered oil-test wells in several areas reportedly encountered artesian flows of ground water. Several of these wells are known to be still flowing; however, little reliable information regarding the drilling of these wells is now available. Artesian wells at Buff, drilled as early as 1909, obtain water from depths ranging from 800 to more than 1,100 feet; tap water in the Wingate, Navajo, and probably Shinarump formations; and supply most of the domestic and irrigation needs of the residents of the area. Water from shallow wells, drilled principally into the unconsolidated alluvium overlying the bedrock in many areas, has been used from the earliest days of settlement to the present. Water from this source, however, has been limited to the relatively small demands of domestic and stock water supplies. Some of these shallow wells have been drilled into the saturated upper strata of the Dakota sandstone, which underlies much of the area, and have thus derived a modest supply of domestic water.

In September 1951, two wells, (D-39-25)5aca-1 and (D-39-25)5aca-2, were drilled in the Montezuma Creek valley south and east of Blanding. The success of these wells not only demonstrated the economic feasibility of developing irrigation water from bedrock aquifers in the area, but also started a clamor for additional irrigation wells throughout the region. Although originally drilled as oil tests, these wells encountered good-quality ground water, under high artesian heads, in three deep bedrock aquifers. Since the original discovery, 6 water wells have been drilled in the Montezuma Creek area, and more than 20 applications to drill large-yield wells have been filed with the State Engineer's office. The existing wells range in depth from 400 to 600 feet and derive their water

Figure 2. Average monthly precipitation at Monticello and Blanding, Utah.

Figure 3. Relation of precipitation in southeastern Utah to station elevation.

principally from the Entrada and Navajo sandstones. Although some wells in this area are separated by as much as 10 miles, they are producing water of similar chemical quality under about the same type of geologic conditions. A number of recent oil-test wells drilled in the region have encountered artesian ground water in several of the still deeper formations, suggesting a possible source of ground-water supply in extensive areas of southeastern Utah where water from other sources is limited. The success of "bedrock" wells, especially in the Montezuma Creek area, has stimulated the interest for continued drilling throughout the region, and it is contemplated that several prospect wells will be drilled in the near future in areas as yet untested.

OCCURRENCE OF GROUND WATER

Southeastern Utah is characterized by horizontally bedded sedimentary rocks ranging in age from Carboniferous to Late Cretaceous. The surface and near-surface rock formations include sandstone, mudstone, claystone, and limestone, the sandstones representing less than 30 percent of the total thickness. Most of the sandstone formations are capable of transmitting and storing water and are potential sources of ground water; some of them, however, are not water bearing. The mudstones, claystones, and limestones are relatively impermeable and are the confining formations which hydraulically separate the bedrock aquifers one from the other.

The generalized geologic section of southeastern Utah (fig. 4) shows the principal formations that are the source of ground water in the several producing areas. No attempt is made to report on the natural seeps and springs that occur.

SHALLOW WELLS EAST OF MONTICELLO

Ground water in the broad, flat Sage Plain areas east of Monticello is derived principally from the thin veneer of surface alluvium that overlies the Dakota sandstone, and from the upper few feet of this rather permeable sandstone. Practically all wells in this area are shallow, and, for the most part, water-supply requirements are relatively small. The logs of the following wells give an idea of the character and thickness of the water-bearing material in this area:

Driller's log	Thickness (ft)	Depth (ft)	Formation
Dirt	10	10	E .
Clay		18	vi
Clay, sandy	15	33	Allu
Sandstone, white		54	
Conglomerate		67	_ <u>u</u>
Sandstone, quartz (some water)		102	lakota idstor
Sandstone, coarse (water)		122	
Gypsum		150	Morrison formation

1. Well (D-33-25) 26bdc-1, State Claim No. C-8236, 150 feet deep, drilled in 1934.

Figure 4. Generalized geologic section of southeastern Utah, showing the formations having favorable ground-water possibilities.

A deep oil-test well about 13 miles east of Monticello is reported to have encountered ground water under artesian conditions at several different depths, suggesting that additional quantities of water might be developed by deeper drilling in this area.

Driller's log	Thickness (ft)	Depth (ft)	Formation
Clay, sandy Shale, gray	30 55	30 85	Mancos shale
Sandstone, white Conglomerate Conglomerate, soft Shale, blue Sandstone, hard, white Sandstone, soft, white (water)	13 14 6 4 11 43	98 112 118 122 133 176	Dakota sandstone

2. Well (D-33-24)4ca-1, 176 feet deep, drilled in 1934.

3. Well (D-34-24)25aad-1, State Application No. A-16754, 225 feet deep, drilled in 1945.

Driller's log	Thickness (ft)	Depth (ft)	Formation
Soil and clay, brown	20	20	
Shale, dark gray	15	35	
Shale, some gravel	5	40	Š u
Sandstone, limy	3	43	pal a
Sandstone, muddy, hard	1 7	50	X S
Sandstone, brown	14	64	
Shale, gray	2 .	66	
Sandstone, brown	59	115	
Sandstone, light gray	15	130	ota
Sandstone, white (water)	66	196	Dak
Shale, brown Shale, calcium, blue-gra	6 ay 23	202 225	Morrison

WELLS IN THE MONTEZUMA CREEK AREA

The first real interest in developing ground water from bedrock sources in the Montezuma Creek valley was created when the Hathaway Drilling Co. encountered large flows of good-quality water in two oil-test wells drilled in sec. 5, T. 39 S., R. 25 E., in the fall of 1951. The locations of these wells are shown in figure 1. The deeper of these two wells began at the base of the Morrison formation and reportedly yielded flows of good-quality water from the Entrada, Navajo, and Wingate sandstones. The shut-in pressure of this well, as measured by the Geological Survey in January 1954, was 145 psi (335 feet of water head), and the temperature of the water was 63° F. The shut-in pressure of the shallower well, with a reported depth of 600 feet, was 53 psi (122 feet of water head), and the temperature of the water was 62° F. Although no sustained flow tests of these wells have been made, each well is reported to yield a relatively large volume of good-quality water when opened fully. The following modified driller's log of the deep oil test shows the formations that were penetrated:

2

Formation	Thickness (ft)	Depth (ft)
Morrison fm.	252	252
Entrada ss. (water)	278	530
Carmel fm.	25	555
Navajo ss. (water)	135	690
Kayenta fm.	50	740
Wingate ss. (water)	380	1,120
Chinle fm.	1,250	2,370
Shinarump cgl	117	2,487
Moenkopi fm. } Cutler fm. {	2,051	4,538
Rico fm.	72	4.610
Hermosa fm.	730	5,340
Paradox member of Hermosa fm.	2,014	7,354
Leadville ls.	101	No bottom

Oil-test well (D-39-25) 5aca-1, State Application No. A-23436, reported 7,621 feet deep, drilled in 1951.

The yields of wells in this area range from about 400 to 500 gpm when first opened, but after a month of continuous flow the yields drop to about 80 gpm, and pressure heads drop concurrently. Thus, well (D-38-25)7cba-1 when first drilled to a depth of 520 feet in 1953 reportedly flowed at the rate of 470 gpm with a closed-in pressure of 105 psi (242 feet of water). It was noted that the yield of this well declined rapidly to 240 gpm, dropped to 210 gpm after 3 days of continuous discharge, and after 30 days flowed at an estimated rate of 145 gpm. This suggests that the Entrada and Navajo sandstones which yield water to this well are of relatively low permeability.

A number of deep oil-test wells drilled in outlaying areas near to the Montezuma Creek valley have yielded significant flows of artesian water in several of the deep bedrock aquifers, suggesting a possible source of irrigation water throughout much of this area. The success of wells has greatly stimulated the interest in further drilling, and prospect wells in areas heretofore untested are contemplated. It should be kept in mind, however, that as yet no large quantities of water have been drawn from these bedrock aquifers, and practically nothing is known concerning the effects of continued withdrawals on the perennial yields of the aquifers.

Although the sandstone aquifers that are producing significant quantities of ground water in these areas are extensive and the quantities of ground water stored in these formations are large, the permeabilities are relatively low. Rapidly declining artesian pressures have been experienced throughout the area during periods of sustained flow, and problems of mutual interference between nearby producing wells and of small yield per foot of drawdown are to be expected.

Figure 1 is a geologic map of the Blanding-Montezuma Creek area and shows also the location of wells drilled in the area. Table 2 lists 12 wells shown on figure 1 and gives the geologic formation from which each derives its water supply. The geologic map (fig. 1) shows that rocks ranging from the Entrada sandstone up through the Mancos shale are exposed in this area. In general, these strata are relatively flat lying, with a regional dip of from 1 to 3 degrees to the south. As indicated in table 2 and in figure 4, the Entrada, Navajo, and Wingate sandstones are the important producing aquifers in the area of this report, with some water being derived from the deep Shinarump conglomerate. These formations appear to be continuous from the high outcrop areas to the

	Well coordinate number	State application number	Owner	Depth (feet)	Water source	Static pressure (feet in water)	Remarks
1.	(D-37-24)24cbb-1	A-24609	Max Dalton	•	Entrada sandstone	+3 ft. reported	Flowing well farthest north
2.	(D-38-24)12aaa-1	A-23461	Lois K. Tatro	920	Entrada and Navajo sandstone	+240 ft. reported	
3.	(D-38-24)12add-1	A-24863	H. C. Perkins #1		Entrada and Navajo sandstone		
4.	(D-38-25)7bcd-1	A-24608	H. C. Perkins #2	520	Entrada and Navajo sandstone	± 245 ft. reported	
5.	(D-38-25)7bdc-1	A-24608	H. C. Perkins #3		Entrada and Navajo sandstone		
6.	(D-38-25)27ccc-1	A-24435	Ray V. Redd		Entrada and Navajo sandstone		
7.	(D-38-25)33 a da-1	A-23520	Jack Pehrson		Entrada and Navajo sandstone		
8.	(D-38-25)35bd	Oil Test	Glasco #1	beyond 6,200	Entrada, Navajo, Wingate sandstones		
9.	(D-35-26) 28ac	Oil Test	Hathaway Co.	beyond 6,000	Entrada, Navajo, Wingate sandstones		
10.	(D-39-25)13aba-1	A-23671	James P. Redd	444	Did not reach Navajo sandstone		No water encountered
11.	(D-39-25)5aca-1	A-23183	Ray V. Redd	60 0	Entrada and Navajo sandstone	\pm 122 ft. measured	
12.	(D-39-25)5aca-2	A-23436	Ray V. Redd	7,261	Entrada, Navajo, Wingate sandstones	+335 ft. measured	

Table 2. Records of 12 wells drilled in the Montezuma Creek area.

north and northwest, and ground water apparently moves along the dip of these water-producing formations. As the possibility of long-term ground-water development hinges on the amount of recharge and the location of the recharge areas, a study of these features is contemplated.

WELLS IN THE BLUFF AREA

Flowing "bedrock" wells have been drilled in the Bluff area along the banks of the San Juan River to supplement supplies obtained from shallow dug wells, from springs of low yield and poor water quality, and from the San Juan River itself. This region lies in a broad structural basin into which the water-bearing standstones of the Navajo, Wingate and Shinarump formations dip, and drilled wells have been yielding good-quality ground water for more than 50 years. These early wells have been supplemented in recent years by several additional drilled wells, so that now most of the water now used in the area is derived from bedrock sources. Most of the wells in this area produce from the Wingate sandstone, but a few are drilled deep enough to encounter water in the Shinarump conglomerate.

Some of the first wells drilled in the Bluff area have been permitted to flow without restriction for many years, and artesian pressures have declined from a reported high of more than 150 feet in 1909 to approximately 80 feet at present. As of this writing, about a dozen "bedrock" wells are producing, and these are largely clustered in a narrow strip east of the town of Bluff and adjacent to the San Juan River. Most of the wells are producing from depths between about 500 and 700 feet below the land surface.

Between the San Juan River and Blanding, and in much of the area to the east, geologic conditions are similar to those at Bluff and Blanding, and ground water under artesian pressure can be anticipated. In most of the area, however, the elevation of the land surface is sufficiently high to preclude the possibility of flowing wells.

SUMMARY

1. Although it has been estimated that not more than one quarter of 1 percent of the ground water discharged by wells in Utah is derived from bedrock sources, at least five bedrock aquifers are becoming increasingly important as sources of ground water in the southeastern part of the State.

2. The success of recently completed wells has demonstrated the feasibility of developing water from bedrock for irrigation purposes and has stimulated the interest for additional drilling. It is contemplated that additional bedrock wells will be drilled in the next few years.

3. Although the producing sandstone aquifers are widespread and store large quantities of good-quality ground water, the permeability of these sandstones appears to be relatively low. Thus, problems of declining artesian pressure, small yield per foot of drawdown, mutual interference between wells, and high pumping lifts can be expected as development continues.

4. Arable land is not abundant in the areas where ground water can be economically developed. Since the closure, by court order, of extensive areas in the southeastern part of the State that were formerly open to homesteading and desert entry, good farm land adjacent to a potential water supply is at a premium. With both water and land as possible limiting factors, it is not expected that extensive tracts will be opened to farming in the foreseeable future.

5. Ground-water development in each of these newly developed areas is being watched rather closely, and periodic measurements of head are being made in selected observation wells. It is contemplated also that well-discharge and aquifer-performance tests will be run on representative wells in the near future. As this general area now produces a large part of the total "bedrock" water of the State, the success of wells in this area will guide development in other localities.

6. None of the "bedrock" wells in this area, or elsewhere in Utah, derive a supply of ground water from limestone.

BIBLIOGRAPHY

Baker, A. A., 1933, Geology and oil possibilities of the Moab district, Grand and San Juan Counties, Utah: U. S. Geol. Survey Bull. 841, 95 p.

Dane, C. H., 1935, Geology of the Salt Valley anticline and adjacent area, Grand County, Utah: U. S. Geol. Survey Bull. 863, 184 p.

Gregory, H. E., 1938, The San Juan Country-A geographic and geologic reconnaissance of southeastern Utah: U. S. Geol. Survey Prof. Paper 188, 123 p.

Waring, G. A., 1936, Ground water in part of southeastern Utah and southwestern Colorado: U. S. Geol. Survey open-file report.

118

STATE OF UTAH

JOSEPH M. TRACY, State Engineer

INVESTIGATION OF GEOLOGY AND OCCURRENCE OF GROUND WATER IN THE WEBER BASIN PROJECT AREA, FARMINGTON TO WILLARD, UTAH: A PROGRESS REPORT

By J. H. Feth U. S. Geological Survey

Prepared in cooperation with the GEOLOGICAL SURVEY W. E. WRATHER, Director

UNITED STATES DEPARTMENT OF THE INTERIOR

1954

REPORT OF STATE ENGINEER

CONTENTS

Page

Introduction	121
Personnel and acknowledgments	123
Work accomplished to June 1954	124
Future work planned	127

ILLUSTRATION

Fig	gure)	Page
1.	Map of East Shore area, Utah	122

INVESTIGATION OF GEOLOGY AND OCCURRENCE OF GROUND WATER IN THE WEBER BASIN PROJECT AREA, FARMINGTON TO WILLARD, UTAH: A PROGRESS REPORT

Ву Јонн Н. Гетн

INTRODUCTION

A joint investigation of the geology and ground-water resources of part of the East Shore area,¹ extending from Farmington to Willard,

1. The East Shore area includes lands lying between the west front of the Wasatch Mountains and the east shore of Great Salt Lake. The area of the present study is shown on the map, fig. 1.

has been undertaken by the U. S. Geological Survey and the U. S. Bureau of Reclamation. The investigation constitutes part of the program of planning for the Weber Basin Project. This project, authorized by Congress in 1949, is now under construction by the Bureau of Reclamation.

In 1951 a limited cooperative program was arranged for the summer months only between the Bureau of Reclamation and the Geological Survey, and P. E. Dennis, Geologist, U. S. Geological Survey, mapped a part of the foothill area. In December 1952 the present investigation was provided for in a cooperative agreement bewteen the Bureau of Reclamation and the Geological Survey. Field work was carried on during the last quarter of fiscal year 1953 and was continued under a renewed agreement in fiscal year 1954. It is intended that the joint investigation will continue until completion of a final report on June 30, 1956. A preliminary report is planned for June 30, 1955.

An area of about 350 square miles is included in the present investigation. The southern boundary is set arbitrarily at the line separating Tps. 2 and 3 N., as the northern limit of the Bountiful district, earlier studied by the Geological Survey and reported upon by H. E. Thomas and W. B. Nelson in the 26th Biennial Report of the Utah State Engineer in 1948. The northern boundary is at the northern limit of T. 8 N. On the west, the investigation will extend to the shore of Great Salt Lake and, on the east, to the contact between rocks of the Wasatch Mountains and deposits formed by waters of Pleistocene Lake Bonneville or by deposition from streams or mudflows discharging from the mountains.

The general objectives of the investigation are as follows:

(1) To obtain information from which a plan may be formulated for a drainage system that will (a) reduce the effects of upward leakage from artesian aquifers; (b) lower the water table on project lands to where sustained agricultural production may be maintained; (c) guard project lands against "waterlogging" due to irrigation; (d) protect nonproject lands that might be affected by seepage from irrigated project lands; and (e) provide the data necessary for the design and construction of such a system.

(2) To determine to what extent drainage flows, water from artesian relief wells, and water from additional water-supply wells can be used for project purposes. Use of these potential supplies would increase the water supply to the project and permit increased agricultural and industrial development of the area. Utah has much more land suitable for development than it has supplies of surface water for irrigation.

Figure 1. Map of East Shore area, Utah.

Development of significant quantities of underground water would, by interconnections and exchanges with projects both north and south of the Weber Basin Project, permit the utilization of a portion of this very productive but now barren land. The results of this study will therefore have an important effect on the development of not only the Weber Basin area but of the whole State.

To the foregoing statement might be added the following more detailed objectives of the ground-water investigation:

(1) To establish a historic, pre-project, record of water levels, artesian pressures, and chemical quality of ground water in the area.

(2) To determine as far as possible areas of recharge and of discharge, the latter with special reference to the effect of upward leakage upon waterlogging of lands.

(3) To cooperate with the investigation of drainage in the location of areas favorable for reclamation of waterlogged lands by installation of pressure-relief wells.

(4) To determine aquifer characteristics with reference to potential productivity of the aquifers, and with reference to design and installation of wells intended either to relieve pressures, or to produce water for project use, or both.

(5) To determine the relation of stratigraphy and geologic structures to localizing areas of landsliding, such as along benchlands adjacent to Weber Canyon west of the mountains, and to suggest methods of possible control.

PERSONNEL AND ACKNOWLEDGMENTS

The present investigation is being conducted under the direction of A. N. Sayre, Chief, Ground Water Branch, U. S. Geological Survey, and E. O. Larson, Director, Region 4, U. S. Bureau of Reclamation, and under the general supervision of H. A. Waite, District Geologist, Ground Water Branch, Salt Lake City, and of C. D. Woods, Projects Engineer (USBR). J. H. Feth, Geologist, Ground Water Branch, Geological Survey, has responsibility for field direction of the ground-water investigation and the geologic studies. W. H. Greenhalgh, Engineer (USBR), has charge of the Bureau personnel directly engaged in the drainage and ground-water investigation. V. D. Jensen, Engineer (USBR), and R. J. Brown, Soil Scientist (USBR), are engaged directly in ground-water investigation. The regional laboratory of the Bureau of Reclamation is making chemical analyses of water samples, and personnel of the materials laboratory have been helpful in making particle-size analyses of sediment samples. Many other members of the Weber Basin Project staff are cooperating by furnishing information and services.

Background data and current information relative to this study are available from many sources. Among the more important of these are the following: an inventory of artesian wells prepared by the Geological Survey, unpublished reports in the files of the Geological Survey, and data on chemical quality of waters in the area, also on file in the laboratory of the Geological Survey. J. G. Connor, District Chemist, has been most helpful in discussing problems relating to the chemistry of ground waters in the area under investigation, and in providing analyses of waters related to special problems encountered during the investigation to date.

Data have been obtained by drainage engineers of the Weber Basin Project that effectively outline areas of waterlogging and define the shallow water table. Shallow piezometers and piezometer clusters provide adequate information on differential pressures across strata of low permeability in areas of upward leakage. A pilot surface drain is presently under construction and will furnish helpful information on occurrence of near-surface ground water in the Hooper area.

Thanks are also due many residents of the area who have permitted installation of water-stage recorders on their wells, or allowed access to wells for periodic measurements; to Federal and municipal officials who have made available facilities and records of many kinds; and to members of the faculty and staff of the University of Utah who have given generously of their time and of their knowledge of the geology of the region in orienting the writer in his geologic studies.

WORK ACCOMPLISHED TO JUNE 1954

The present discussion of work accomplished is limited to that performed under the cooperative agreement between the Geological Survey and the Bureau of Reclamation, without reference to other work in the area done in the past by the Geological Survey or by other agencies, nor does it include other phases of the Weber Basin Project conducted solely by the Bureau of Reclamation.

In the summer of 1951, P. E. Dennis mapped the geology of about 20 square miles lying in a band along the base of the Wasatch Mountains and wrote a memorandum report, unpublished, in which the major problems related to occurrence of ground water in the Weber Basin Project area are outlined. The full-scale joint investigation was undertaken in March 1953.

Geologic mapping of the entire area is continuing. Drillers' logs of more than 1,200 wells in the area have been obtained from the office of the State Engineer. From these data, profiles have been prepared in an attempt to define zones of high permeability and zones of low permeability in the unconsolidated materials underlying the project area. Drill cuttings have been obtained from a number of wells penetrating to depths of 115 to 500 feet. Some of these suites of samples have been processed and described. Samples of sediments from numerous surface exposures have been obtained and studied in an attempt to establish criteria, both paleontologic and other, by which deposits of each of the major stages of Pleistocene Lake Bonneville can be distinguished one from another, and on the basis of which postdepositional faulting can be mapped. Study of superficial lithology and particle-size analyses of the sediments appear to offer little encouragement. Study of differential weathering of pebbles in gravel, or of different minerals in grains of sand size, has not provided useful information as yet. Differentiation of strata deposited at various stages of the lake depends so far upon very cautious use of color, reddish tones seeming to be characteristic of the older, Alpine, formation and yellowish-tan tones of the Provo formation, and of data on the altitude at which the strata are now found. The zonation of the lakebeds on the basis of fossil ostracodes, found abundantly in many places, is the object of a research program of D. J. Jones of the University of Utah. His preliminary report is expected to be made public before the end of 1954. Meanwhile, he has provided assistance in identifying forms and interpreting their age significance in relation to the history of Lake Bonneville and the sequence of its sediments.

Faulting in the sediments deposited by Lake Bonneville appears to be important in several ways in relation to the occurrence of ground water. In some areas, as northwest of Ogden City, it appears that subsurface faults are genetically related to differential pressure heads, to the presence of high-chloride waters, and to water temperatures higher than the regional averages for wells of equivalent depths. Along the margins of the benchlands, fault zones appear to channelize the discharge of ground waters moving laterally above zones of low permeability, and so to cause saturated areas in which landsliding is particularly active. It is possible that fractured zones related to faulting may provide channelways through which recharge of the deeper aquifers takes place. In the western part of the East Shore area, fault zones are thought to govern the localization of spring mounds that discharge water, much of it highly mineralized, and some of it at temperatures ranging from 100° to 140°F.

It is thus thought that determination of faulting is important in many respects in the present investigation. As some of the determination rests upon establishment of criteria by which sediments of the several lake stages can be differentiated, a large part of the geologic phase of the investigation so far has been related to a study of the sediments and an attempt to find the needed criteria.

The hydrologic phase of the investigation is closely tied to the geologic studies. Aquifer (pumping) tests have been run on 10 wells to date of writing (August 1954), and the data resulting from interpretation of the tests are being correlated with information obtained by mapping and by study of logs of wells. Three observation wells have been drilled by the Bureau of Reclamation within a reach in Weber Canyon extending 2 miles west of the Wasatch Mountains. These observation wells provide information on the following: (a) characteristics of the aquifers in one of the most promising parts of the area for future ground-water development; (b) interference between wells penetrating these aquifers; and (c) behavior of the aquifers as recharge takes place either naturally from flow in the Weber River, or artificially as river water was introduced into a large borrow pit at the mouth of Weber Canyon during a 6-weeks test period in the spring of 1953. Additional recharge studies will be made whenever possible.

The observation-well program in the East Shore area dates back to 1936, when the Geological Survey began observations on 16 wells. At the present writing, more than 150 wells are measured periodically, 15 on a weekly basis. Recording gages are installed on 11 of the 15 wells. In addition, occasional measurements are made on other wells, and the data obtained from all sources have been compiled into piezometricsurface maps showing the configuration of the pressure surface at two periods in the first year of observation. These maps permit general interpretation of the direction of movement of ground waters from areas of recharge to zones of discharge.

In the period January 1953 to March 1954 the Bureau of Reclamation dug a 3.3-mile tunnel through part of the Wasatch Mountains adjacent to and paralleling the lower canyon of the Weber River. After penetrating about 1,000 feet of rock, tunneling operations encountered ground water. Discharge of ground water from the tunnel has continued from that time to the time of writing. Records of discharge have been kept since July 1953, when a flume was installed at the west portal of the tunnel, and show a continuous yield ranging from about 300 to a little more than 600 gallons per minute. Throughout the period of record, this discharge has been accepted by the unconsolidated sediments upon which the water is discharged, and it is believed that essentially the entire flow from the tunnel is recharged to aquifers in and adjacent to the mouth of Weber Canyon. Low flows in the Weber River during the late winter and early spring of 1954 permitted determination of inflow to the river in the lower 3 miles of its rock-walled canyon. These measurements, repeated three times, indicate an increment of nearly 5 second-feet in the reach. Studies of the chemical quality of the river at various points, and of the quality of water visibly discharging as seeps from the sides of the canyon, indicate that the increment all occurs in the lower 1¹/₂ miles. These findings were confirmed by a concurrent series of studies of the radon content of the river waters and waters from the seeps, performed by A. S. Rogers, of the Geological Survey.

The data in the two preceding paragraphs supplement information available from the piezometric-surface maps mentioned above, and information regarding occurrence of springs along the mountain front. The data suggest that recharge is reaching ground-water aquifers from a multitude of points, most of them subsurface, along the mountain front. Recharge from the Weber River in the first 1¹/₂ miles below the rockwalled canyon is a significant factor in the ground-water picture. Recharge from the Ogden River, and from other streams along the west front of the Wasatch Mountains, appears to be of less importance than recharge from either the Weber River or the many concealed sources that are inferred to exist.

Studies of the chemical quality of waters in the area are in progress. To date of writing about 100 water samples have been analyzed in the Bureau of Reclamation laboratory, Salt Lake City. These samples have been taken from wells, springs, seeps, rivers, and drains. Results of the analyses will be correlated with information on water temperatures and pressure heads in an attempt to determine more closely zones of active recharge, and directions of movement of the waters underground. The data will permit delineation of areas of highly mineralized water and will assist in locating fault zones thought to occur underground without surface expression. The chemical-quality information will also provide an important historical reference point from which to gage the future influence of operation of the Weber Basin Project upon water qualities. It is expected, for example, that partial demineralization of soils and ground waters will occur in areas affected by the drainage program. Some of those areas presently contain a potentially injurious amount of mineral matter.

Most of the ground waters in the East Shore area appear to be suitable for irrigation and it now appears that the chemical quality of waters will be a limiting factor in development of only a few relatively localized areas. Many of the waters sampled are suitable for most uses to which water is put in the region. This favorable condition is especially true in reference to the more productive aquifers.

In determining the volumes of ground water that can be withdrawn from the East Shore area on a sustained-yield basis, it is necessary to determine the amount presently discharged annually. This determination involves measurements of discharge of all kinds, such as flow and pumpage from wells, discharge from springs, and runoff from streams and drains leaving the area. It also involves discharge by evaporation and by transpiration. In that connection, a study of evapotranspiration has been started, with the U. S. Weather Bureau cooperating. The Weather Bureau has made available a class A weather station and evaporation pan. These instruments have been installed at the Ogden Bay Bird Refuge and are serviced daily by the refuge manager, Noland Nelson. In conjunction with the evapotranspiration studies, growing tanks containing plantings of the most common native water-loving plants of the region will be installed and transpirative-use studies made both in the tanks and, where possible, under field conditions. A map showing distribution of vegetative types, native and cultivated, is being prepared. Data obtained on consumptive use of water by native vegetation and by crops will be used to make an overall estimate of the annual evapotranspirative use of water in the area.

Discharge of ground water also takes place from bare or salt-crusted surfaces, especially in areas of upward leakage of water under artesian pressure. An attempt is being made to measure the rate of discharge per unit area by measuring the amount of salt-crust deposited in a certain period of time in each of 6 sample areas. By determining that value and relating it to the amount of dissolved solids contained in a water sample obtained at shallow depth in each test area, it is hoped that an average rate of leakage per unit area can be determined. If such a rate can be estimated within a reasonable margin of error, then it will be possible to delineate and measure the total area in which upward leakage and evaporation are taking place and so arrive at a quantitative estimate for the entire area under study.

FUTURE WORK PLANNED

It is proposed that the investigation described in the foregoing pages will continue through June 1956 and that a final report will be prepared. The major lines of approach have been outlined and work has started. The investigation is intended to proceed in each of the fields described geology, hydrology, quality of water, and evapotranspiration. No phase of the study is complete or nearly complete at the present writing.

It is intended, however, that during the next 1 to 1½ years, emphasis will be placed on certain facets, especially on determination of areas of exceptional receptivity to recharge, and upon experiments in induced recharge in one or more such areas, and on location and construction of one or more pilot pressure-relief wells. Actual observation of the effect of a pressure-relief well is a vital part of the study, so that projection of pressure-relief effects and location of sites for future relief wells can be based on practical experience in operation of a well, as well as upon data obtaind by aquifer tests, from geologic mapping, and from aquifer studies based on profiling drillers' logs of wells.

Periodically, drillers' records will be compiled in the State Engineer's office. Studies of quality of water and water temperature will be continued and will be correlated with other data by means of map overlays and of profiles and other graphical devices.

Geologic mapping will be extended over the entire area of investigation. Stratigraphic studies of the lake deposits will be continued to the end, it is hoped, that it will be possible to delineate fault structures with considerable assurance. Location of faulted areas in the benchlands will permit determination, at least in part, of points at which precautions against land slippage will need to be taken. Study of deep-well cuttings will continue as time and availability of samples permit, and the information obtained will be used in conjunction with other aquifer studies to indicate favorable areas in which to develop new sources of ground water, and to determine depths at which productive aquifers may be encountered in the various parts of the area.

In the time allotted for the present study, and with the available facilities and personnel, it should be possible to obtain an overall picture of geologic and hydrologic conditions in the project area sufficiently complete to permit intelligent planning for the utilization of groundwater resources and for relief of lands requiring drainage. The area is large and the ground-water problems are exceptionally complex. The investigation now in progress will produce much information regarding the geology, hydrology, geochemistry, and evapotranspiration in the area. As development of water resources continues, however, and as additional lands are drained and irrigated, existing hydrologic relations will be changed. In consequence, periodic review of these conditions will be needed to keep abreast of the effects of the development.