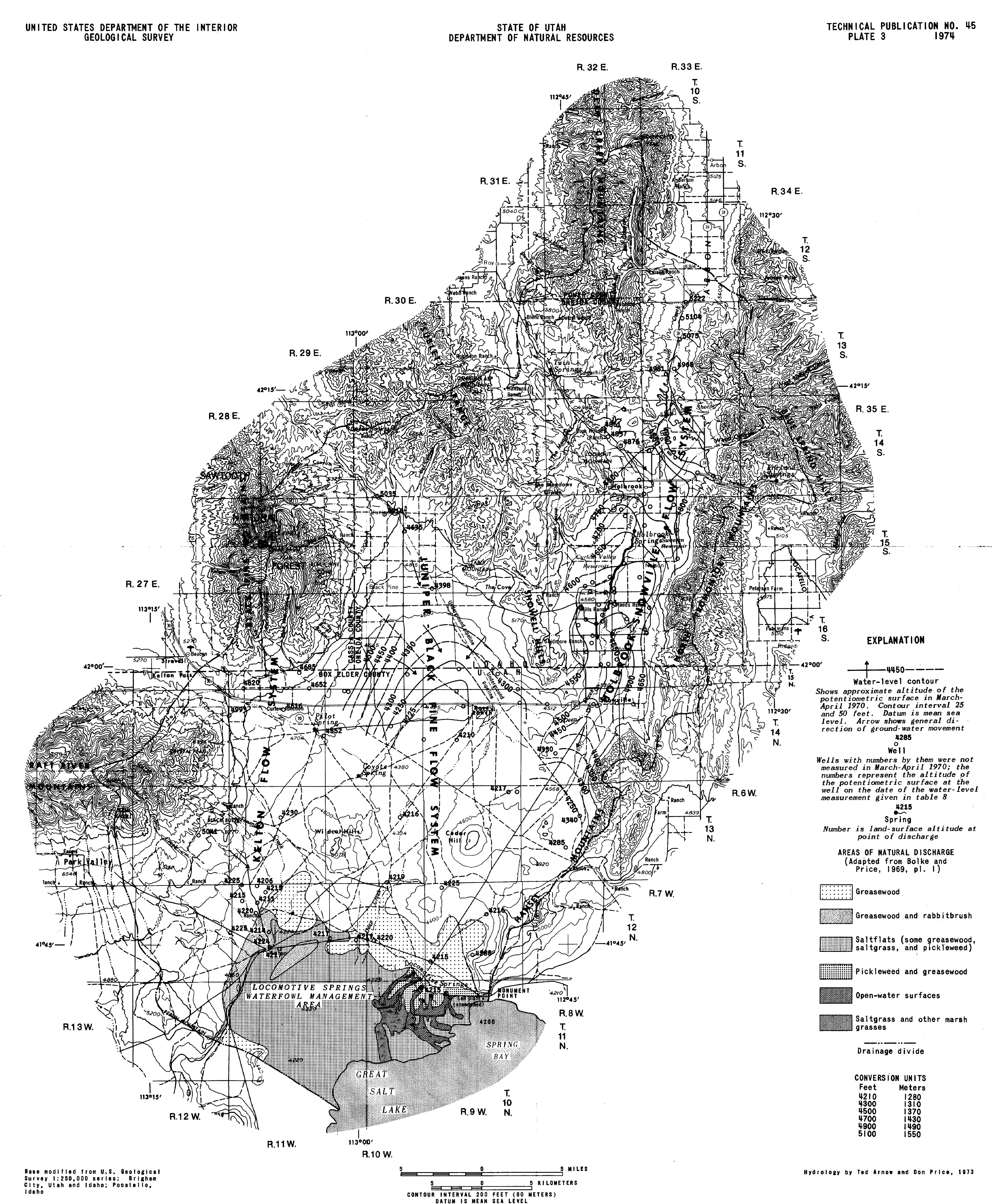

MAP SHOWING LOCATIONS OF POINTS WHERE HYDROLOGIC DATA WERE COLLECTED, PRECIPITATION STATIONS, AND ZONES OF MEAN ANNUAL PRECIPITATION, CURLEW VALLEY DRAINAGE BASIN, UTAH AND IDAHO

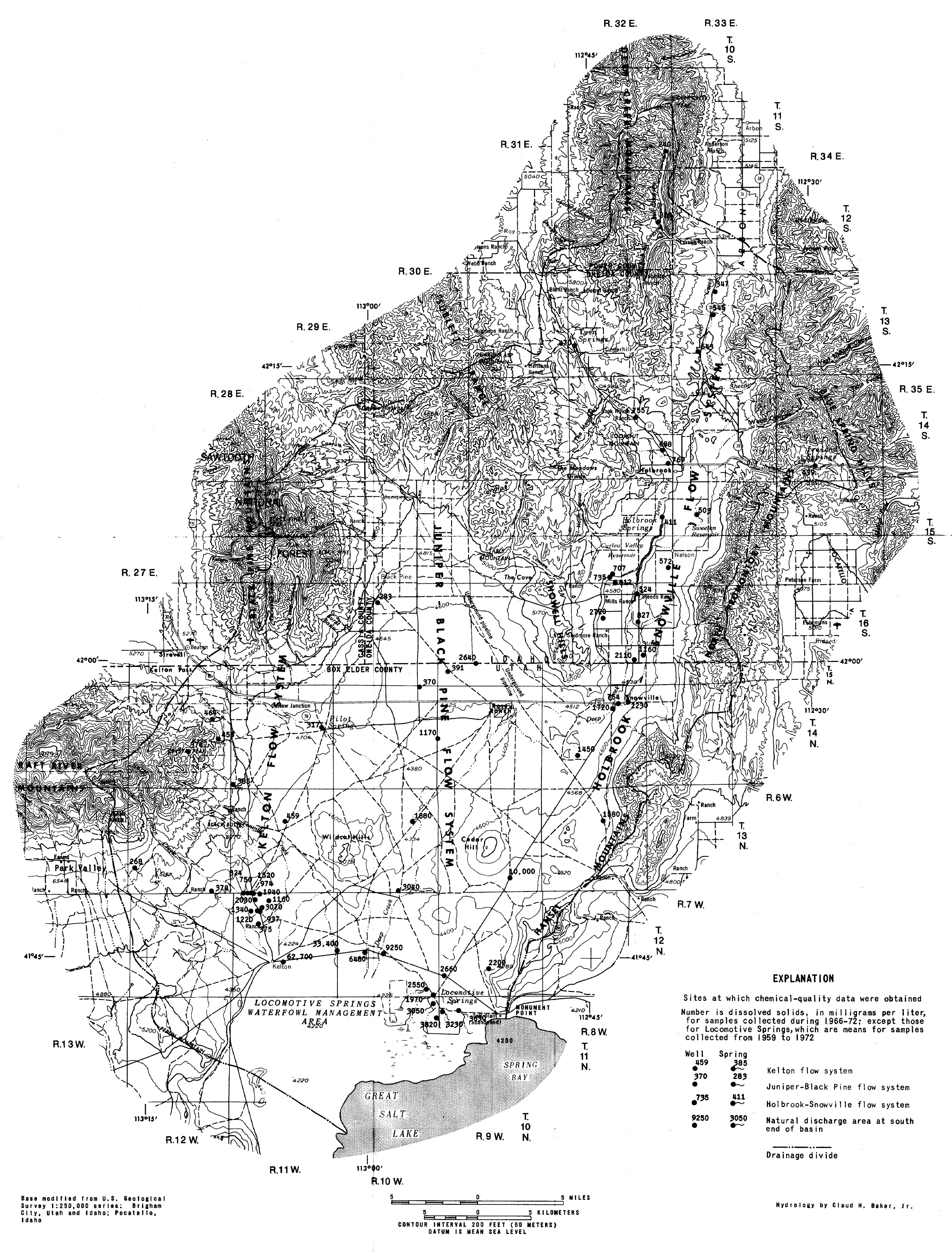
.


.

170 A Resident Head and A residence of the second secon

e de la suite a 🛖 e 👘 👘 des estas en la s

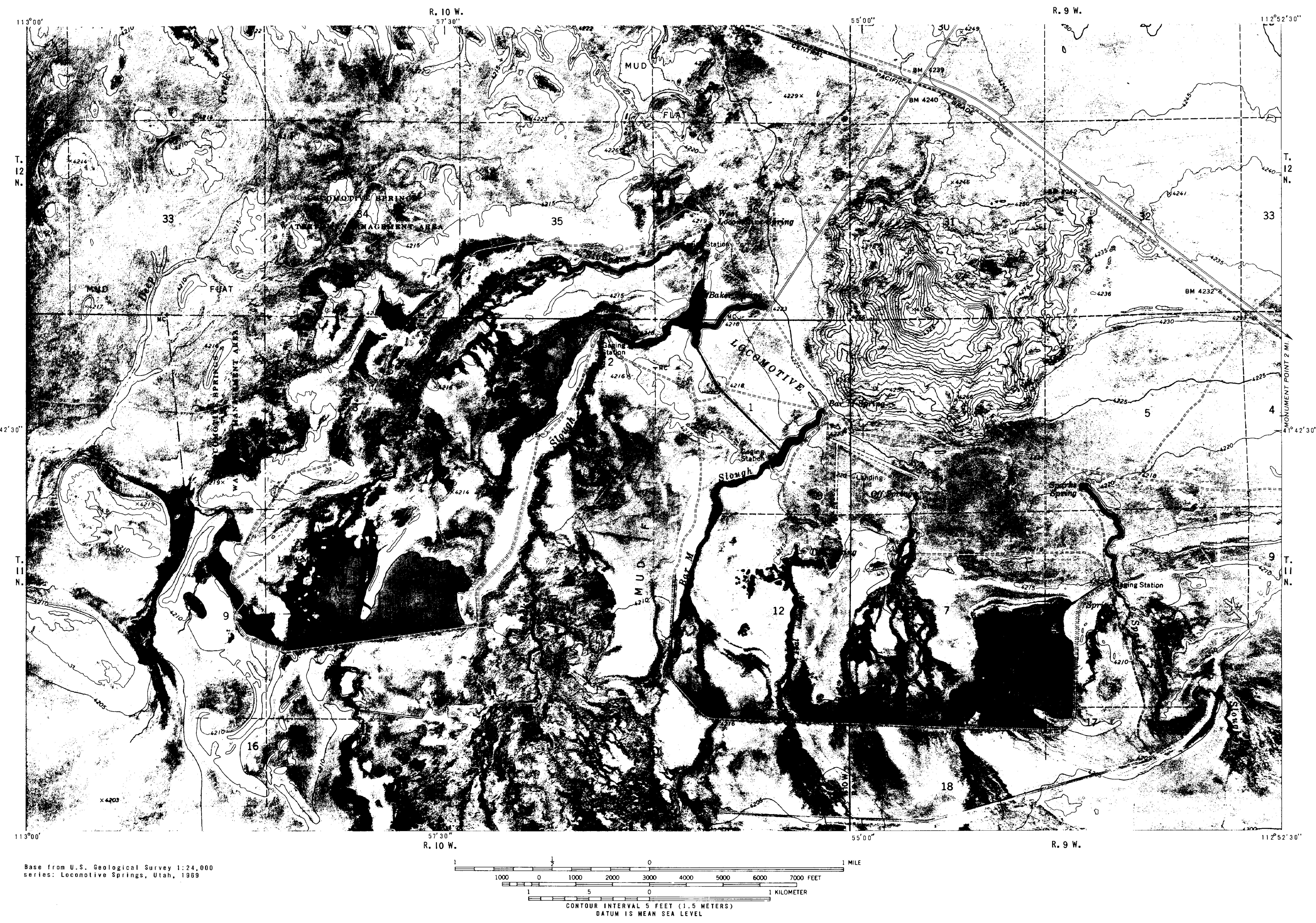
MAP SHOWING GENERALIZED GEOLOGY, GRAVITY CONTOURS, AND THICKNESS OF LOW-DENSITY MATERIAL IN THE CURLEW VALLEY DRAINAGE BASIN, UTAH AND IDAHO



MAP SHOWING WATER LEVELS AND NATURAL DISCHARGE AREAS IN THE CURLEW VALLEY DRAINAGE BASIN, UTAH AND IDAHO

Sector and the sector of the se

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY STATE OF UTAH Department of natural resources


TECHNICAL PUBLICATION NO. 45 PLATE 4 1974

MAP SHOWING CONCENTRATION OF DISSOLVED SOLIDS IN WATER FROM WELLS AND SPRINGS SAMPLED FOR CHEMICAL ANALYSIS IN THE CURLEW VALLEY DRAINAGE BASIN, UTAH AND IDAHO

💼 en le gran su la comita de las centres en engles y la gran comar calacterizadoral general esta comarcadore de la sec

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

STATE OF UTAH Department of Natural Resources

MAP OF LOCOMOTIVE SPRINGS AREA IN CURLEW VALLEY, UTAH

TECHNICAL PUBLICATION NO. 45 PLATE 5 1974

STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES

Technical Publication No. 45

WATER RESOURCES OF THE CURLEW VALLEY DRAINAGE BASIN, UTAH AND IDAHO

by

Claud H. Baker, Jr. Hydrologist, U.S. Geological Survey

Prepared by the United States Geological Survey in cooperation with the Utah Department of Natural Resources Division of Wildlife Resources

1974

CONTENTS

	age
Abstract	1
Introduction	3
Purpose and scope of the study	3
Metric units	3
Description of the area	4
Previous studies and acknowledgments	6
Well- and spring-numbering systems	7
Surface-water hydrology	7
Deep Creek	7
Indian Creek	10
Intermittent and ephemeral streams	10
Ground-water hydrology.	11
Geologic framework	11
Geophysical characteristics	12
Structural features	13
Ground water in the Quaternary and Tertiary rocks within	10
Curlew Valley	13
Kelton flow system.	14
Juniper-Black Pine flow system.	23
	23 28
Holbrook-Snowville flow system	20 34
Coyote Spring flow system	
	34
Locomotive Springs	36
5	36
	37
	39
0 1 1 0	40
	41
References	43
Basic data	45
Publications of the Utah Department of Natural Resources, Division	
of Water Rights	84

ILLUSTRATIONS

[Plates are in pocket]

- Plate 1. Map showing locations of points where hydrologic data were collected, precipitation stations, and zones of mean annual precipitation.
 - 2. Map showing generalized geology, gravity contours, and thickness of low-density material in the Curlew Valley drainage basin.
 - 3. Map showing water levels and natural discharge areas in the Curlew Valley drainage basin.
 - 4. Map showing concentration of dissolved solids in water from wells and springs sampled for chemical analysis in the Curlew Valley drainage basin.
 - 5. Map of Locomotive Springs area.

va		Page
Figure 1	. Diagram showing well- and spring-numbering systems used in Utah and Idaho	8
2	• Map showing wells used in a pumping test of the Kelton flow system and calculation of aquifer characteristics	18
3	. Graphs showing changes in water levels in two wells near Kelton, cumulative departure from the 1941-72 average annual precipitation at Snowville, specific conduct- ance of water from well (B-12-11)5bbb-1, and pumpage for irrigation near Kelton	20
. 4	Diagram showing changes in chemical quality of ground water in the Kelton area	22
5	• Graphs showing water-level fluctuations in wells in the Juniper-Black Pine flow system, cumulative departure from average precipitation at Strevell and Snowville, and pumpage for irrigation in Utah • • • • • • • • • • •	27
6	. Graph showing specific conductance of water from wells in the Juniper-Black Pine flow system	28
7	. Map showing wells used in a pumping test of the Holbrook-Snowville flow system and calculation of aquifer characteristics	31
8	Graph showing water levels in observation wells in the Holbrook-Snowville flow system	32

ILLUSTRATIONS - continued

		Page
Figure 9.	Graph showing mean discharge, by months, at Baker and	
	West Locomotive, Bar M, Sparks, and Off Springs,	
	1969-72	38

TABLES

Table 1.	Daily discharge of Indian Creek near Park Valley	11
2.	Geohydrologic units and their water-bearing properties	12
3.	Selected chemical-quality data for dissolved constit- uents from Locomotive Springs, 1959-72	39
4.	Records of wells	46
5.	Records of selected springs	49
6.	Chemical analyses of water from selected wells and springs	50
7.	Logs of selected wells and test holes	58
8.	Water levels in selected observation wells	63
9.	Records of discharge of selected springs in the Locomotive Springs group	64

UTAH AND IDAHO

by

Claud H. Baker, Jr. Hydrologist, U.S. Geological Survey

ABSTRACT

The Curlew Valley drainage basin covers about 1,200 square miles $(3,100 \text{ km}^2)$ in northern Utah and southern Idaho. Locomotive Springs are in the southern end of the basin. Runoff in this semiarid region is scanty, and the drainage basin includes only two small perennial streams. Deep Creek, the larger of these streams, originates in the northeastern part of the basin in Idaho. A large spring group, Holbrook Springs, contributes an average of about 30 cubic feet per second (0.85 m³/s) to Deep Creek, but much of the water is diverted in Idaho for irrigation in both States. The mean discharge of the creek near the Utah-Idaho boundary during 1970-72 was about 8.5 cubic feet per second (0.24 m³/s). Indian Creek drains the Raft River Mountains on the west side of Curlew Valley; the long-term mean discharge of the creek near the foot of the mountains is less than 0.5 cubic foot per second (0.01 m³/s). No water leaves the drainage basin in either of these streams.

The principal aquifers in Curlew Valley are in valley-fill deposits that include unconsolidated deposits and volcanic rocks. Three major ground-water flow systems have been distinguished that contain water of suitable chemical quality for irrigation, and each is tapped locally by large-capacity wells. A fourth flow system, which contains hot, saline water, is present at depth in the western part of the valley.

Along the west side of the valley, the Kelton flow system contains water under water-table conditions in unconsolidated valley fill. The Kelton flow system receives about 8,000 acre-feet (9.9 hm³) of recharge per year from the Black Pine Mountains in Idaho and the Raft River Mountains in Utah. Pumpage for irrigation from the flow system near the old townsite of Kelton, Utah, averaged about 5,300 acre-feet (6.5 hm³) of water during 1970-72. Water levels in the area of pumping had declined as much as 25 feet (7.6 m) between 1954 (when pumping began) and 1967, but they rose as much as 5 feet (1.5 m) between 1967 and 1973. The chemical quality of water in the irrigated area has deteriorated since pumping began, probably primarily as a result of recirculation of unused irrigation water. Natural discharge from the flow system is by evapotranspiration in the southern part of the valley.

In the central part of the valley, the Juniper-Black Pine flow system contains water in unconsolidated valley-fill deposits and interbedded layers of basalt. Leaky artesian conditions occur locally, but unconfined conditions are the rule in the flow system as a whole. Recharge to the flow system, which occurs in Idaho, averages about

1

22,000 acre-feet (27.1 hm^3) per year; approximately the same volume of water moves in the subsurface across the State line into Utah. Pumpage for irrigation from the flow system in Utah averaged about 12,700 acre-feet (15.7 hm³) per year during 1970-72. Water levels declined as much as 10 feet (3.0 m) near the center of pumping between 1955 and 1969, but they appear to have stabilized since 1969. The water quality has not changed in the area since pumping began, except near the Showell Hills where the water from one well has increased steadily in salinity since pumping began at the well in 1955. Natural discharge from the flow system is by evapotranspiration in the southern part of the valley. The combined discharge by evapotranspiration from the Juniper-Black Pine and Kelton flow systems was about 12,000 acre-feet (14.8 hm³) in 1972.

The unconsolidated deposits along the east side of the valley and the much-fractured Paleozoic rocks of the Hansel Mountains contain the Holbrook-Snowville flow system. Recharge to the flow system from mountains in Idaho is estimated to be about 44,000 acre-feet (54.3 hm^3) per year. Approximately 22,000 acre-feet (27.1 hm^3) per year of this water is discharged at Holbrook Springs and about 12,000 acre-feet (14.8 hm^3) per year is pumped from wells for irrigation. Additional recharge from return flow from water diverted for irrigation augments the flow system in Idaho, and approximately 20,000 acre-feet (24.8 hm^3) per year moves in the subsurface across the State line into Utah. Additional recharge from the Hansel Mountains and water diverted for irrigation augments the flow system in Utah, and about 24,000 acre-feet (29.6 hm^3) per year moves toward the southern end of the valley. Of this, about 1,000 acre-feet (1.2 hm^3) is discharged annually by evapotranspiration near Locomotive Springs.

Locomotive Springs, in the southern part of the Curlew Valley in Utah, had an average annual discharge of about 24,000 acre-feet (29.6 hm³) of water during 1969-72. The discharge from the springs consisted almost completely of water moving through the Holbrook-Snowville flow system, and a decline of water levels in that system therefore will ultimately result in a reduction of discharge at Locomotive Springs. It is also possible that a considerable enlargement of the cone of influence of the wells west of Snowville will result in a diversion of water that might otherwise reach the springs from the Holbrook-Snowville flow system.

Comparison of the available measurements of the discharge at Locomotive Springs suggests that the discharge during 1969-72 was less than that measured in 1939 and 1967. This apparent decrease in spring discharge paralleled a period when withdrawals from wells were substantially increasing in Curlew Valley. The records are incomplete and short, however, and the collection of records of discharge at the springs and withdrawals for irrigation in the valley should be continued in order to define further the relation between the two.

INTRODUCTION

Purpose and scope of the study

This report about the water resources of the Curlew Valley drainage basin, Utah and Idaho, was prepared by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Wildlife Resources. The primary purpose of the study on which this report is based was to determine whether or not the flow of Locomotive Springs--a source of water for a State Waterfowl Management Area--has been or will be diminished as a result of ground-water withdrawals elsewhere in Curlew Valley. To this end, it was necessary to make a quantitative appraisal of the water resources of the Curlew Valley drainage basin, with emphasis on ground water, and to evaluate the effects of both present and planned water-supply developments on the hydrologic regimen.

Surface-water resources and climatic factors were considered primarily in terms of their effects on the ground-water system.

The interpretations and conclusions contained in this report are based on hydrologic data available prior to June 1969 and additional data collected during the period July 1969-September 1973. These data are included in this report in tables 4-9.

Metric units

Most numbers are given in this report in English units followed by metric units in parentheses. The conversion factors used are:

Engl	ish		Metric	
Units	Abbreviation		Units	Abbreviation
(multiply)		(by)	(to obtain)	
Acres	acres	0.4047	Square hectometers	
Acre-feet	acre-ft	.0012335	Cubic hectometers	hm^3
Cubic-feet	ft ³	.02832	Cubic meters	m ³
Feet	ft	.3048	Meters	m
Gallons	gal	3.7854	Liters	1
Inches	in.	25.4	Millimeters	mm
Miles	mi	1.6093	Kilometers	km
Square mile	s mi ²	2.59	Square kilometers	km^2

Chemical concentration and water temperature are given only in metric units. Chemical concentration is given in milligrams per liter (mg/l). For concentrations less than 7,000 mg/l, the numerical value is about the same as for concentrations in the English unit, parts per million.

Chemical concentration in terms of ionic interacting values is given in milliequivalents per liter (meq/l). Meq/l is numerically equal to the English unit, equivalents per million.

Water temperature is given in degrees Celsius (°C), which can be converted to degrees Fahrenheit by the following equation: °F = 1.8(°C) + 32 or by use of the following table:

Temperatures in °C are rounded to nearest 0.5 degree. Underscored temperatures are exact equivalents. To convert from °F to °C where two lines have the same value for °F, use the line marked with an asterisk (*) to obtain equivalent °C.

°c	°F	°c	°F	°c	°F	°C	°F	°c	°F	°C	°F	°C	°F
		-10.0	14	0.0	32	10.0	50	20.0	68	30.0	86	40.0	104
<u>·20.0</u>	.4	- <u>10.0</u> -9.5	15	+0.5	33	10.5	51	20.5	69	30.5	87	40.5	105
-19.5	.3		16	1.0	34	11.0	52	21.0	70	31.0	88	41.0	106
-19.0	-2	-9.0		1.5	35	11.5	53	21.5	71	31.5	89	41.5	107
-18.5	-1	-8.5	17		36	12.0 *	54	22.0 *	72	32.0 *	90	42.0 *	108
-18.0	* 0	-8.0 *	18	2.0 *	30	12.0	34	12.0					
17.5	0	-7.5	18	2.5	36	12.5	54	22.5	72	32.5	90	42.5	108
-17.5		-7.0	19	3.0	37	13.0	55	23.0	73	33.0	91	43.0	109
-17.0	1		20	3.5	38	13.5	56	23.5	74	33.5	92	43.5	110
-16.5	2	-6.5		4.0	39	14.0	57	24.0	75	34.0	93	44.0	111
·16.0	3	-6.0	21	1		14.5	58	24.5	76	34.5	94	44.5	112
-15.5	4	-5.5	22	4.5	40	14.5	50	24.5	.0				
15.0	c	·5.0	<u>23</u>	5.0	<u>41</u>	15.0	<u>59</u>	25.0	77	35.0	<u>95</u>	<u>45.0</u>	<u>113</u>
<u>·15.0</u>	<u>5</u> 6	-4.5	24	5.5	42	15.5	60	25.5	78	35.5	96	45.5	114
-14.5	-	4.0	25	6.0	43	16.0	61	26.0	79	36.0	97	46.0	115
-14.0	7		25 26	6.5	44	16.5	62	26.5	80	36.5	98	46.5	116
-13.5	8	-3.5			45	17.0	63	27.0	81	37.0	99	47.0	117
-13.0	9	-3.0	27	7.0	40	17.0	05	27.0	0,				
10.5	10	-2.5	28	7.5	46	17.5	64	27.5	82	37.5	100	47.5	118
-12.5				8.0	* 46	18.0 *	64	28.0	* 82	38.0 *	100	48.0	* 118
-12.0	* 10	-2.0		8.5	40	18.5	65	28.5	83	38.5	101	48.5	119
-11.5	11	-1.5	29		47 48	19.0	66	29.0	84	39.0	102	49.0	120
-11.0	12	-1.0	30	9.0			67	29.5	85	39.5	103	49.5	121
-10.5	13	-0.5	31	9.5	49	19.5	0/	29.0				1	

Description of the area

The Curlew Valley drainage basin covers about 1,200 square miles (3,100 km²) in northern Utah and southern Idaho (pl. 1). Locomotive Springs are in the southern part of the drainage basin. The climate of the region is semiarid; even the highest peaks in the drainage basin receive little more than 35 inches (890 mm) of precipitation a year, and most of the basin receives less than 12 inches (300 mm). Because of the scanty precipitation on most parts of the basin and the small amount of annual runoff (pl. 1), most streams in the basin are ephemeral or intermittent. The principal streams in the basin are Deep Creek (also called Curlew Creek in older reports) and Indian Creek. The water discharged by these two perennial streams and by major intermittent streams in Curlew Valley is wholly appropriated. At present (1973), no water leaves the drainage basin in any of these surface streams, and there is no stream-flow into Great Salt Lake except during unusual floods.

The valley floor of Curlew Valley covers about 900 square miles (2,330 km²), of which about 550 square miles (1,420 km²) is in Utah. From about the latitude of Snowville north, the Showell Hills divide the valley into two drainage arms. The broader western arm is generally called the Juniper-Black Pine area; the narrower eastern arm is variously called Holbrook Valley, the Holbrook arm, or Curlew Valley, Idaho. Throughout this report, the name Curlew Valley will be used for the entire valley in both States; the western valley in Idaho will be called the Holbrook arm, and the part of the valley in Utah will be called simply the Utah part of the valley.

Curlew Valley is sparsely populated; the entire drainage basin has fewer than 500 permanent residents. According to figures compiled by the U.S. Department of Commerce, Bureau of the Census (1971 a, b), the only incorporated town in the Curlew Valley drainage basin is Snowville, Utah (population 174 in 1970). Fewer than 100 people live in the Utah part of the valley outside Snowville, and the combined population of the Juniper-Black Pine area and the Holbrook arm is about 200.

The principal native vegetation in the valley north of about latitude 41°50' north is sagebrush (Artemesia tridentata) and grasses. Farther south toward the Great Salt Lake the soils become increasingly saline, and the sagebrush gives way to an assemblage dominated by greasewood (Sarcobatus vermiculatus). Near the shoreline of the lake, saltgrass (Distichlis sp.) and finally pickleweed (Allenrolfea occidentalis) are the only plants that are sufficiently salt-tolerant to survive. In the mountainous parts of the drainage basin, sagebrush and juniper (Juniperus sp.) predominate; some aspen (Populus tremuloides aurea) and conifers are found in the higher parts of the Raft River Mountains, where altitudes exceed 9,000 feet (2,740 m) above mean sea level.

The economy of Curlew Valley is based entirely on agriculture. Livestock raising predominates, and most of the cultivated land is devoted to raising hay and small grains for feed. The most productive croplands are in (1) an area in the Holbrook arm between Snowville and Holbrook, which is irrigated with water diverted from Deep Creek and from wells; (2) an area extending west of Snowville along the Utah State line, which is irrigated entirely from wells; and (3) an area north of the old townsite of Kelton in Utah, which is irrigated with water from wells and from Indian Creek. In the higher altitudes, mainly where the average annual precipitation exceeds about 16 inches (400 mm) (see pl. 1), small grains are raised by dryfarming methods.

Slightly less than one-half the land in the Curlew Valley drainage basin is privately owned. Nearly 50 percent of the land in the basin is Federally owned, including lands in the Sawtooth National Forest, the Curlew National Grassland, and Federal lands managed by the U.S. Bureau of Land Management. About 2 percent of the land in the drainage basin is State owned; most of the State-owned land is in Utah. Most of these public lands are used for grazing and recreation. Locomotive Springs, near the shore of Great Salt Lake, are in a State Waterfowl Management Area.

Previous studies and acknowledgments

The Utah part of Curlew Valley was included in a reconnaissance of the ground-water resources of Tooele and Box Elder Counties, Utah, by Carpenter (1913) and in a ground-water reconnaissance by D. A. Griswold (U.S. Soil Conservation Service, written commun., 1956). A preliminary evaluation of the ground-water resources of the Holbrook arm in Idaho was included in a more comprehensive report on the Malad River valley by Thompson and Faris (1932, p. 71-81), and a listing of wells and springs in Idaho that were visited in 1947-48 was included in a basic-data release by Nace (1952). In 1959, G. L. Whitaker and K. E. Kittock made a reconnaissance of irrigation development and gaging-station sites along Deep Creek (U.S. Geological Survey, written commun., 1959). More recent studies include a hydrologic reconnaissance by Bolke and Price (1969) that dealt mainly with the Utah part of the valley but included some data for Idaho and a study of the water resources of the Juniper-Black Pine area and the Holbrook arm by Chapman and Young (1972).

Sources of geologic data in the Curlew Valley drainage basin include the geologic maps of Utah (Stokes, 1964) and Idaho (Ross and Forrester, 1947), a report on the geology of the Raft River Mountains (Felix, 1956), a report of oil exploration and test drilling in Box Elder County, Utah (Peace, 1956, p. 25-31), and a thesis on the geology of the Wildcat Hills by Howes (1972). Part of Curlew Valley was included in a gravity survey of the northern Great Salt Lake Desert by Cook, Halverson, Stepp, and Berg (1964), and additional geophysical data were given in theses prepared by students of the University of Utah.

The cooperation of landowners and residents in the area who permitted measurements at wells and gave general information about their wells and about the area is gratefully acknowledged. The Raft River Rural Electric Cooperative and Utah Power and Light Co. provided power-consumption records from which gross ground-water pumpage was estimated; and Layne and Bowler Pump Co., Twin Falls, Idaho, furnished data from pumping tests of many wells in the area. Thanks are due to the well drillers in the area who took time to discuss the ground-water hydrology and subsurface conditions with the writer. Many of the data on wells in the Idaho parts of the drainage basin were collected by personnel of the Idaho Department of Water Administration, and S. L. Chapman of that office exchanged data and discussed their interpretation with the writer. Finally, the personnel of the Desert Biome. International Biome Project, especially Drs. G. W. Minshall (Idaho State University) and J. M. Neuhold (Utah State University), furnished information about Deep Creek and Locomotive Springs.

Special thanks are due to Louise L. Miller of the U.S. Geological Survey, who assisted in compiling the basic data.

Well- and spring-numbering systems

The system of numbering wells and springs in Utah is based on the cadastral land-survey system of the U.S. Government. The number identifies the well or spring and locates its position in the land net. By this system, the State is divided into four quadrants by the Salt Lake base line and meridian, and the quadrants are designated by the uppercase letters A, B, C, and D for the northeast, northwest, southwest, and southeast quadrants, respectively. Numbers designating the township and range, in that order, follow the quadrant letter, and all three are separated by dashes and enclosed in parentheses. The number after the parentheses designates the section and is followed by lowercase letters indicating the quarter section, the quarter-quarter section, and the quarter-quarter-quarter section (generally 10 acres or 4 hm^2)¹; the letters a, b, c, and d indicate the northeast, northwest, southwest, and southeast quarters of each subdivision. The final number is the serial number of the well or spring within its tract; the letter S preceding the number denotes a spring. Thus well (B-14-8)1cbb-1 is the first well constructed or visited in the NW4NW4SW4 sec. 1, T. 14 N., R. 8 W., and (B-14-12)3cda-S2 is the second spring claimed or tabulated in the NE¹₄SE¹₄SW¹₄ sec. 3, T. 14 N., R. 12 W.

The system of numbering wells and springs in Idaho is generally similar to that used in Utah. Locations in Idaho are referenced to the Boise base line and meridian. The quadrant letter is not used; townships are labeled N or S to designate locations north or south of the base line, and ranges are labeled E or W for locations east or west of the meridian. The letter S denoting a spring is not used. Thus, well 15S-32E-33dcd-1 designates the first well constructed or visited in the $SE^{1}_{4}SW^{1}_{4}SE^{1}_{4}$ sec. 33, T. 15 S., R. 32 E.

The well- and spring-numbering systems are illustrated in figure 1.

SURFACE-WATER HYDROLOGY

Deep Creek

The northernmost parts of the Holbrook arm of Curlew Valley are drained by Deep Creek and its tributaries. Deep Creek flows southward through the Holbrook arm into Utah and toward Great Salt Lake.

Rock Creek, a major tributary that joins Deep Creek near Holbrook rises on the southwest flank of the Deep Creek Mountains. The entire

7

¹The basic unit of land measurement, the section, is theoretically a 1-mile square, but many sections are oversize, undersize, or irregular. Such sections are divided into 10-acre (4 hm²) tracts, generally beginning from the southeast corner, and the surplus or shortage is taken up in the tracts along the north and west sides of the section.

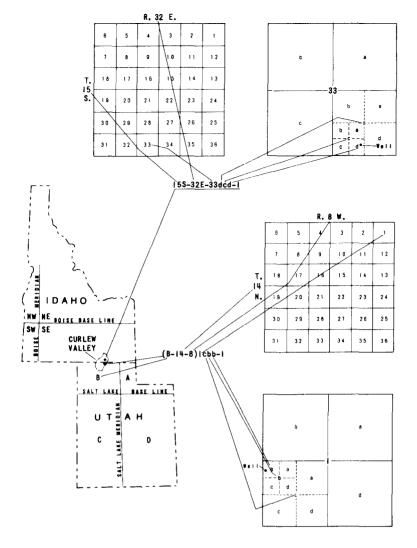


Figure 1.- Well- and spring-numbering systems used in Utah and Idaho.

flow of Rock Creek is diverted for irrigation about 4 or 5 miles (6-8 km) upstream from Holbrook, and the channel is generally dry from the point of diversion to its mouth for several months of the year.

Deep Creek (or Bull Canyon Creek, as it is sometimes called above its junction with Rock Creek) originates in springs in Bull Canyon on the southeast side of the Deep Creek Mountains. The entire flow of the creek is diverted for irrigation near the point where it emerges from the mountains, some 10 or 12 miles (16-19 km) northeast of Holbrook.

Below the junction with Rock Creek, the channel of Deep Creek is dry during most months. About 3 miles (5 km) south of Holbrook, a group of springs, variously called Deep Creek Springs, Big Springs, and Holbrook Springs (the name used throughout this report) discharge in the channel of the creek. About 4 miles (6 km) downstream from the springs, Curlew Dam impounds the water of the creek. When Curlew Valley Reservoir is full, it extends to within a few hundred feet of Holbrook Springs. Releases from Curlew Valley Reservoir and ground-water inflow from the valley fill make Deep Creek a perennial stream from the dam to a small impoundment near Rose Ranch about 7 miles (11 km) southwest of the point where the stream crosses into Utah. The amount of water released from this reservoir is small and the water in the stream disappears into the ground within a few miles. The Geological Survey has maintained a crest-stage gage on Rock Creek about 1 mile (1.6 km) above the point of diversion (pl. 1) since 1962.

Personnel of the Desert Biome work group from Idaho State University installed a weir and water-stage recorder near the crest-stage gage in the summer of 1970 (station 1, pl. 1). Mean discharge at the weir from September 1970 through August 1972, as determined by the Desert Biome work group, was 1.8 ft³/s (cubic feet per second) (0.05 m³/s). Peak discharges at the crest-stage gage are tabulated below. No records of the discharge of Deep Creek above Holbrook exist. The mean runoff at the mouth of Bull Canyon was estimated by the channel-geometry method (Moore, 1968) as about 82 acre-feet (0.1 hm³) per year (about 0.11 ft³/s or 0.003 m³/s).

Rock Creek near Holbrook, Idaho

Peak discharges, 1962-71

	Discha	irge		Disch	arge
Date	(ft^3/s)	(m^3/s)	Date	(ft ³ /s)	(m ³ /s)
Jan. 7, 1962	1,100 ¹	(31.2)	Mar. 30, 1966	30	(0.85)
Feb. 11 or 12	$1,390^{1}$	(39.4)	Jun. 22, 1967	300	(8.5)
Feb. 1, 1963	350 ¹	(9.9)	Feb. 21, 1968	385	(10.9)
June 10	466 ¹	(13.2)	May 30, 1969	52	(1.47)
June 17, 1964	232	(6.6)	Apr. 19, 1970	82	(2.32)
Dec. 23	140^{2}	(4.0)	May 14, 1971	130	(3.68)

¹At former site, 1 mile (1.6 km) upstream. ²Affected by ice.

The mean discharge of Deep Creek between Holbrook Springs and Curlew Valley Reservoir (station 2, pl. 1) from September 1970 through August 1972 was about 30 ft³/s (0.85 m³/s), as determined by the Desert Biome work group. Both Thompson and Faris (1932, p. 73) and Nace (1952, p. 49) report that the discharge below Holbrook Springs ranged from 25 to 35 ft³/s (0.71-0.99 m³/s). The Desert Biome work group installed gaging stations at two sites on Deep Creek downstream from Curlew Valley Reservoir in the summer of 1970; the mean discharge at these sites (stations 3 and 4, pl. 1) during 1970-72 was 8.5 and 6.4 ft³/s (0.24 and 0.18 m³/s), respectively.

Water discharged by Rock Creek, Twin Springs, the springs in Bull Canyon, and Holbrook Springs contains an average amount of less than 500 mg/l (milligrams per liter) of dissolved solids. The concentration of dissolved solids in the water of Curlew Valley Reservoir is increased by evaporation. Inflow to the creek below the reservoir is principally irrigation return flow; hence, the concentration of dissolved solids in the water of Deep Creek increases downstream from Curlew Dam. The Desert Biome work group analyzed samples of water from their gaging sites periodically during 1970-72, and their data are summarized below:

Dissolved-solids concentration, in milligrams per liter,

in water from Deep Creek, 1970-72

(Data from Desert Biome work group, Idaho State University; site locations shown on pl. 1)

Site	Sept. 4,	1970-Au	ug. 2, 1971	Sept. 1,	1971-Aug.	4, 1972
No.	High	Low	Mean	High	Low	Mean
1	562	396	464	537	332	443
2	644	403	482	549	416	480
3	1,290	539	851	1,130	682	855
4	1,660	785	1,160	1,370	1,020	1,170

Indian Creek

Indian Creek drains the southeast end of the Raft River Mountains, which border the Utah part of the valley on the west (pl. 2). All the water that reaches Curlew Valley in Indian Creek during the growing season is diverted and used for irrigation. During periods of low flow, water does not reach the valley floor but seeps into the coarse-grained alluvial-fan deposits at the edge of the mountains.

Daily discharges of Indian Creek at the Geological Survey gaging station near Park Valley ranged from 0.19 to 26 ft³/s (0.01 to 0.74 m³/s) for the 17 months of record through September 1972 (table 1). The mean annual runoff at the gaging station was estimated by the channel-geometry method as about 320 acre-feet (0.4 hm³) per year (about 0.44 ft³/s or 0.012 m³/s).

Intermittent and ephemeral streams

Runoff from those parts of the Curlew Valley drainage basin not drained by Deep and Indian Creeks is intermittent or ephemeral, and the total volume is small. A few spring-fed streams have perennial flow in their upper reaches, but all are losing streams and become dry within a few miles. Water that reaches the edge of the valley is generally absorbed by the fan deposits at the foot of the mountains.

The mean annual runoff estimated by the channel-geometry method for sites around the drainage basin is shown on plate 1. Even during the peak snowmelt-runoff period, little or no water flows out onto the valley floor from the Sublett Range, the Blue Spring Hills, and the Black Pine, North Promontory, and Hansel Mountains.

Table 1. -- Daily discharge, in cubic feet per second, of Indian Creek near Park Valley

May	1971	to	September	1972]

Day	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar,	Apr.	May	June	July	Aug.	Sept.
1	16	20	7.5	2.1	1.4	1.9	1.4	1.4	1.0	0.80	2.2	4.0	4.7	10	2.3	0,68	0.71
2	17	18	7.2	1.9	1.3	1.8	1.4	1.4	1.0	.80	2.5	3.8	4,9	10	2.2	.60	.88
3	17	16	6.9	2.0	1.7	1.7	1.4	1.4	1.0	.80	3.8	3.5	5.1	9.1	2.1	.56	.62
4	18	16	7.2	2.0	1.8	1,6	1.5	1.4	1.0	.80	3.6	3.1	5.1	8.5	2.0	.51	.42
5	17	16	6.9	1.9	1.7	1.5	1.4	1.4	.90	.80	3.6	2.9	6.6	9.4	2.0	.47	. 32
6	18	17	6.5	4.1	1.6	1,5	1.3	1.4	.90	.80	4.0	2.8	7.1	9.5	1.9	.45	.27
7	19	20	6.3	4.4	1.8	1.5	1.2	1.4	.90	.80	4.4	2.7	7.2	9.0	1.8	.42	.21
8	19	22	5.9	3.1	1.8	1.4	1.3	1.4	.90	.80	4.4	2.6	7.2	8.4	1.7	.40	.20
9	17	22	5.7	2.7	1.6	1.4	1.4	1.4	.90	.80	4.8	2.6	7.1	7.4	1.6	. 37	.19
10	16	26	5.5	2.6	1.4	1.4	1.3	1.4	.90	.80	5.3	2.6	6.8	6.6	1.6	.35	,19
11	17	28	5.4	2.4	1.4	1.4	1.3	1.4	.90	.80	4.9	2.7	6.6	6.1	1.6	.35	.19
12	19	22	5.1	2.3	1.3	1.4	1.3	1.4	.90	.84	4.8	2.8	6.5	5.6	1.5	. 35	.19
13	23	21	4.6	2.2	1.3	1.5	1.4	1.4	.90	.94	4.9	2.9	7.0	5.2	1.4	. 35	.19
14	24	21	4.3	2.0	1.3	1.5	1.6	1.4	.90	1.1	5.1	2.9	8.3	5.7	1.4	.35	.20
15	26	21	4.1	2.0	1.4	1.6	1.5	1.4	.86	1.2	5.7	2.9	9.3	5.1	1.4	.35	.20
16	23	21	4.0	2.0	1.4	1.7	1.4	1.2	.89	1.4	6.7	2.8	10	4.8	1.6	.37	.20
17	20	21	3.9	1.9	1.5	1.7	1.3	1,2	.89	1.6	6.6	2.8	10	4.4	2.0	. 38	.21
18	16	20	3.8	1.8	1.6	1.6	1.4	1.2	.91	1.4	6.6	2.7	10	4.3	1.7	.40	.23
19	14	19	4.1	1.8	1.5	1.6	1.3	1.2	1.1	1.4	5.9	2.8	9.7	4.5	1.4	.45	.34
20	13	17	3.9	1.9	1.5	1.5	1.4	1.2	1.0	1.5	5.5	2.9	8.7	4.5	1.2	.47	• 34
21	13	17	3.5	1.7	1.5	1.5	1.4	1.2	1.1	1,6	5.3	3.0	7.8	3.8	1.1	.51	.42
22	13	16	3.9	1.6	1.5	1.5	1.4	1,2	1.3	1.7	5.3	3.1	7.1	3.5	1.1	.56	.47
23	14	15	3.7	1.4	1.4	1,5	1.3	1.2	1.1	1.8	5.7	3.2	6.5	3.2	1.1	.56	.51
24	14	14	3.3	1.4	1.4	1.5	1.3	1.2	.95	1.8	5.8	3.4	6.3	3.1	1.0	.56	.56
25	15	13	3.0	1.4	1.4	1.5	1.3	1.2	.88	1.8	5.6	3.5	6.4	2.9	.90	.61	.61
26	17	12	2.7	1.3	1.4	1.5	1.4	1.2	.81	1.7	5.4	3.7	6.9	2.8	.79	.47	.66
27	18	13	2.6	1.3	1.5	1.5	1.5	1.2	.81	1.8	5.3	3.9	7.3	2.7	.84	.47	.93
28	18	11	2.4	1.5	1.6	1.4	1.5	1.2	.84	2.0	5.2	4.1	8.1	2.7	.84	.56	.99
29	19	9.6	2.3	1.6	1.6	2.0	1.5	1.2	.80	2.2	4.9	4.2	8.6	2.6	.91	.56	.88
30	19	8.4	2.2	1.9	1.8	1.7	1.4	1.2	.80	-	4.5	4.4	9.0	2.4	.86	.52	.82
31	19	-	2.1	1.9	-	1.5	-	1,2	.80	-	4.3	-	9.4	-	.76	.61	-

GROUND-WATER HYDROLOGY

Geologic framework

For the purposes of this report, the rocks in the Curlew Valley drainage basin are divided into valley fill and older consolidated rocks. The valley fill that underlies the main part of Curlew Valley is composed of unconsolidated to semiconsolidated sedimentary deposits and assorted volcanic rocks of Quaternary and Tertiary age. The valley fill contains the principal aquifers. Consolidated rocks of Paleozoic and Precambrian age form the bulk of the mountain ranges surrounding the valley and are of only slight economic importance as aquifers, although they may contribute substantial amounts of recharge to the aquifers in the valley fill. The lithology and water-bearing characteristics of the rock units are summarized in table 2 and their areal distribution is shown on plate 2.

Table	2.	Geohydrologi	c units	and	their	water-bearing	properties

-		Geohydrologic unit	Description and areal extent	Water-bearing properties				
	r		Description and areat extent	water-ocaling properties				
		Younger alluvium and colluvium	Mostly sloping and well-drained land; includes alluvium along active streams and colluvium on steep slopes. Exposed over most of the valley floor above an altitude of about 4,300 feet.	Slightly to highly permeable materials, but except in the upstream reaches of active stream channels is generally above the main ground- water body. Yields water to a few stock wells north of Holbrook. Serves as a ground-water recharge area along the edges of the valley.				
Valley-fill deposits	γ	Lakebed deposits	Mostly clay and silt, generally containing some salt. Cover most of the southern end of the valley below an altitude of about 4,300 feet.	Permeability generally low; such water as could be obtained would generally be too saline for most uses. Some water moves up through the deposits from deeper aquifers.				
	Quaternary	Near-shore lake deposits	Sand and gravel in bars and spits and on shoreline terraces, mostly along the east side of the valley.	Moderately to highly permeable, but generally are above the main ground- water body. Not known to yield water to wells, but locally serves as a recharge area for underlying deposits.				
	ð	Older alluviual and lake deposits	Sedimentary materials ranging in grain size from clay to cobbles; some pyroclastic material. Often poorly sorted. Most beds are lenticular and discontinuous and locally intercalated with lava flows. Not exposed at the surface (and not shown on pl. 2) but probably underlie most of the valley except where older rocks crop out.	Permeability highly variable both vertically and laterally, but average permeability of the deposit as a whole is moderate to high. With the intercalated lava flows, forms the principal aquifers in Curlew Valley and yields from 550 to 3,000 gallons per minute to wells in much of the valley. May contain saline water, particularly at depths of more than 600-900 feet below land surface but locally at much shallower depths.				
	Tertíary and Quaternary	Volcanic rocks	Mostly basalts similar to those of the Snake River Group and felsic rocks, particularly in and near the Wildcat Hills. Intercalated with the conti- nental sedimentary materials in the aestern part of the valley in Idaho; possibly present else- where in the subsurface but not reported from wells near Kelton nor in the Holbrook arm. Widely scattered outcrops throughout the valley.	Secondary permeability highly variable. Where penetrated in the sub- surface, may be either an aquifer or a confining layer but is the principal source of water to many wells in the area. South of Cedar Hill, where lays flows are only a few feet below the surface, well yields from the basalt have been less than 500 gallons per minute and water is not of a quality suitable for irrigation.				
	Tertiary	Continental sedimentary rocks	Chiefly tuff, tuffaceous shale, sandstone, and marl- stone; some interbedded conglomerate and volcanic flow rocks. Include rocks referred to the Salt Lake Formation in both Utah and Idaho and to the Payette Formation in Idaho. Crop out in the northernmost parts of the valley and along Indian Creek but probably underlie the Quaternary valley fill beneath most of the valley.	Permeability generally is low because of cementation and induration, but locally the rocks are moderately permeable. Yield water to stock wells in the Holbrook arm.				
consolidated rocks	Paleozoic	Undifferentisted Paleozoic rocks	Predominantly marine carbonate rocks of Carbonif- erous age but include some sandstone and shale. Most outcrops in Utah are referred to the Oquirrh Formation; outcrops in Idaho have not been identi- fied. Form the bulk of all the mountain ranges surrounding the valley except the Raft River Moun- tains.	Primary permeability is low but secondary permeability in solution openings and well-developed fracture systems is locally moderate to high. Of little economic importance as aquifers in the area but fur- nish water to a few stock wells and springs. Large quantities of water may move through these rocks in parts of the drainage basin.				
Older cons.	Precambrian	Undifferentiated Precambrian rocks	Chiefly metasedimentary rocks but include some in- trusive igneous rocks. Exposed only in the core of the Raft River Mountains.	Primary permeability is very low; some secondary fracture permeability locally. Yield water to a few small springs but are of little eco- nomic importance as equifers in the area.				

Geophysical characteristics

In addition to data available from wells and test holes in Curlew Valley, a gravity survey was used. Gravity data from several sources were compiled into a regional gravity map by Cook, Halverson, Stepp, and Berg (1964). That map covers Curlew Valley west of longitude 112°45' west. Peterson (1973) made additional gravity measurements of the eastern part of the valley and prepared an interpretation of the thickness of the low-density material for the entire valley. Gravity contours and the interpreted thickness of the low-density material are shown on plate 2.

Three deep test holes (locations shown on pl. 2) were drilled in the central part of Curlew Valley by the Utah Southern Oil Co. in 1954-56. Those holes penetrated the full thickness of the unconsolidated material and provided additional control for interpretation. The gravity interpretation shows structural trends that are in general agreement with the trends deduced from outcrop patterns. The deepest depression is in the Holbrook arm, where the maximum thickness of the valley fill exceeds 5,000 feet (1,525 m) just north of the Utah-Idaho State line. The maximum thickness of fill exceeds 4,000 feet (1,220 m) in the Juniper-Black Pine area. The fill exceeds 3,000 feet (915 m) in thickness in the Utah part of Curlew Valley, between the Raft River Mountains and the Wildcat Hills. Outside the three major structural depressions shown in figure 2, the valley fill is probably thin--generally less than 500 feet (150 m) thick (D. L. Peterson, oral commun., 1971).

Structural features

The consolidated rocks surrounding Curlew Valley and underlying it at depth have been distorted by repeated episodes of structural deformation. Both the outcrop patterns and the gravity interpretation indicate that several major structural trends intersect in the Curlew Valley area. The Black Pine Mountains, the Sublett Range, and the Blue Spring Hills, together with the intervening structural basins, trend about north or northwest. The Hansel Mountains, the North Promontory Mountains, and the structural trough on the west side of the valley trend northeast. On the west side of the valley, the east-trending Raft River Mountains represent a third structural trend.

The abundant faults, fractures, and associated solution openings form the principal conduits through which water moves in the older consolidated rocks in the Curlew Valley drainage basin. Major structural features probably exerted considerable influence on the distribution of the basaltic lava flows, which are an important element of the ground-water flow systems in the valley fill.

Ground water in the Quaternary and Tertiary rocks

within Curlew Valley

The valley floor of Curlew Valley is underlain by unconsolidated valley fill and interbedded volcanic rocks of Quaternary and Tertiary age. These deposits contain most of the aquifers in the area. Although they locally extend to depths of more than 5,000 feet (1,525 m) and are saturated with water for most of their thickness, only the shallower water-bearing beds--above a depth of 800-1,000 feet (240-300 m)--are presently exploited as aquifers.

From considerations of geologic and geographic features, chemical quality of water, and hydraulic head, three shallow ground-water flow systems can be distinguished within the valley. Each of these flow systems contains many interconnected beds of varying hydraulic properties, but each can be treated as a hydrologic entity. In this report, these units are called the Kelton flow system, the Juniper-Black Pine flow system, and the Holbrook-Snowville flow system (pl. 3). The flow systems are not bounded by "areas of no flow" or "impermeable barriers." Rather, they are bounded by zones of lower permeability, in which movement of ground water is slow. Wherever a substantial head difference exists across one of these areas, however, some water will move across the "boundary." In the southern part of the valley, where surface expression of the separation between flow systems is lacking, the "boundaries" cannot be readily distinguished.

A fourth flow system containing hot, moderately saline water,¹ here called the Coyote Spring flow system, underlies at least part of the Kelton and Juniper-Black Pine flow systems. It was not possible to delineate the area of the Coyote Spring flow system on plate 3 because of insufficient data.

Kelton flow system

A subsurface bedrock ridge near the west side of Curlew Valley acts as a barrier to ground-water movement; this ridge, together with the Wildcat Hills, forms the east boundary of the Kelton flow system (pl. 3). Gray hard limestone crops out in a low but distinct escarpment in Tps. 14 and 15 N., R. 11 W. This limestone outcrop marks the trace of a high-angle fault that forms the east boundary of a prominent bedrock trough at the foot of the Raft River Mountains (pl. 2). The upthrown block is on the east side of this fault and is inferred to be tilted to the east; the result is a ridge of bedrock with thick deposits of unconsolidated material on each side. The deposits west of the ridge form the north part of the Kelton flow system.

As the bedrock ridge is much less permeable than the unconsolidated material, it acts as a barrier to the eastward movement of ground water. Thus, water that enters the valley fill from the south end of the Black Pine Mountains and the east end of the Raft River Mountains moves generally southward between the Raft River Mountains and the Wildcat Hills in the Kelton flow system.

Term

Fresh Slightly saline Moderately saline Very saline Briny Concentration of dissolved solids, in milligrams per liter

> Less than 1,000 1,000-3,000 3,000-10,000 10,000-35,000 More than 35,000

¹Where descriptive terms for the chemical quality of water are used in this report, the terms have the following meanings (Robinove and others, 1958, p. 3):

Little is known about the water-bearing deposits of the Kelton flow system north of T. 12 N. In T. 15 N., drillers' logs of three wells indicate that the water-bearing material is thin-bedded, poorly sorted detritus ranging in size from clay to boulders. Well (B-15-11)31ddd-1¹ was finished at 410 feet (125 m) in such material, and well (B-15-11) 26cdd-1 reached gray hard limestone beneath the unconsolidated deposits at a depth of 485 feet (148 m). In T. 14 N., Pilot Spring, (B-14-11) 13bdd-S1, discharges near the east edge of the system. In T. 13 N., well (B-13-11)10cdc-1 was drilled to a depth of 283 feet (86 m). Most of the material penetrated was sand and fine gravel, with some layers of clayey sand and gravel.

The irrigation wells near Kelton in T. 12 N., R. 11 W., all penetrate valley fill; the proportions of coarse-grained materials decrease with increasing distance from the mountains. Although basalt outcrops form prominent hills within 2 miles (3.2 km) of these wells, no basalt was penetrated by wells, which were drilled to depths as great as 700 feet (210 m).

The water tapped by the irrigation wells near Kelton is unconfined. Although lenses of fine-grained material may produce apparent confined conditions locally, it is probable that water-table conditions generally prevail throughout the flow system.

Average annual recharge to the Kelton flow system is estimated using the method described by Hood and Waddell (1968, p. 22-23) as about $8,000 \text{ acre-feet } (9.9 \text{ hm}^3)$. In using this method, the area between adjacent pairs of lines of equal annual precipitation (isohyets) is multiplied by the average of the two precipitation values to give the total volume of precipitation on the zone. A part of the total precipitation in each zone is assigned to ground-water recharge, and the sum of recharge in all the zones is the total recharge.

The assignment of a percentage of the total precipitation on each zone to ground-water recharge is based on considerations of geology, soil cover, vegetation, and altitude, which represent the best judgment of the person making the assignment. Recharge to the Kelton flow system was estimated as follows:

¹See page 7 for description of the well-numbering system.

15

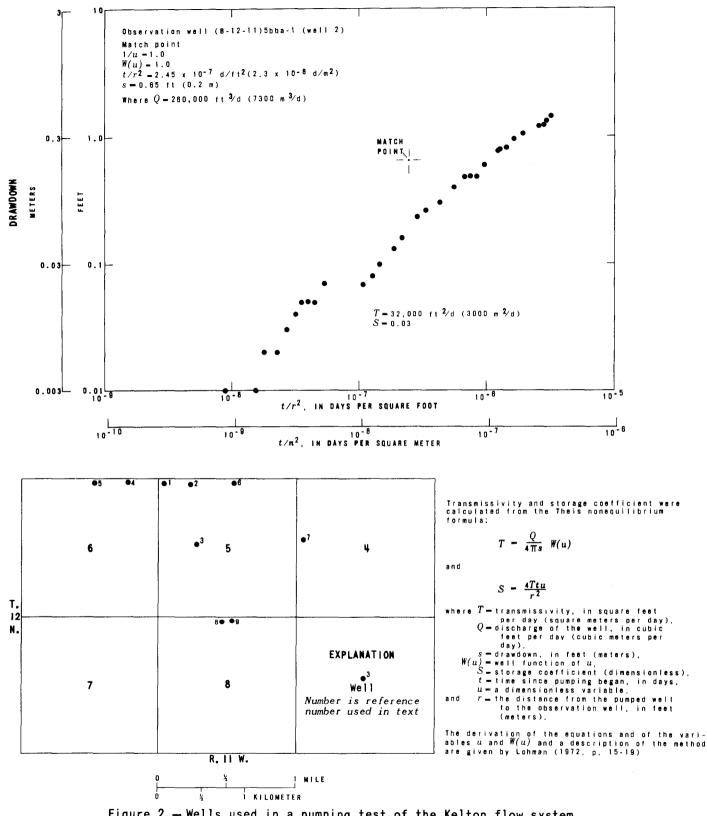
		Estimated annual precipitation		Estimated annual recharge	
Precipitation	Area			Percent of	Acre-feet
(inches)	(acres)	Feet	Acre-feet	precipitation	(rounded)
Utah					
More than 30	200	2.7	540	35	200
25-30	590	2.3	1,360	28	400
20-25	970	1.9	1,840	23	400
16-20	3,960	1.5	5,940	16	1,000
12-16	9,450	1.2	11,300	12	1,400_
			-	Subtotal (rounded)	3,000
Idaho					
More than 30	1,100	2.7	2,970	35	1,000
25-30	2,310	2.3	5,300	28	1,500
20-25	2,510	1.9	4,860	23	1,100
16-20	2,810	1.5	4,220	16	700
12-16	2,010	1.2	3,350	12	400
12-10	2,790	1.4	3,330	Subtotal (rounded)	
				Subcocar (rounded)	5,000
				Total (rounded)	8,000

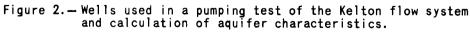
More than half the recharge--about 5,000 acre-feet (6.2 hm^3) per year--comes from precipitation on the Black Pine Mountains in Idaho; the remainder--about 3,000 acre-feet (3.7 hm^3) per year--comes from the Raft River Mountains in Utah. Little or no recharge reaches the water table from the scanty--generally less than 12 inches (300 mm)--precipitation on the valley floor.

Ground water in the Kelton flow system moves generally south from the Black Pine Mountains and southeast from the Raft River Mountains toward Great Salt Lake (pl. 3). As the slope of the water table in the southern part of the flow system is less than the slope of the land surface, the depth to water decreases southward. South of the Wildcat Hills, the water table is within reach of the roots of greasewood, and moderately dense stands of this phreatophyte appear. Farther south, more shallow-rooted phreatophytes, such as saltgrass and pickleweed, are found. Near Great Salt Lake, the capillary fringe reaches to the land surface, and water is consumed directly by evaporation. The approximate distribution of phreatophytes and areas of direct evaporation are shown on plate 3. South of T. 12 N., the surface expression of the separation between the Juniper-Black Pine and Kelton flow systems is missing. In the absence of better subsurface data, the discharge by evapotranspiration from the two systems cannot be accurately separated and consequently is lumped in the following tabulation:

Source	Estimated depth to water (feet)	Estimated areal density of growth (percent)	Rate of evapotranspiration (acre-feet per acre per year)	Area (acres)	Discharge (acre-feet, rounded)
Greasewood	10-40	20-40	0.10 ^t	17,100	1,700
Greasewood and rabbitbrush	5-20	50-60	1.002	n , 100	6,100
Saltflats (some greasewood, saltgrass, and pickleweed)	0- 5	0- 5	.103	43,600	a <u>.</u> 500
			Total (r	ounded)	12,000

¹Taken from Robinson (1958, p. 62 and 69). ²Taken from Mower and Nace (1957, p. 21). ³Taken from Feth, Barker, Moore, Brown, and Veirs (1966, p. 68-70).


An aquifer test in the Kelton flow system, using irrigation wells near the old townsite of Kelton, was made in March 1972. The arrangement of wells in this area is shown in figure 2, and the numbers used for the wells in the following discussion are those shown in the figure.

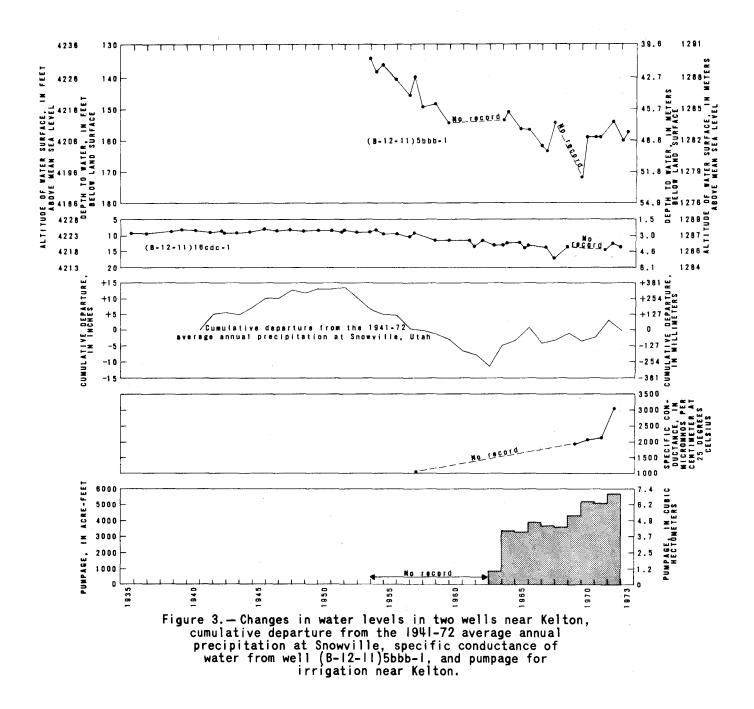

Well 1 was pumped throughout the test at a rate of 3 ft $^{3}/s$ (0.08) m^3/s), and water levels were measured in nine wells. At the end of 96 hours, no drawdown had been detected in wells 3-9, and drawdown in well was 1.24 feet (0.4 m). From the drawdown data for well 2, 2 transmissivity¹(T) and storage coefficient² (S) were calculated by the Theis nonequilibrium formula (Ferris and others, 1962, p. 92-98) as 32,000 ft²/d (2,970 m²/d) and 0.03, respectively (fig. 2). The specific capacity³ of the pumped well was used to estimate T as described by Theis, Brown, and Meyer (1963, p. 332-336); T was estimated as 24,000 ft^2/d (2,230 m²/d).

 $^{1}Transmissivity$ (T) is the rate at which water is transmitted through a unit width of the aquifer under a unit hydraulic gradient. The units for T are cubic feet per day per foot (ft³/d/ft), which reduces to ft²/d. The term transmissivity replaces the term coefficient of transmissibility, which was formerly used by the U.S. Geological Survey and which was reported in units of gallons per day per foot. To convert a value for coefficient of transmissibility to the equivalent value of transmissivity, divide by 7.48; to convert from transmissivity to coefficient of transmissibility, multiply by 7.48.

² The storage coefficient (S) of an aquifer is the volume of water it releases from or takes into storage per unit surface area of the aquifer per unit change in head. S is a dimensionless number. Under confined conditions, S is typically small, generally between 0.001 and 0.00001. Under unconfined conditions, S is much larger, typically from 0.05 to 0.30.

³ The specific capacity of a well is obtained by dividing the average discharge by the drawdown after some specified period of pumping. In this report, specific capacity values are after pumping for 24 hours unless otherwise noted.

After 96 hours, pumping was started at well 3 at a rate of 2.8 ft³/s (0.08 m³/s). No effects on water levels in other wells had been detected after 24 hours when pumping was started at well 2 at a rate of 3.5 ft³/s (0.10 m³/s). The test continued for 18 more hours, and the combined pumping at the three wells did not result in any detectable drawdown in wells 4-9. T was estimated from the specific capacity as 27,000 ft²/d (2,510 m²/d) at well 2 and 28,000 ft²/d (2,600 m²/d) at well 3. The difference in T values for well 2 obtained by two different methods is to be expected, because T values obtained from recovery measurements in pumped wells usually are low because of screen losses in the pumped well.


The values of T obtained from this test are reasonably consistent and are believed to be representative of the Kelton flow system in the area of large withdrawals north of Kelton. The computed value of S is reasonable for unconfined conditions and a relatively short period of pumping.

Withdrawal of water from the Kelton flow system by man is chiefly through the irrigation wells near the old townsite of Kelton. The first irrigation well in this area was drilled in 1953, and other wells have been added slowly. Pumpage from the Kelton flow system for irrigation during 1963-72 is tabulated below. About 1,500 acres (610 hm^2) of land was irrigated with ground water in this area in 1972 (J. W. Metcalf, U.S. Soil Conservation Service, oral commun., 1972). The surficial material in the irrigated area is mostly fine grained, and it is estimated that only about 10 percent of the water pumped returns to the aquifer by deep percolation.

Year	Approx	Number of wells	
	(acre-feet)	imate pumpage (cubic hectometers)	pumped
1963	860	(1.1)	2
1964	3,400	(4.2)	5
1965	3,300	(4.1)	6
1966	3,900	(4.8)	6
1967	3,700	(4.6)	7
1968	3,600	(4.4)	7
1969	4,300	(5.3)	10
1970	5,200	(6.4)	10
1971	5,100	(6.3)	10
1972	5,700	(7.0)	10

Pumpage for irrigation, Kelton flow system

Much of the water pumped for irrigation near Kelton has been taken from storage in the system. By the spring of 1967 the water level in well (B-12-11)5bbb-1, the first irrigation well, had declined about 25 feet (7.6 m) since the well was put into operation in 1954 (fig. 3).

From the spring of 1967 to the spring of 1973, however, the water level in the well rose about 5 feet (1.5 m). (The extremely low water level in the fall of 1969 was measured soon after pumping ceased at the end of an extremely long pumping season, and it is more representative of seasonal level in well drawdown than of long-term change.) water The (B-12-11)16cdc-1, an unused well about 2 miles (3.2 km) south of the irrigated area, declined about 5 feet (1.5 m) from the spring of 1954 to the spring of 1967 and rose about 1 foot (0.3 m) from the spring of 1967 to the spring of 1972. The rise of water levels between 1967 and 1973 may reflect the 7 years of above-average rainfall during the 10-year period 1963-72, as indicated by the precipitation-departure curve in figure 3. During periods of above-average rainfall, high flows in Indian Creek may result in an increase of recharge to the Kelton flow system.

Although the configuration of the water table in the Kelton area before irrigation began is unknown, the altitude of the water table in 1953 was about 8 feet (2.4 m) lower at well (B-12-11)16cdc-1 than at well (B-12-11)5bbb-1. By about 1957, however, the slope of the water table had changed; and in 1971 the water table was about 10 feet (3.0 m) (B-12-11)16cdc-1 than at well well higher in altitude at (B-12-11)5bbb-1. Thus it appears that a closed depression has formed in the water table around the irrigation wells, and this depression extends beyond well (B-12-11)16cdc-1. (See pl. 3.)

Upgradient from the irrigated area near Kelton, the predominant ions in water from the Kelton flow system are calcium and bicarbonate; for the most part the water contains less than 500 mg/l of dissolved solids (pl. 4). Downgradient from the irrigated area, near the shore of Great Salt Lake, where the shallow sediments contain abundant soluble salts, the predominant ions in the ground water are sodium and chloride. Water from a shallow test hole--(B-12-11)21ddd-1--contained nearly 63,000 mg/l of dissolved solids.

The chemical quality of ground water in the irrigated area near Kelton varies from well to well, and the variations reflect the results of man's activities. The predominant ions in water from well (B-12-11) 6abb-1, on the upgradient edge of the irrigated area, are calcium and bicarbonate; the chemical composition of water from this well has changed little since 1956. The predominant anion in water from other wells in the area, however, is chloride. The chemical composition of the water from well (B-12-11)8cda-1, originally on the downgradient edge of the irrigated area, has shown little overall change since 1953. In the three wells in the central part of the irrigated area that have been sampled more than once, however, the concentrations of chloride and calcium have increased substantially, although the concentrations of most of the other ions have changed only slightly. These changes are illustrated in figure 4, and figure 3 shows the relationship between specific conductance of water from well (B-12-11)5bbb-1 and pumpage for irrigation in the Kelton area.

The most probable cause of the observed increase in the mineral content of water from these wells is some recirculation of water pumped for irrigation. This conclusion is strengthened by the fact that well

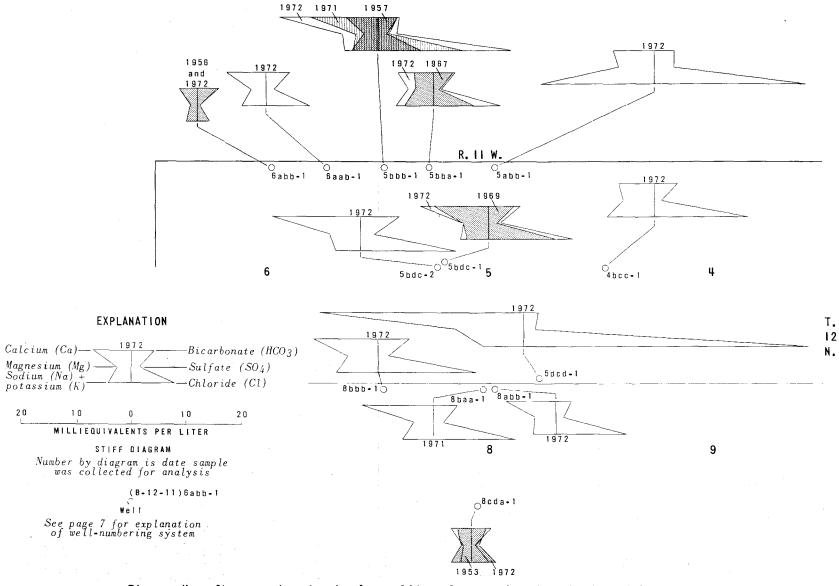


Figure 4. - Changes in chemical quality of ground water in the Kelton area.

(B-12-11)5dcd-1, which yields the most highly mineralized water, is near the center of the irrigated area. About half of the water pumped for irrigation is consumed by crops; some of the applied water is lost by evaporation, and about 10 percent is returned to the saturated zone. The dissolved constituents in the return water have been concentrated by evaporation and transpiration, and additional minerals from the soils are dissolved as the water percolates downward.

The sodium chloride type water yielded by well (B-12-11)5abb-1 (fig. 4) apparently has a different source than that described above. According to the owner, this well was drilled to a depth of about 700 feet (215 m) and encountered hot salty water. This water probably was in the Coyote Spring flow system, which was mentioned previously. The hot salty water was plugged off. The water from this well, however, is about 2-3°C warmer than water from other wells in the area; and the higher water temperature, together with the rather high concentration of sodium chloride, suggests that the plug might not be entirely effective.

Warm salty water also was encountered at a depth of 510 feet (155 m) when well (B-12-11)8cda-1 was drilled; this water also was plugged off.

The history of declining water levels in the irrigated area near Kelton indicates that much of the withdrawal has been from storage. Water levels have stabilized during the period of above-average precipitation from 1967 to 1973, but increased pumping may cause further declines. The concentration of dissolved solids in the water has continued to increase, and this trend may be accelerated by additional increases of pumping.

Juniper-Black Pine flow system

The ground-water flow system in the central part of Curlew Valley is here called the Juniper-Black Pine flow system (pl. 3). It is bounded on the west by the Black Pine Mountains and the Kelton flow system and on the east by the Sublett Range, the Showell Hills, and rocks of Paleozoic age that crop out at several locations along a line that trends south from the Showell Hills to the south end of the Hansel Mountains (pl. 2).

Recharge to the Juniper-Black Pine flow system comes from precipitation on the east side of the Black Pine Mountains and the west side of the Sublett Range, which bound the flow system in Idaho. The average annual recharge to the Juniper-Black Pine flow system, calculated using the method described by Hood and Waddell (1968, p. 22-23) is about 22,000 acre-feet (27.1 hm^3) per year. The calculations are shown in the following tabulation:

		Estimated annual		Estimated annua	Estimated annual recharge		
Precipitation	Area	pred	cipitation_	Percent of	Acre-feet		
(inches)	(acres)	Feet	Acre-feet	precipitation	(rounded)		
More than 35	2,100	3.0	6,300	40	2,500		
	2,300	2.7	6,200	35	2,200		
25-30	2,600	2.3	6,000	27	1,600		
20-25	21,400	1.9	40,700	22	8,900		
16-20	16,200	1.5	24,300	14	3,400		
12-16	25,200	1.2	30,200	10	3,000		
				Total (rounded)	22,000		

The area underlain by the flow system in Utah normally receives less than 12 inches (330 mm) of precipitation a year, and little or no water reaches the aquifers from precipitation on the land surface.

Water moves generally toward the center of the valley and south toward Great Salt Lake. Natural discharge from the flow system is mostly in the form of evapotranspiration in Tps. 10-12 N. in Utah. The areas of natural discharge and the configuration of the potentiometric surface are shown on plate 3.

South of the Utah-Idaho border, the valley fill that contains the Juniper-Black Pine flow system is interbedded with lenses and tongues of basalt that become thicker and more numerous southward. However, basalt has not been reported to have been penetrated by wells in the flow system in Idaho. Wells in the flow system produce water from fractured basalt, from clean, well-sorted sand and gravel, or from poorly sorted deposits of clay, sand, and gravel. Although the presence of bodies of basalt or clay cause leaky artesian conditions locally, unconfined conditions generally prevail in the flow system.

The chief withdrawal of water from the Juniper-Black Pine flow system by man is through irrigation wells in Tps. 14-15 N., Rs. 9-10 W., in Utah. Only a minor amount of water for stock, domestic use, and small-scale irrigation is pumped from the system in Idaho. The first irrigation wells in this part of the valley were drilled in Utah in 1955. More wells have been drilled each year since, although not all the completed wells have been put into production. The annual pumpage for irrigation from 1964 through 1972 is tabulated below. A total of about 2,900 acres (1,175 hm²) was irrigated with ground water in 1972 (J. W. Metcalf, U.S. Soil Conservation Service, oral commun., 1972). The surficial material in the irrigated area is extremely fine grained; thus little or none of the water pumped returns to the aquifer by deep percolation.

Pumpage for irrigation, Juniper-Black Pine flow system

Number Approximate pumpage of wells Year pumped (cubic hectometers) (acre-feet) 7 (5.2)4,200 1964 8 (5.3)4,300 1965 9 (7.4)6,000 1966 10 6,200 (7.6)1967 12 (11.2)9.100 1968 12 9,900 (12.2)1969 11 (14.8)12,000 1970 12 (14.1)11,400 1971 14 1972 14,800 (18.3)

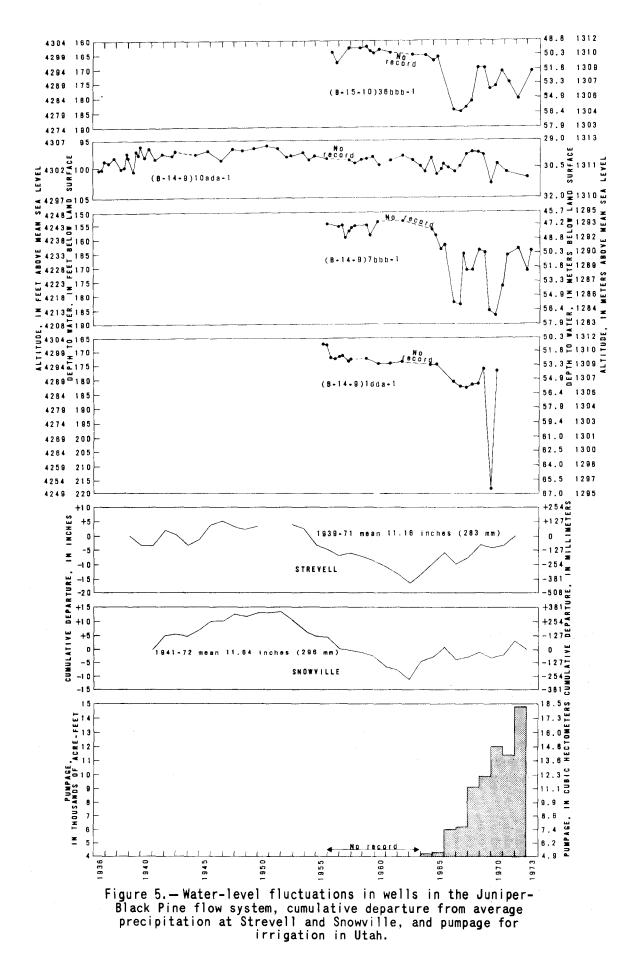
(All pumpage is from Utah)

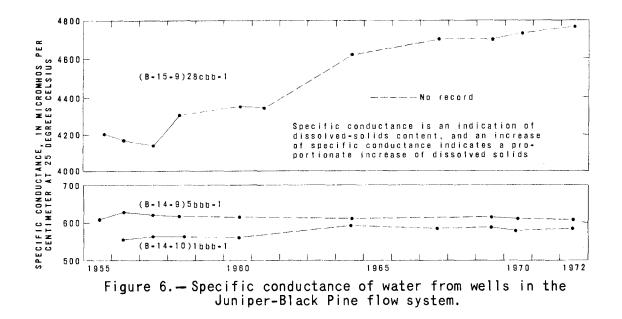
The long-term records available indicate that water levels have declined as much as 10 feet (3 m) near the center of pumping in this area since the beginning of pumping for irrigation in 1956 (fig. 5). The large drawdowns shown in figure 5 for some wells in 1966 and 1969 are the result of longer than usual pumping seasons and do not represent permanent declines.

The net downward trend of water levels in wells (B-14-9)1dda-1, (B-14-9)7bbb-1, and (B-15-10)36bbb-1, despite generally above-average precipitation since 1963 (fig. 5), suggests that part of the water pumped has been taken from storage. Although the declines appear to have leveled off since 1969, increased pumping would probably lead to further declines, especially during periods of below-average precipitation.

The volume of water that moves into Utah from Idaho is of concern to water users and managers in both States. At present (1973), no significant amount of ground water is discharged from wells or by evapotranspiration in the Juniper-Black Pine flow system in Idaho; hence the average amount of water that moves across the State boundary annually is approximately equal to the average annual recharge to the system in Idaho, which was estimated earlier in this section to be about 22,000 acre-feet (27.1 hm^3) .

Water discharges naturally from the Juniper-Black Pine flow system by evapotranspiration in the areas delineated on plate 3. South of T. 12 N., the surface expression of the separation between the Kelton and Juniper-Black Pine flow systems is missing. In the absence of better subsurface data, the discharge by evapotranspiration from the two systems cannot be accurately separated and consequently is lumped in the following tabulation:


Source	Estimated depth to water (feet)	Estimated areal density of growth (percent)	Rate of evapotranspiration (acre-teet per acre per year)	Area (acres)	Discharge (acre-feet, rounded)
Greasewood	10-40	20-40	0,101	17,100	1,700
Greasewood and rabbitbrush	5-20	50-60	1.00	ь,100	6,100
Saltilats (some greasewood, saltgrass, and pickleweed)	0- 5	0- 5	.10	43,600	4,-100
			Total (re	runded)	12,000


¹Taken from Robinson (1958, p. 62 and 69). ⁷Taken from Mower and Nace (1957, p. 21). ⁷Taken from Feth, Barker, Noore, Brown, and Veirs (1966, p. 68-70).

The chemical quality of water in the Juniper-Black Pine flow system varies with location, but in general it deteriorates from north to south. Water from all wells and springs north of the middle of T. 14 N. in Utah, except near the Showell Hills, contains less than 500 mg/l of dissolved solids (pl. 4), and the predominant ions are calcium and bicarbonate. Near the Showell Hills, however, the water from well (B-15-9)28cbb-1 contains more than 2,600 mg/1 of dissolved solids, and the predominant ions are sodium, calcium, and chloride. This water is similar in chemical quality to the water from well 16S-32E-16bcb-1, east of the Showell Hills; and the water from both wells is more highly mineralized than water from nearby wells that are more distant from the Showell Hills. The source of the slightly saline water may be a concealed and unmapped fault in the Showell Hills. As water moves south through the flow system, however, it becomes increasingly saline (see pl. 4). The increase in salinity southward is attributed to the solution of salts, primarily sodium chloride, from the sediments through which the water moves.

In the six wells checked, no significant change has been observed in the chemical quality of water in the flow system, other than that of the water from well (B-15-9)28cbb-1, which has increased in salinity steadily since the well was put into production in 1955 (fig. 6). The increase of salinity apparently is related to continued pumping at the well.

Increased development of water from the Juniper-Black Pine flow system is possible, but additional development should be considered carefully to minimize undesirable consequences. An increase in pumping in the area of present development will accelerate the trend of declining water levels, with a corresponding increase in pumping lifts, which were more than 200 feet (61 m) at some wells by 1972. New wells northeast of well (B-15-9)28cbb-1 may yield slightly or moderately saline water.

Holbrook-Snowville flow system

The aquifers in the valley fill of the Holbrook arm and in both the valley fill and the Paleozoic bedrock along the east side of the valley in Utah apparently function as a unit, which is here called the Holbrook-Snowville flow system (pl. 3). The deep structural depression that underlies the Holbrook arm apparently extends south toward the Hansel Mountains (pl. 2) as a trough of low-density material. Wells (B-13-8)10dcc-1 and (B-13-8)21dcd-1, which were drilled in this trough between the Hansel Mountains and the line of bedrock outcrops south of the Showell Hills, were both finished in what was reported to be "layered rock"; and the consolidated rock yielded water in both wells.

Water in this flow system is unconfined in the northern part of the Holbrook arm in Idaho. Near the Utah-Idaho boundary, however, leaky artesian conditions are common; and south of T. 13 N. in Utah, extensive basalt layers serve as confining beds in the southern part of the flow system.

Recharge to the Holbrook-Snowville flow system comes primarily from precipitation on the east side of the Sublett Range, the southeast end of the Deep Creek Mountains, the west side of the Blue Springs Hills, and the west side of the North Promontory Mountains, which together bound the Holbrook arm in Idaho. Recharge in Idaho was estimated using the method described by Hood and Waddell (1968, p. 22-23) as about 44,000 acre-feet (54.3 hm^3) per year. Some additional recharge, estimated as about 2,000 acre-feet (2.5 hm^3) per year, enters the system from precipitation on the Hansel Mountains in Utah. The calculations are shown in the following tabulation:

		Estima	ited annual	Estimated annua	
Precipitation	Area	prec	ipitation	Percent of	Acre-feet
(inches)	(acres)	Feet	Acre-feet	precipitation	(rounded)
Utah	10 700	1 0	10,000	12	1 5/0
12-16	10,700	1.2	12,800	Subtotal (rounded)	$\frac{1,540}{2,000}$
Idaho					
More than 25	2,200	2.1	4,600	28	1,300
20-25	32,300	1.9	61,400	23	14,100
16-20	70,200	1.5	105,300	16	16,800
12-16	72,000	1.2	86,400	14	12,100
				Subtotal (rounded)	44,000
				Total (rounded)	46,000

The average discharge of Deep Creek below Holbrook Springs, most of which comes from the springs, is about 30 ft³/s (0.8 m³/s) or about 22,000 acre-feet (27.1 hm³) per year (see section on Deep Creek). The average discharge of Deep Creek near the Utah-Idaho boundary is about 8.5 ft³/s (0.24 m³/s) or 6,000 acre-feet (7.4 hm³) per year. An esti- (3.7 hm^3) mated 3,000 acre-feet per year is consumed by evapotranspiration from Curlew Valley Reservoir and the marshy areas along Deep Creek. The remaining water, about 13,000 acre-feet (16.0 hm³) per year, is diverted to irrigation canals. About one-half of the water diverted to canals is used in Utah (Chapman and Young, 1972, p. 23), and the remainder is used in Idaho. Thus, the disposition of the water discharged at Holbrook Springs is summarized as follows:

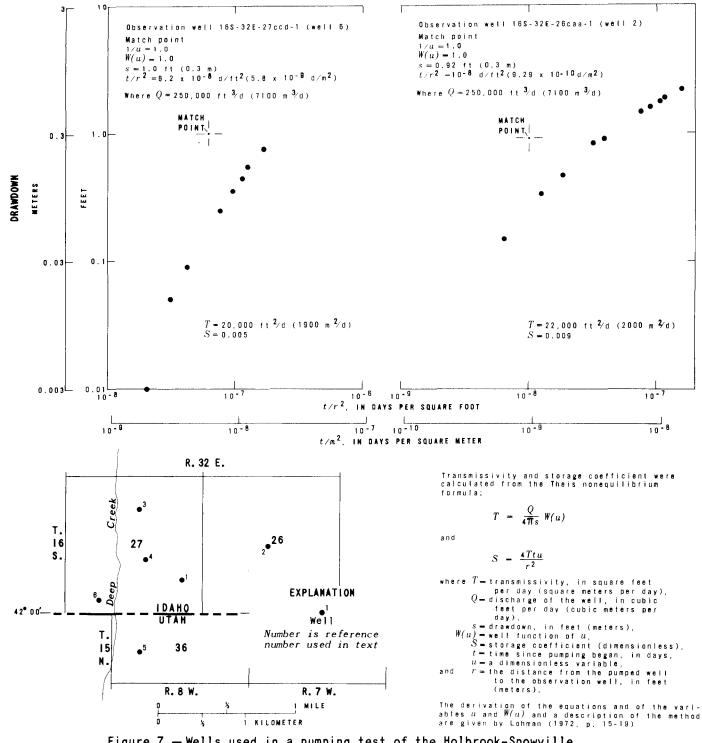
Disposition	Acre-ft/yr	(hm ³ /yr)
Evapotranspiration Flow to Utah in Deep Creek	3,000 6,000	(3.7) (7.4)
Diverted for irrigation	13,000	(16.0)
Total	22,000	(27.1)

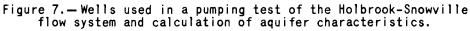
Water diverted for irrigation in Idaho is delivered to users in unlined canals and ditches and applied to fields by flooding and furrow methods. It is estimated that less than half the water diverted is consumed by crops, and that about 4,000 acre-feet (4.9 hm^3) per year infiltrates to the ground-water reservoir. An average amount of 12,000

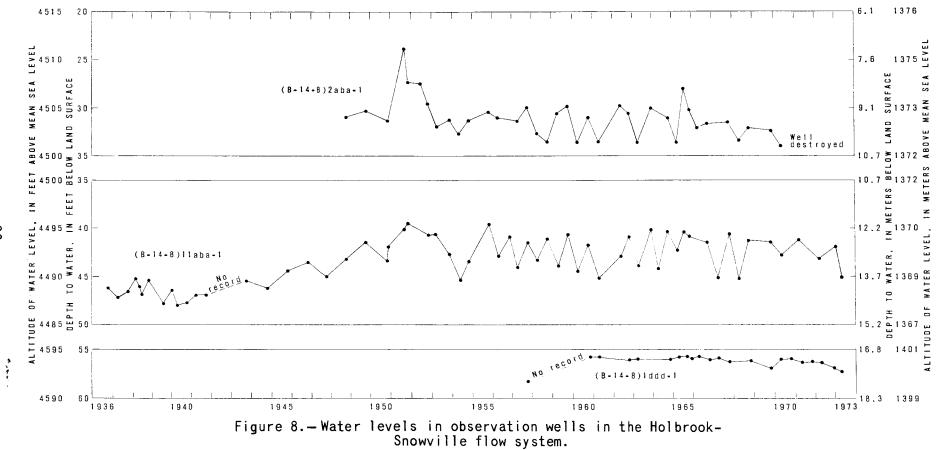
acre-feet (14.8 hm³) per year was pumped for irrigation in the Holbrook arm during 1969-71. Chapman and Young (1972, p. 48), from crop-water requirements and irrigated-acreage data, estimate the consumptive use of ground water as 6,000 acre-feet (7.4 hm³) per year.

From the foregoing, the ground-water budget for the Holbrook arm can be summarized as follows:

	Acre-ft/yr	(hm³/yr)
Recharge in the mountains	44,000	(54.3)
Discharge at Holbrook Springs	-22,000	(-27.1)
Pumpage for irrigation	-12,000	(-14.8)
Return flow from surface water diverted for irrigation	4,000	(4.9)
Return flow from ground water diverted for irrigation	6,000	(7.4)
Net (subsurface inflow to Utah)	20,000	(24.7)


The figure of 20,000 acre-feet (24.7 hm^3) per year for subsurface inflow to Utah is in reasonably good agreement with the 18,000 acre-feet (22.2 hm^3) per year estimated by Chapman and Young (1972, p. 46).


An aquifer test a few miles north of Snowville was conducted by personnel of the Idaho Department of Water Administration in November 1970. This writer was present at the test and assisted in the data collection, and the interpretation of the test data shown in figure 7 is that of this writer.


Well 1 was pumped for about 48 hours at an average rate of 2.9 ft³/s (0.09 m³/s), and water levels were measured in six wells. After the pump was turned off, water levels in all wells were measured for an additional 26 hours. Wells 3, 4, and 5 are domestic wells that were pumped intermittently during the test, and data from these wells were too erratic to be useful. Values for T and S were obtained from the data from wells 2 and 6 by matching drawdown data from the wells to the nonequilibrium-type curve, using the method described by Lohman (1972, p. 15-19). (See fig. 7.) Although the number of measurements at each well was small, the fit of the data to the type curve is reasonable; and the computed values of T and S are in good agreement.

The specific capacity of well (B-14-8)llbca-1, about 4 miles (6.4 km) south of the area of the pumping test, was 80 gallons per minute per foot (17 1/s/m) of drawdown, corresponding to a value of T of about 19,000 ft²/d (1,770 m²/d).

Withdrawals of ground water from the Holbrook-Snowville flow system in Utah are small. A few wells north of the middle of T. 14 N. produce about 1,000 acre-feet (1.2 hm³) per year for irrigation and for public supply at Snowville. Water levels in the flow system in Utah have remained fairly constant (fig. 8).

The water diverted from Deep Creek for irrigation in Utah is distributed in unlined canals and ditches. Infiltration losses of this water are estimated as about one-half the diversion, or 3,000 acre-feet (3.7 hm^3) per year. This net addition of about 2,000 acre-feet (2.5 hm³) per year, together with the 2,000 acre-feet (2.5 hm³) per year added from precipitation on the Hansel Mountains, gives a total of about 24,000 acre-feet (29.6 hm³) per year that flows southward toward Locomotive Springs. Of this, about 1,000 acre-feet (1.2 hm³) is discharged by evapotranspiration near the springs, as shown in the following tabulation:

Source	Estimated depth to water (feet)	Estimated areal density of growth (percent)	Rate of evapotranspiration (acre-fect per acre per year)	Area (acres)	Discharge (acre-feet, rounded)
Greasewood	10-40	20-40	0.101	7,400	700
Saltfiats (some greasewood, saltgrass, and pickleweed)	0- 5	0- 5	.102	4,600	500
			Total (rounded)	1,000

¹Taken from Robinson (1958, p. 62 and 69). "Taken from Feth, Barker, Moore, Brown, and Veirs (1966, p. 68-70).

Most ground water sampled from sources north of T. 14 S. in the Holbrook-Snowville flow system in Idaho contains less than 600 mg/l of dissolved solids (pl. 4), and calcium and bicarbonate are the dominant ions. The concentration of dissolved solids increases downvalley, and several samples obtained in T. 16 S. in Idaho contain more than 1,000 mg/l. This gradual downvalley increase is probably due partly to solution of soluble minerals from the aquifers and partly to the addition of dissolved minerals in irrigation return flows. The markedly higher concentration of dissolved solids near the west side of the valley in T. 16 S. (more than 2,700 mg/l in well 16S-32E-16bcb-1) indicates the addition of more saline water to the flow system in this area from the Showell Hills. This is discussed earlier in the section on the Juniper-Black Pine flow system.

The water samples collected from the Holbrook-Snowville flow system in Utah indicate a gradual southward increase of dissolved solids. The value of 10,000 mg/l of dissolved solids obtained for a sample from well (B-13-9)35bbd-1, however, may represent a perched water zone. No other sample from the system approaches this concentration.

There are few long-term records of the chemical quality of water from this flow system. Comparison of analyses of samples collected in Idaho during 1969-72 with analyses of samples from the same area collected in 1931 and 1947 show no significant changes (see table 3). With increased use of ground water for irrigation, some future deterioration in chemical quality of the shallow ground water is possible, because a large part of the water diverted for irrigation is not consumed but is returned to the aquifer with an increased load of dissolved solids. Further development of water from this flow system is possible, but the effects may be far reaching. A substantial decline in water levels would ultimately be reflected in decreased discharge at Locomotive Springs. Moreover, because the water table in the southern part of the Holbrook arm is flat, substantial water-level declines might form a closed depression in the water table that would permit the accumulation of soluble salts in the developed area; and the chemical quality of the pumped water then would deteriorate.

Coyote Spring flow system

Coyote Spring, (B-14-10)33bcc-S1, is a moderately saline thermal spring. The water contains 3,240 mg/l of dissolved solids, of which half, 1,620 mg/l, is chloride; the temperature of the water is 43.5°C (110°F). Although no other source in Curlew Valley produces thermal water, two wells in the Kelton area reportedly encountered hot saline water at depth. (See section on the Kelton flow system.) These data suggest that a flow system containing hot saline water may underlie at least part of the western half of Curlew Valley.

No data are available regarding either the recharge or the discharge area of the Coyote Spring flow system other than Coyote Spring itself. The flow system presently is of little economic importance as a source of water because nearly everywhere that it has been found, it is overlain by better quality water at shallower depths. The high temperatures of water in the system presumably indicate the presence in the subsurface of a relatively young intrusive body that is still hot, or relatively deep circulation of the water. No studies have been made of the geothermal gradient in Curlew Valley and adjacent areas; but it is possible that in these areas, which have been subjected to igneous activity in late Tertiary and Quaternary time, the geothermal gradient might be abnormally high.

Ground water in the older rocks surrounding

Curlew Valley

The rocks of Paleozoic and Precambrian age that form the mountains around Curlew Valley are, for the most part, well indurated; and their primary permeability is low. Well-developed fracture systems are present in most of these rocks, however, and the carbonate rocks of Paleozoic age locally contain numerous solution openings. Consequently, the secondary permeability is high in many places.

The Raft River Mountains on the west side of Curlew Valley consist of a central core of crystalline rocks of Precambrian age surrounded by sedimentary rocks of Paleozoic age (pl. 2). The older crystalline rocks probably are not a very productive aquifer, but they have some secondary permeability, and some of the precipitation that falls on them enters the subsurface as ground-water recharge. The secondary permeability of the Paleozoic rocks locally is high. Springs are abundant throughout the east end of the Raft River Mountains (pl. 1). Most of them are small--the discharge of only a few exceeds 20 gal/min (gallons per minute) $(1.3 \ 1/s)$ --but they are adequate for watering of livestock. No wells have been drilled in the area. The concentration of dissolved solids in six samples of water from the springs is less than 500 mg/l (pl. 4).

Ground-water discharge from the consolidated rocks of the Raft River Mountains, aside from the small amount discharged by springs, is in the form of subsurface flow to the valley fill.

The Black Pine Mountains, which bound the Juniper-Black Pine area on the west, consist largely of carbonate rocks of Paleozoic age. These rocks are well fractured and the secondary permeability is high, as evinced by the virtual absence of runoff from this mountain range, although on the average it receives a maximum of more than 35 inches (890 mm) of precipitation per year. Small springs in the Black Pine Mountains supply water for livestock, but springs are less numerous there than in the Raft River Mountains. No wells are known to penetrate the rocks in the mountain area, but a few wells in the adjacent valley floor, such as well 14S-30E-32cdd-1, derive part of their water from carbonate rocks. Most of the ground water discharged from the consolidated rocks in the Black Pine Mountains enters the valley fill by subsurface flow and is a major source of recharge to the aquifers in the fill.

The rocks of the Sublett Range, which separates the Juniper-Black Pine area from the Holbrook arm, are generally similar to those of the Black Pine Mountains. Springs are not abundant in the Sublett Range, and most of the water that enters the ground in these mountains flows into the valley fill as subsurface recharge.

A major area of discharge from the consolidated rocks east of the Sublett Range is Holbrook Springs. Although this large spring group appears in the channel of Deep Creek, the temperature and the quality of the water suggest that the source of the springs is water from the consolidated rocks rather than from the valley fill. The temperature of water from the springs is 8-10°C warmer than that of water from the valley fill, and the concentration of dissolved solids is lower (pl. 4 and table 6).

Basalt crops out less than 3 miles (5 km) northwest of Holbrook Springs, and interpretation of data from the gravity survey (pl. 2) indicates that consolidated rocks are present at relatively shallow depth in the vicinity of the springs. The relatively high temperature (20°C) of the water and the relatively low concentration of dissolved solids (411 mg/1), together with the geophysical data, suggest that Holbrook Springs may discharge from basalt underlying the valley fill at shallow depth.

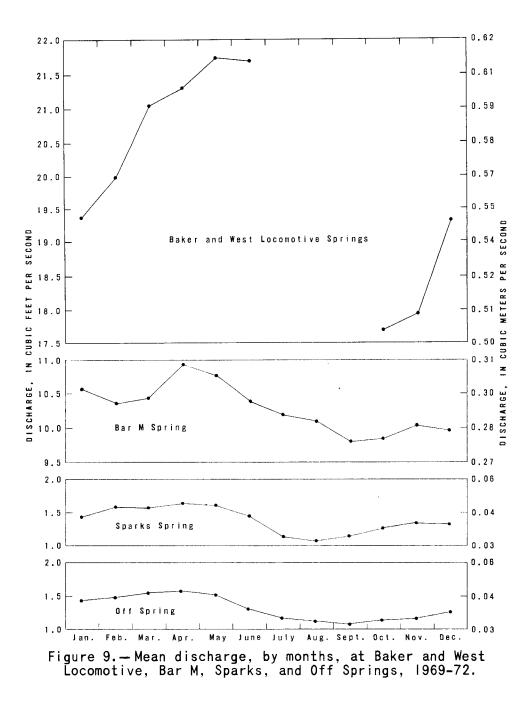
The predominant ions in water discharged from the rocks of the Sublett Range at Twin Springs are calcium and bicarbonate, and the concentration of dissolved solids is 470 mg/l (pl. 4). Water that enters the Juniper-Black Pine and Holbrook-Snowville flow systems from the

35

Showell Hills, a southward extension of the Sublett Range, is slightly saline (see section on the Juniper-Black Pine flow system).

The Hansel, North Promontory, and Deep Creek Mountains and the Blue Springs Hills, which border Curlew Valley on the north and east, consist of sedimentary rocks of Paleozoic age. Carbonate rocks are the predominant type, and secondary permeability in most places is high. Most of these mountain blocks receive an average of less than 20 inches (500 mm) of precipitation a year; but surface runoff is slight, and most of the precipitation that is not consumed by evapotranspiration becomes ground water.

A few springs in the Deep Creek and North Promontory Mountains and the Blue Springs Hills discharge small quantities of water that are low in dissolved solids; the most concentrated sample, from Ireland Springs, contains 439 mg/1. The principal discharge from these mountain blocks, however, is in the form of subsurface discharge into the valley fill.


The Hansel Mountains, unlike the other mountain ranges that surround Curlew Valley, are not a continuous mass of bedrock outcrops. Moreover, the crest of the range appears on the gravity map (pl. 2) as a gravity trough--that is, an area of lower than average density. On the basis of the geophysical evidence, the rocks of the Hansel Mountains are included with the adjacent valley fill as part of the Holbrook-Snowville flow system.

Locomotive Springs

Locomotive Springs is the source of water to a large tract of marshy land in the southern part of Curlew Valley near the shore of Great Salt Lake (pls. 1 and 5). Six principal springs--West Locomotive, Baker, Bar M, Teal, Off, and Sparks--form small natural ponds near the northern edge of the marshy area. Most of the overflow from these ponds moves through sluggish, winding channels to two artificial impoundments called East Lake and West Lake. The ponds and lakes and much of the surrounding marsh comprise the Locomotive Springs State Waterfowl Management Area. Most of the water discharged by the springs is consumed by evapotranspiration, and only about 2,000 acre-feet (2.5 hm³) per year (less than 10 percent of the total discharge) flows into Great Salt Lake.

Discharge

Because of extremely low gradients and the abundance of mud and vegetation in the overflow channels, measurement of the total discharge of Locomotive Springs has always been difficult. Measurements and estimates by personnel of the Utah Department of Fish and Game (now the Division of Wildlife Resources) and officials of Box Elder County in March and July 1939 gave a total discharge of about 40 ft³/s (1.13 m³/s).

difference in concentration between the most dilute water (Baker Spring) and the most concentrated (Teal Spring). Moreover, the ion ratios suggest that the Great Salt Lake or its surrounding saline sediments are the source of the salts in the spring water (B. F. Jones, written commun., 1971). It is possible, however, that the source of the salts may be a small amount of saline water from greater depths, such as is found in the Coyote Spring flow system or such as discharges in springs at Monument Point (Hood, 1971, pl. 1).

					Milligrams p	er liter					
Location	Name	Calcium (Ca) (mean)	Magnesium (Mg) (mean)	Sodium (Na) (mean)	Bicarbonate ¹ (HCO ₃) (mean)	Sulfate (SO ₄) (mean)	Chloride (Cl) (mean)	Dise Maxi- mum	Mini- mum	lids Mean	Number of samples
(B-11-9)5cca-S1	Sparks	103	70	1,140 ²	222	151	1,960	3,840	3,330	3,630	10
6cdc-S1	Off	107	72	990	217	147	1,740	3,320	3,170	3,230	6
(B-11-10)ladc-S1	Bar M	122	63	917 ³	213	130	1,640	3,650	2,800	3,050	12
12aac-S1	Teal	102	71	1,220	202	154	2,090	4,160	3,520	3,820	6
(B-12-10)36cab-S1	West Locomotive	104	52	747	204	93	1,360	2,920	2,140	2,550	10
36dcc-S1	Baker	119	60	518	221	88	1,020	2,450	1,820	1,970	11

Table 3 .-- Selected chemical-quality data for dissolved constituents from Locomotive Springs, 1959-72

Not field filtered.

³Only ill analyses include separate determination for sodium.

Source of water to the springs

Prior to the beginning of withdrawal of water through wells in Curlew Valley, the ground water moving down the entire valley was discharged in the southern part of the valley at Locomotive Springs and in the lowlands near and west of the springs by evapotranspiration. By 1972, however, the available data indicate that the discharge from the springs consisted almost completely of water moving through the Holbrook-Snowville flow system.

Some of the ground water that moves downgradient through Curlew Valley may discharge directly to Great Salt Lake as diffuse seepage beneath the lake surface. The volume of such seepage was not determined in this investigation, but it is assumed to be negligible. The fine-grained lakebed sediments that form most of the valley fill in the lower end of Curlew Valley are of low permeability, and they impede the movement of ground water toward the lake. The water is forced upward toward the land surface and discharges north of the lake at the springs or by evapotranspiration.

As discussed previously in this report, recharge to the Kelton and Juniper-Black Pine flow systems averages about 30,000 acre-feet (37.0 hm³) per year. Withdrawals from wells in the two systems for the period 1970-72 averaged about 18,000 acre-feet (22.2 hm³) per year, and discharge by evapotranspiration from the two systems in the southern part of Curlew Valley near the springs was about 12,000 acre-feet (14.8 hm³) per year. The close agreement of the totals for recharge and

discharge suggests that during 1970-72 little, if any, of the water moving through the Kelton and Juniper-Black Pine flow systems discharged at Locomotive Springs.

The calculations in the earlier section of this report for the Holbrook-Snowville flow system indicate that about 24,000 acre-feet (29.6 hm^3) of water per year moves southward to discharge at or near Locomotive Springs. Of this, about 1,000 acre-feet (1.2 hm³) is discharged by evapotranspiration in the southern part of the valley. (28.4 hm³) from acre-feet 23,000 Thus approximately Holbrook-Snowville flow system was available annually during 1969-72 for discharge at Locomotive Springs. By comparison, calculated the discharge of the springs averaged about 24,000 acre-feet (29.6 hm³) annually during 1969-72. The difference is well within the order of accuracy of the methods used to calculate the figures.

After discharging from the springs, some of the water is consumed directly by evapotranspiration from open-water bodies and areas of phreatophytes, some is diverted for irrigation of grass, and the remainder moves overland to Great Salt Lake. Computations of the amounts discharged by evapotranspiration are shown in the following tabulation:

Source	Estimated depth to water (feet)	Estimated areal density of growth (percent)	Rate of evapotranspiration (acre-feet per acre per vear)	Area (acres)	Discharge (acre-feet, rounded)
Pickleweed and greasewood	0-10	10-20	0.451	3,300	1,500
Open-water surfaces (some hydrophytes)	-	-	3.50	3,500	12,200
Saltgrass and other marsh grasses	0- 5	90-100	3,003	2,600	7,800
			Total (r	ounded)	22,000

¹Taken from Mower and Nace (1957, p. 21). ⁴Taken from Kohler, Nordenson, and Baker (1959, pl. 2). ³Taken from Feth, Barker, Moore, Brown, and Veirs (1966, p. 68-70).

Effects of ground-water development on Locomotive Springs

Little, if any, of the water moving through the Kelton and Juniper-Black Pine flow systems during 1970-72 discharged at Locomotive Springs. Continued withdrawal of ground water in Curlew Valley west of Showell Hills, therefore, is unlikely to have any effect on the springs. It is possible, however, that should the cone of influence of the wells west of Snowville expand greatly, some water that would otherwise reach the springs from the Holbrook-Snowville flow system might be diverted.

A decline of water levels in the Holbrook-Snowville flow system will ultimately result in a reduction of discharge at Locomotive The magnitude of the effects at the springs and the time Springs. before the effects will be discernible cannot be assessed with the data presently available.

Comparison of the available measurements of the discharge at Locomotive Springs suggest that the discharge during 1969-72 was less than that measured in 1939 and 1967. This apparent decrease in spring discharge paralleled a period when withdrawals from wells were substantially increasing in Curlew Valley. The records are incomplete and short, however, and the collection of records of discharge at the springs and withdrawals for irrigation in the valley should be continued in order to define further the relation between the two.

SUMMARY

The surface-water supply of the Curlew Valley drainage basin is small and is wholly appropriated. Much of the present economy of the area and any potential for further development is dependent on ground water.

The drainage basin is a complex of structural ridges and basins. Divertable ground-water supplies in the mountainous regions are small but adequate for the needs of grazing livestock. Within the valley, ground water in sufficient quantities for irrigation is available from three flow systems.

Along the west side of the valley, the Kelton flow system furnishes water for irrigation of about 1,500 acres (610 hm^2) north of the old townsite of Kelton. Water levels in the area of pumping have declined as much as 25 feet (7.6 m) since pumping began in 1953, and the concentration of dissolved solids in the water is increasing. Although water levels appear to have stabilized during 1967-73, increased development would probably result in further lowering of water levels and accelerated increase in the concentration of dissolved solids.

In the central part of the valley, about 2,900 acres $(1,175 \text{ hm}^2)$ of land are irrigated with ground water from the Juniper-Black Pine flow system. Water levels in the area of pumping have declined as much as 10 feet (3 m) since pumping began in 1956 but have changed little since 1969. No change in water quality has been observed in most of the flow system, but the concentration of dissolved solids has increased in the water from well (B-15-9)28cbb-1 near the Showell Hills. Development of additional water supplies from this flow system is possible, but such development will result in further lowering of water levels. If the lowering of water levels is great enough, it might result in a diversion of water from the Holbrook-Snowville flow system that might otherwise reach Locomotive Springs.

Along the east side of the valley, ground-water development from the Holbrook-Snowville flow system was small until recent years. During 1969-71 an average of about 12,000 acre-feet (14.8 hm³) of water per year was pumped for irrigation in the Holbrook arm, but only about half the water that is pumped is consumed. No widespread declines in water levels or changes in water quality have been observed in this area. If further development results in a substantial decline of water levels, however, this would ultimately be reflected in a decrease of the discharge of Locomotive Springs. Most of the recharge areas in the drainage basin are in Idaho, but most of the natural discharge areas are in Utah. In 1972, about 47,000 acre-feet (58.0 hm³) of water crossed the Idaho-Utah boundary in the subsurface--about 5,000 acre-feet (6.2 hm^3) in the Kelton flow system, about 22,000 acre-feet (27.1 hm^3) in the Juniper-Black Pine flow system, and 20,000 acre-feet (24.8 hm^3) in the Holbrook-Snowville flow system. The recharge in Utah was about 3,000 acre-feet (3.7 hm^3) from the Raft River Mountains and about 2,000 acre-feet (2.5 hm^3) from the Hansel Mountains.

About 12,000 acre-feet (14.8 hm^3) of water is discharged in Utah from the Juniper-Black Pine and Kelton flow systems by evapotranspiration annually, and the average annual pumpage from these flow systems during 1970-72 was about 18,000 acre-feet (22.2 hm³). Discharge from the Holbrook-Snowville flow system in Utah is about 25,000 acre-feet (30.8 hm³) per year.

Locomotive Springs, in the southern part of the valley, had an average annual discharge of about 24,000 acre-feet (29.6 hm³) of water during 1969-72. The discharge from the springs consisted almost completely of water moving through the Holbrook-Snowville flow system. Discharge records at the springs are too short to allow determination of the long-term average discharge, however, and collection of records of discharge at the springs and withdrawals for irrigation in the valley should be continued in order to clarify further the relation between the two.

REFERENCES

- Bolke, E. L., and Price, Don, 1969, Hydrologic reconnaissance of Curlew Valley, Utah and Idaho: Utah Dept. Nat. Resources Tech. Pub. 25.
- Carpenter, Everett, 1913, Ground water in Box Elder and Tooele Counties, Utah: U.S. Geol. Survey Water-Supply Paper 333.
- Chapman, S. L., and Young, N. C., 1972, Water resources of western Oneida and southern Power Counties, Idaho: Idaho Dept. Water Adm. Water Inf. Bull. 25.
- Cook, K. L., Halverson, M. O., Stepp, J. C., and Berg, J. W., Jr., 1964, Regional gravity survey of the northern Great Salt Lake Desert and adjacent areas in Utah, Nevada, and Idaho: Geol. Soc. America Bull., v. 75, no. 8, p. 715-740.
- Felix, C. E., 1956, Geology of the eastern part of the Raft River Range, Box Elder County, Utah, in Geology of parts of northwestern Utah: Utah Geol. Soc. Guidebook to the Geology of Utah No. 11, p. 76-97.
- Feth, J. H., Barker, D. A., Moore, L. G., Brown, R. J., and Viers, C. E., 1966, Lake Bonneville: Geology and hydrology of the Weber Delta district, including Ogden, Utah: U.S. Geol. Survey Prof. Paper 518.
- Hood, J. W., 1971, Hydrologic reconnaissance of Hansel Valley and northern Rozel Flat, Box Elder County, Utah: Utah Dept. Nat. Resources Tech Pub. 33.
- Hood, J. W., and Waddell, K. M., 1968, Hydrologic reconnaissance of Skull Valley, Tooele County, Utah: Utah Dept. Nat. Resources Tech. Pub. 18.
- Howes, R. C., 1972, Geology of the Wildcat Hills, Utah: Utah State Univ. unpub. M.S. thesis, Logan, Utah.
- Kohler, M. A., Nordenson, T. J., and Baker, D. R., 1959, Evaporation maps of the United States: U.S. Weather Bur. Tech. Paper 37.
- Lohman, S. W., 1972, Ground-water hydraulics: U.S. Geol. Survey Prof. Paper 708.
- Moore, D. O., 1968, Estimating mean runoff in ungaged semiarid areas: Nevada Dept. Conserv. and Nat. Resources Water Resources Bull. 36.
- Mower, R. W., and Nace, R. L., 1957, Water consumption by water-loving plants in the Malad Valley, Oneida County, Idaho: U.S. Geol. Survey Water-Supply Paper 1412.
- Nace, R. L., 1952, Records of wells and springs in western Oneida County, Idaho: U.S. Geol. Survey open-file release.
- Peace, F. S., 1956, History of exploration for oil and gas in Box Elder County, Utah, and vicinity, *in* Geology of parts of northwestern Utah: Utah Geol. Soc. Guidebook to the Geology of Utah No. 11, p. 17-31.

- Peterson, D. L., 1973, Bouguer gravity map of parts of Cassia and Oneida Counties, Idaho, and Box Elder, Davis, and Weber Counties, Utah: U.S. Geol. Survey open-file release, scale 1:125,000.
- Robinove, C. J., Langford, R. H., and Brookhart, J. W., 1958, Saline-water resources of North Dakota: U.S. Geol. Survey Water-Supply Paper 1428.
- Robinson, T. W., 1958, Phreatophytes: U.S. Geol. Survey Water-Supply Paper 1423.
- Ross, C. P., and Forrester, J. D., 1947, Geologic map of the State of Idaho: U.S. Geol. Survey and Idaho Bur. Mines and Geol.
- Stokes, W. L., ed., 1964, Geologic map of Utah: Utah Univ.
- Theis, C. V., Brown, R. H., and Meyer, R. R., 1963, Estimating the transmissibility of aquifers from the specific capacity of wells, *in* Methods of determining permeability, transmissibility, and drawdown: U.S. Geol. Survey Water-Supply Paper 1536-I, p. 331-341.
- Thompson, D. G., and Faris, R. W., 1932, Preliminary report on water resources of Malad and Curlew Valleys, Oneida County, Idaho: U.S. Geol. Survey open-file rept.
- U.S. Department of Commerce, Bureau of Census, 1971a, 1970 census of population, number of inhabitants, Idaho: Final Report PC(1)A14.
- _____1971b, 1970 census of population, number of inhabitants, Utah: Final Report PC(1)A46.
- U.S. Weather Bureau [1963], Normal annual precipitation (1931-60) for the State of Utah: Map of Utah, scale 1:500,000.
- _____1965, Mean annual precipitation, 1930-57, State of Idaho: Map of Idaho, scale 1:1,700,000.
- Walker, E. H., Dutcher, L. C., Decker, S. O., and Dyer, K. L., 1970, The Raft River basin, Idaho-Utah, as of 1966: A reappraisal of the water resources and effects of ground-water development: U.S. Geol. Survey open-file rept.

BASIC DATA

45

Table 4 .-- Records of wells

Location: See text for description of well-numbering system. Casing: Depth - Depth to first opening or perforation in casing. Altitude: Altitude of land surface. Underscored altitudes were determined by instruments and are accurate to tl foot, other altitudes are interpolated from topographic maps and are accurate to tl0 feet. Use of water: H, domestic; I, irrigation; P, public supply; S, livestock; U, unused. Production: Yield and drawdown data are from driller's log or pump installer's test; M, in column for drawdown indicates no data available but yield was measured during 1970-72. Other data available: C, chemical analysis given in table 6; D, driller's report available from Utah Division of Water Rights; L, driller's log in table 7; W, water-level records in table 8.

		1	Altitude	1	1			Water level		Prod	uction		
Location	Owner or name	Year con-	(feet above mean sea	Depth of well	Depth	biameter	Use of water	Above(+) or below land-surface datum	Date of measure-	Yield (gal/	Draw- down	Temper- ature	Other data available
		structed	level)	(feet)	(feet)	(inches)	L	(feet)	ment	min)	(feet)	(°C)	L
		r	1	·	Box Eld	er County,	Utah			1	r		<u> </u>
(B-12-9) 5bcb-1 10ddc-1 28add-1	E. Peterson - Holmgren Land and Live-	1971 -	4,415 <u>4,361</u>	250 161	31	10 -	s U	190 145	5-71 6-72	38	0	-	1.
30cda-1 (8-12-10)	stock Co. Test hole 3	1972	$\frac{4,311}{4,239}$	162	131	2 8	S 11	26 24	10-67 8-72	- 1	-	15.0 15.5	C, L
19bcb-1 20adc-1 21daa-1	Auger hole 2 Auger hole 3 Auger hole 4	1972 1972 1972	4,220 4,220 4,225	64 64 64	0 0 0	-	ม ม ย	3 3 5	4-72 4-72 4-72		-	-	C, L C, L C, L
(B-12-11) 4bcc-1 5abb-1	A. Fehlman and others do	1969	4,304	230	80	20 -	1 I	89 127	1-69 11-70	693 250	100 M	-	С, L С
566 a-1 5666-1	do do	1953	4,355	(<u>1</u> /) 240	-	- 16	I I	150 135	11-70 11-53	1,610 940	M M	16.0 14.5	С с, W
5bdc-1 5bdc-2	do A. Fehlman	1968	$\frac{4,340}{4,340}$	<u>2</u> /190 150	125	20 8	Т Н	125 120	11-68	1,350	35	14.0	C, L C
5dcd-1 6 aa b-1	do H. Kunzler and others	1968	4,300	100 .330	160	8 16	H I	70 170	3-72 7-68	-	-	-	C C, L
6abb-1 7abb-1	do J. H. Holmgren	1955 1955	$\frac{4,410}{4,320}$	278	200	16 16	I U	185 105	10-55 10-55	125	65 M	14.0	C, L L
8abb-1 8baa-1	Jerry Morgan do	1963	$\frac{4,303}{4,303}$	275 320	90	16 16	I	92 89	3-63 11-70	700	86	13.5	C, L C
8bbb-1 8cda-1	do do	1954 1936	4,326 4,280	350 <u>3</u> /195	100 180	16 -	I S	95 60	9-54 10-36	150	70	-	C, L C, L
16cdc-1	U.S. Bureau of Land Management	1935	4,233	126	126	.8	U	9	10-55	30	м	-	L, W
21cdc-1 21ddd-1	Lucille R. Jones Auger hole l	1890 1972	4,223 4,220	60 64	60 0	2	s U	+1 3	10-35 4-72	-	- -	-	C, L
(B-12-12) 13ddd-1 (B-13-8)	E. R. Morris	1951	4,300	83	83	6	S	75	12-51	-	-	-	D
10dcc-1 21dcd-1 (B-13-9)	E. Deakin Norman Grover	1972 1971	4,685 4,605	408 362	368 228	6 6	S S	345 320	1-72 12-71		-	15.5	C, D, L D, L
ladc-1 lbdc-1	Jay Hulet do	1967 1969	4,555 4,545	420 340	207 32	20 20	I	343 328	10-67 4-69	1,500 - 550	25 - 102	- - 19.5	
35bbd-1 (B-13-10) 11dcd-1	Don Rigby Test hole 1	1968 1972	4,502 4,335	428	10 10	20 8	s u	- 119	2~68 6-72	-	-	15.5	с, г с, г
25ddd-1 34ddc-1 (B-13-11)	D. Petersen Test hole 2	1971 1972	4,305	251 95	25 8	10 8	s U	180 86	5-71 6-72	-	-	19.5	D C, L
10cdc-1 (B-13-12)	Test hole 4	1972	<u>4,480</u>	283	168 179	8	U	250 119	8-72 10-53	-	-	17.0	С, L D
14ccc-1 (B-14-7)	R. H. Morris	1953	5,160	179	1/5	6	S	-	10-55	_	_		
2bab-1 5aca-1 7aaa-1 (B-14-8)	David G. Nelson Town of Snowville Bert Eliason	1966 1967 1969	5,250 4,730 4,705	398 250 100	50 50	6 8 11	U P H	50 50	9-67 2-69	-	-	15.5	L L L
lcbb-1 lccc-1	Joseph Larkin C. F. Neal	1968 1964	4,540 4,570	140 137	80 137	8 12	H I	80 120	1-69 10-64	- 75	- M	10.5	D C, D
1ddd-1 2 aba- 1	A. P. Larkin Thomas F. Larkin	1910	4,650 4,535	48		10 4	ม เ	58 31	10-57 10-48	-	-	-	พ ผ
2aba-2 2daa-1	do T. Cockran	1969 1960	4,535 4,540	247 240	215 45	8 16	H T	40 48	1-69 7-60	-	-	-	LLL
3dcb-1 5dcc-1	Wallace Hurd Charles Taylor Description	1965 1965	4,575 4,501 4,495	63 400 295	52 0 250	6 20 6	S I S	40 176 195	11-65 10-65 12-71	12 2,050	0 47	17.5	
6aca-1 6acd-1	Potomac Corp. do	1971 1968 1936	4,495 4,490 4,535	295 460 64	250 170 64	18 4	S I S	195 170 46	5-68 10-36	2,000	1	10.0	L C, W
llaba-1 llabb-1 llabc-1	B, S, Cutler Carl Cobía do	1936	4,535 4,525 4,530	100 92	80	4 6 6	I H	40 39 50	10-50 10-67 9-71	- 20	- 12	-	с, ж с р
11bca-1 11dcc-1	W. M. Rigby do	1966 1971	4,526	416 200	131 135	16 10	I. H	56 130	12-66 8-71	4,000	45 -	12.5	C, L D
12cbd-1 20baa-1	H. L. Sorenson K. H. Cornwall	1971 1959	4,635 4,558	245 303	180 273	8 16	H I	165 282	6-71 4-59	- 25	- 0	- 10.5	D D
28aba-1 28bbb-1	Don Rigby do	1967	4,558 4,539	- 650	140	4 12	S I	131 276	7-67 8-67	400	- 121	14.0	C, L
32 488-1	Bar B Co.	1949	4,550	330	320	4	S	306	8-49	16	4	-	L
(B-14-9) 1dda-1 1dda-2	Charles Taylor do	1955 1955	$\frac{4,469}{4,465}$	380 312	250 117	16 5	н Н	167 135	7-55	1,000	M 955	11.5	C, L, W L
1dd a- 3 3bbb-1	do do	1956 1964	4,465	255 205	192	8	н U	166 170	7-56 8-64		-	-	C, L L
4bbb-1 4bbb-2	do Ethel Taylor	1968	$\frac{4,413}{4,415}$	350 375	180	4 20	S I	182 187	12-55 3-68	2,000	225	22.0	C L
4ccc-1 5 aaa -1	Gary Hanna Charles Taylor	1964 1962	<u>4,394</u> 4,412	360 275	170 186	18 6	I S	175	8-67 12-62	2,000	M -	20.5	L
5abb-1 5bbb-1	do do	1963 1955	4,416 4,420	405 300	190 250	18 12	L I	210 188	4-63 1-55	2,890 1,520	м М	15.5	L C, L

Table	4Records	of	wells	+	Continued

				Table 4	4 <u>Recor</u>	ds of wells	- Contin					·	
		Year	Altitude (feet above	Depth of	C.	sing	1100 05	Water level Above(+) or below	Date of	Produ Yield	Draw-	Temper-	Other data
Location	Owner or name	con-	mean sea level)	well (feet)	Depth (feet)	Diameter (inches)	Use of water	land-surface datum (feet)	measure- ment	(gal/ min)	down (feet)	ature (°C)	available
······	I			Lucierani		ty, Utah -	i Continued	· · · · · · · · · · · · · · · · · · ·		1	I		•
(B-14-9) 5bcc-1 5ccd-1 5ccd-2 5cdb-1 7bbb-1 10ada-1 11bcb-1 14acd-1 18bdd-1 19bbb-1	Charles Taylor do do Latter-day Saints Church Gary Hanna Rose Ranch do do Mary Nelson Charles Taylor do	1963 1966 1968 1955 1955 1955 1955 1953 1969 1967 1966 1964	$\begin{array}{r} 4,410\\ 4,397\\ 4,397\\ 4,398\\ 4,398\\ 4,395\\ 4,402\\ 4,398\\ 4,410\\ 4,369\\ 4,371\\ 4,365\end{array}$	405 400 320 355 608 4/341 171 245 450 400 350 586	1 194 137 - 207 135 - 351 150 150	18 20 8 4 14 14 6 8 16 20 20 -	I I H H U H I I J U	180 175 - 180 154 150 100 170 197 150 164 155	4-63 4-69 	2,420 - 2,530 1,000 - - 675 - -	12 	16.0 - - - - - - -	L C, I. L C, W L, W W L L L L C. L L
(B-14-10) 1bbb-1 1dca-1 5baa-1 5bba-1 14acd-2	do do David H. Klegg do M. Palmer	1955 1951 1959 1959 1959	4,438 4,405 4,610 4,610 4,392	420 243 276 303 350	185 100 95 105 169	22 5 14 16 22	I H S S I	186 169 82 105 170	11-55 4-55 6-59 6-59 11-69	1,435 - - -	81	15.5 - -	C, L L L L L
14bbc-1 14cbc-1 34bbb-1 (B-14-11) 7cbb-1 10bad-1 13dda-1	do do Wes Bailey - U.S. Bureau of Reclamation -	1957 1970 1969 - 1972 -	4,423 4,408 4,390 5,140 4,840 4,600	840 400 365 - 350 -	246 200 165 - -	21 20 10 - 6 16	T S S S U	181 182 250 147 224 48	7-67 6-70 12-69 10-37 7-72 10-67	900 - - - 6 - -	63 - - - -		L L L
(B-15-7) 29dac-1 30cbc-1 32aca-1 (B-15-8) 25ddd-1 31ccc-1	David Nelson Carl Steed Bert Eliason Edmund Hurd Potomac Corp.	1966 1936 1967 1937 1970	4,800 4,575 4,700 4,560 4,488	175 228 315 100 550	118 	6 4 20 4 22	H H I H I	90 12 20 17 167	10-66 11-36 2-67 2-37 6-70	- - 900 50 2,540	- - 150 M	-	
(B-15-9) 28cbb-1 28dbd-1 29dbc-1 30cbc-1 31abc-1 32aba-1	J. Ellis Lee M. and J. Wright Charles Taylor Ethel Taylor do Bert Ellason	1955 1970 1966 1955 1969 1971	$\begin{array}{r} 4,456 \\ 4,455 \\ 4,455 \\ 4,463 \\ 4,460 \\ 4,445 \end{array}$	400 340 480 230 407 400	220 200 152 220 90	14 18 20 4 20 20	I I S T I	214 215 228 - 215 90	12-55 4-70 3-66 - 9-69 10-71	2,340	M - M - 27 -	24.0 20.0 21.5	C D L D C, D D
35abb-1 35abb-2 36cad-1 (B-15-10)	Rose Ranch do Potomac Corp.	1967 1969 1971	4,484 4,484 4,492	404 220 255	138 108 235	20 8 6	I S S	182 172 195	11-67 4-69 11-71 4-67	2,700 15 - 10	3 0 -	12.5	
33ddd-1 36bbb-1	Ross Rudd Peter Mayo	1967 1956	<u>4,563</u> <u>4,464</u>	355 613	280 175	20	s t	252 165	5-56	2,140	32	10.5	с, L, W
(B-15-11) 26cdd-1 31ddd-1 36ccc-1	David H. Klegg Ida-Ute Cattle Co. E. D. Carbridge	1966 1967 1967	5,050 5,100 4,900	485 410 320	360 295 240	6 8 8	H S S	365 280 248	5-66 10-67 3-67	20 - 10	0 - M	12.5	D D L
••••••	· · · · · · · · · · · · · · · · · · ·	r	T	- +	Oneida	County, Id	aho		r	1	r	,	· · · · · · · · · · · · · · · · · · ·
135-33E 4 zaa-1 4cdb-1 4cdb-2 4dcc-1 16bda-1 16bdc-1	David Bird W. R. King do J. B. Willie George Perry do	1969 1917 1966 1917 1917 1912	5,260 5,200 5,200 5,150 5,100 5,100	105 72 80 90 70 52	70 - 60 - -	10 4 6 4 4 4	H U H H H	38 40 35 46 25 17	6-69 5-47 7-66 9-69 5-47 5-47		-	14.0 11.0 12.0	L C C
20dcb-1 28bbb-1 29acc-2 14S-30E	Arch Neal Ellis Nielson Arnold Hubbard	-	5,000 5,000 5,000	54 38 34 202	20	4 60 6 20	H U H I	- 32 19 115	5-47 9-69 8-66		-	11.0	C L
32cdd-1 14S-32E 2dda-1 9acd-1	George Nelson U.S. Forest Service Chester Eliason	1966 - 1963	5,150 5,200 <u>4,891</u>	150	30	4 12	S I	156	4-70 -	-		:	
9d ab-1 10dcd-1 10ddc-1 15add-1 23aba-1 24ccb-1	do do Don Eliason Ray Zollinger U.S. Forest Service J. N. Ireland Co.	1961 1949 1960	4,890 4,881 4,880 4,853 4,800 4,790	300 37 75 20 80 114	- - 75 20 - 25	12 6 4 9 4 16	T U H U T	20 45 16 24	9-31 1949 9-31 5-47	-	-	10.5 9.5 - 9.0 10.5 10.5	C C C
25acd-2 25bda-1 36aac-1 36aba-1 14S-33E	Wells Willie do Vernal Nalder Darwin Bowen	1943 1966 1960 1965	4,790 4,800 <u>4,784</u> 4,785	100 107 222 86	7 20 17	4 14 18 16	H T I 1	10 8 15 14	- 11-69 4-70 4-70	- 600 - 600	- 52 - 54	11.0 11.0 10.0	C, D C
6aab-1 10aab-1	U.S. Forest Service do	:	5,020 5,190	245 130	-	6	s U	125 57	9-69 5-47	-	-	10.5	с
10ccd-1 16bbb-1 19bad-1 20aad-1 22dcc-1 26cdb-1 27cab-1 30dcd-1	 B. O. Marble do Hunsaker U.S. Forest Service do Nielson Wells Willie 	1947 - - 1912 1957	5,050 4,950 4,955 4,950 4,980 4,986 4,985 4,800	196 200 130 193 232 200 60		4 4 3 4 6 4 6	н U S S U S I	165 157 185 38 178 215 130 17	7-48 5-47 4-70 5-47 4-70 4-70 4-70 9-69	-		10.0 - 14.5 -	C C

Table 4.	Records	of	wells	-Continued
----------	---------	----	-------	------------

	[1	Altitude	I	<u> </u>		Γ -	Water level	l	Produc			
Location	Owner or name	Year con-	(feet above mean sea	Depth of well	C: Depth	Diameter	Use of water	Above(+) or below land-surface datum	Date of measure-	Yield (gal/	Draw- down	Temper- ature	Other data available
		structed	level)	(feet)	(feet)	(inches)		(feet)	menţ	min)	(feet)	(°C)	
				One	ida Count	y, Idaho -	Continued						······
14S-33E 31ab-1 31acc-1 31bc-4 31bd-3	Bill Willie		4,800	70 95 75	- 62 -	4 14 -	U I U U	8 2 -	3-50 4-70 -			13.5 10.5 14.5	C L C C
31ccb-1 32add-1 33cba-1	W. Blaisdell K. M. Smith	1961 - 1954	4,800 <u>4,798</u> 4,805	300 110 325	- - 45	16 18 14	I I I	21 66 67	4-70 - 9-69	1,000	- 80	11.5 12.5	D
L4S-34E 34dca-1 L5S-30E	-	-	5,455	28	-	36	S	5	8-70	-	-	-	
8aaa-1 15bbb-1 35dac-1	Grant Construction Co. Salt Lake Pipeline Co. Idaho Highway Dept.	1968 1951 1967	5,150 4,900 4,700	760 535 505	357 275 373	12 16 10	H I H	240 265 302	12-68 7-51 9-67	50 60	10 6		
155-32E 2dcd-1 9 aaa-1	Moyle Facer U.S. Bureau of Land	-	4,784	232	-	4	S	122	4-70	-	-	-	
11aad-1 12bbc-1 26aac-1	Management J. Smith U.S. Forest Service Chester Tubbs	-	$\frac{5,032}{4,772}$ $\frac{4,773}{4,648}$	248 140 114 66		4 4 6	S S U	211 107 102 45	4-70 4-70	-			
26aac-2 33add-1 33caa-1 33dcd-1 34aaa-1 35cca-1	do Dilmore Canal Co. do J. R. Anderson Dilmore Canal Co. U.S. Forest Service	1969 1968 1961 1969 -	4,648 4,620 4,620 4,592 4,600 4,607	53 400 400 267 600 94		6 20 20 18 22 6	U I I I H	47 54 55 39 51 39	4-70 4-70 4-70 4-70 4-70 4-70	- 3,600 2,700 3,000 2,700 -	147 237 61 167 -	11.5 12.0 12.0	с с с
36 aaa- 1 155-33E	W. M. Hill	1959	4,600	331	96	18	r	82	4-70	187	116	19.0	с
4bbb-1 5add-1 6 6caa-1	C. Sweeten Garth Sweeten W. Blaisdell W. Smith, Jr.	1956 1911	4,790 <u>4,778</u> <u>4,750</u> 4,790	300 72 64 332	- - 57 -	14 4 4 12.	I U S I	43 9 4 13	4 - 70 4 - 70 4 - 70 4 - 70	2,700 - - 750	2 - - 58	11.5	с
6c aa -2 7ccb-1 7ccb-2 8cd a -1 8dcb-1 16bbb-1	Willard Smith Jay Baker do do do Carl Smith	1912 1937 1957 1956 1968	4,790 4,768 4,768 4,780 4,780 4,780 4,850	185 54 198 900 288 43	- 185 	6 4 18 14 6	S H I I S	12 48 36 40 - 35	4-70 4-70 5-47 4-70 - 4-70	1,800	150	13.0	c
16dcc-1 21ccc-1	W. M. Hill do	1917	$\frac{4,889}{4,888}$	135 137	:	4	H S	125 125	9-31 4-70	-	-	-	
16S-32E 2bcd-1 2ccc-1 2ccc-2	Lyle Steed do do	1958 1930 1968	$\frac{4,604}{4,600}$ 4,600	190 50 80	38 36 -	16 6 -	ม บ ห	35 37 37	4-70 	-		-	L C
3acd-1 9bcb-1 10bbd-1 10cda-1 11bba-1 13bcd-1	Bill Mills Arthur Stocker George Neal do Ted Harris J. R. Anderson	1963 - 1968 1968	$\begin{array}{r} 4,604 \\ 4,603 \\ 4,590 \\ 4,590 \\ 4,602 \\ 4,620 \end{array}$	226 220 240 86 66 322	- - - 50	- 16 16 4 8 18	I I H S V	37 61 30 32 34 7	4-70 4-70 4-70 4-70 4-70 4-70	3,600	63 		
1 4aaa-1 14cbb-1 14ccc-1 14ccc-2 15b ad-1 15bcb-1	George Neal Harvey Harris do V. Anderson George Neal do	1958 1967 - 1947 -	4,600 4,590 <u>4,562</u> 4,580 4,570 <u>4,573</u>	300 210 45 38 110 90	- 20	16 18 4 6 4 6	I I H U H	54 28 19 24 29 23	4-70 9-69 - 4-70 4-70 4-70	1,800	- 63 	12.0 11.5	C, L C
16aaa-1 16baa-1 16bcb-1 20ab-1 20dcb-1 21aab-1	Scott Jerry Morgan do Merrill Neal Mrs. Russell Roe Merrill Neal	1922 1968 1964 1921 1957	4,575 4,576 4,585 - 4,607 4,568	100 100 400 - 310 114		4 8 14 6 6 4	U H U H H	19 26 66 182 301 29	5-47 4-70 4-70 9-31 4-70 4-70	-		10.5	C L C C
21dab-1 21dd-1 26caa-1 27acb-1 27acb-2 27ccd-1 27ddb-1 28baa-1	John Robins C. M. Funk Carl Steed Harvey Harris do Earl Hickman Ray Roe	1943 1968 1935 1949 - -	4,570 - 4,562 4,564 4,565 4,560 4,559 4,607	105 165 220 77 54 80 230 104	60 - - 52 - -	12 4 18 4 - 4 16 4	S U H S U I H	29 30 21 26 18 23 19 56	4-70 5-47 9-49 4-70 4-70 4-70	-		10.5	С, L С, L
16S-33E 6cdb-1 18bbc-1 18bbc-2 18bca-1 18bcc-1 18bcc-1 18bcd-1	Ceorge Neal R. Showell Rollin Shalb R. Showell Des Eliason do	1917 1969 1969 1905	4,689 4,670 4,685 4,670 4,670 4,670 4,685	240 430 65 60 125 218	400 30 - 200	12 4 10 6 2 16	S S I H I U	66 Flows 7 13 Flows 23	4-70 8-70 3-69 4-70 8-70 4-70	-		10.5	L

1/ Reportedly drilled to about 700 feet, plugged back to about 300 feet. 7/ Drilled to 208 feet, caved. 3/ Drilled to 510 feet, plugged back. 4/ Drilled to 672 feet, plugged back.

Table 5.--Records of selected springs

Location: See text for description of spring-numbering system. Mame or owner: Spring names are given where known; for unnamed springs, name is that of principal claimant of the water. Altitude: Altitude of land surface at the spring. Use of water: I, irrigation; S, livestock; W, wildfowl management. Discharge: Matural flow of the apring; e. estimated; m, measured; r, reported. Remarks and other data available: C, chemical analysis in table 6.

			Y Y	ield	Temper-	Speci conductance		Use	
Location	Name or owner	Altitude (feet above mean sea level)	Discharge (gal/min)	Date of measurement	ature (°C)	Micromhos per cm at 25°C	Date	of water	Remarks and other data available
			Box	Elder County,	Utah				r
(B-11-9)5cca-S1	Sparks Spring	4,215	450m	2-69	9.0	6,140	2-69 2-69	W W	In Locomotive Springs group. C Do.
6cdc-Sl	Off Spring	4,215	900m	2-69	14.0	5,710	2-69	w	Do.
(B-11-10)1adc-S1	Bar M Spring	4,215	5,000m	2-69	9.0	5,200	2-69	w	Do.
12aac-S1 (B-12-10)36cab-S1	Teal Spring West Locomotive Spring	4,215 4,215	500e 10,300m	5-71	8.0	4,080	2-69	W	Do.
36dcc-S1	Baker Spring	4,215	500m	9-69	8.0	4,390	2-69	W S	Do.
(B-13-12)5dba-S1	Carter and others	6,500	6r		1	-	-	S	
5dbc-S1	do	6,300	5r 2r	-	_			s	
5dcc-Sl 6bac-Sl	do G. A. Rose and others	6,160 6,500	21	-	[-	-	-	s	
6bbc-S1	do	6,280	6r	-	-	-	-	S	
7bbd-S1	Carter and others	6,520	6r	-	-	-	-	S	
8ccc-S1	G. A. Rose and others	5,740	2r	-	-	-	-	S	
25bdd-S1	E. Morris and others	4,810	-	-	-	-	-	S S	
26acd-51	do	4,840	-		-	-		S	c.
30c aa -51	L. G. Carter	5,440	5e	6-66	25.0	482	6-66		с.
30cac-S1	do	5,440	15r	-	-	-	-	S	
30cac-52	do	5,440 5,430	7r	-	-	-	-	s	1
30ccc-S1 31ccb-S1	do Callahan Spring	5,300	25r	-	1 -	_	_	S	
34cdd-S1	E. Morris and others	4,880	6r	-	-	-	-	S	
34dbd-S1	do	4,880	Sr	-	-	-	-	S	
34dbd-52	do	4,880			-		_	s	
34dcd-S1	do	4,820	7r 5r	-	-			s	
34ddd-S1 35ddd-S1	do Central Pacific Railroad Co.	4,780 4,620	lm	9-67	14.0	657	10-67	s	с.
36add-S1	State of Utah	4,520	35r	- 1	-	- 1	- 1	S	
(B-14-10)33bcc-S1	Coyote Spring	4,436	20r	-	43.0	5,590	5-68	S	с.
(B-14-11)13bdd-S1	Pilot Spring	4,645	15e	8-66	10.0	585	8-66	S	c.
31cbd-S1	Hardup Spring	5,050	7e	9-72	13.5	733	9-72	S	с.
(B-14-12)3cda-S1	Dive Hollow Creek	5,540					-	s	1
3cda-S2	Spring No. 1 Dive Hollow Creek Spring No. 2	5,540	80r			_		5	
9dda-51	Dive Creek Spring No. 2	5,780	100r	-	-	-	-	S	
10bba-S1	Cassia Grazing Assn.	5,590	71	- 1	- 1	- 1	- 1	S	1
10bba-S2	do	5,590	7 r	-	-	-	-	S	
10bbd-S1	do	5,630	7 r	-	-	- 1		S	
10bbd-S2	do	5,630	5r	-	-	-	-	s	
	Color Contas	5,520	12e	9-72	13.5	868	9-72	s	c
11ddd-S1 13daa-S1	Cedar Spring Carlson Spring	5,240	61	-		-	-	S	
15bbb-S1	Dive Creek Spring No. 1	5,720	350r	-	- 1	-		S	
16bac-S1	State of Utah	6,000	7 r	-	-			S	
22dcc-51	Crystal Spring	5,850	30e	9-72	9.0	631	9-72	S	с.
24bac-51	Emigrant Spring	5,550	15e	9-72	13.5	853	9-72	S	с.
24bbc-S1	J, and R. Bronson	5,720	15r	-	-	-	-	S	1
24bdc-51	U. S. Forest Service	5,600	13r	-	-	-	-	s	
25bcb-S1	W. Larsen and others	8,940	5r	-	-	-	-	S S	
25ddb-S1	do	8,280	Sr	-	-	-	-	5	
(B-14-13)34aaa-S1	L. G. Carter	9,000	5r	-	-	-	~	s	
35abc-S1	Birch Spring	8,400	7r	-	-	-	-	S	
35bbd-51	Rocky Spring	8,920	5r	-	-	-	-	S	
36daa-S1	G. A. Rose and others	7,120	51	-	- 1	-	-	S	J
36dcc-S1	do	6,900	2 r	-	-	-	-	S	
			One	da County, Id	nho	r			·····
13S-32E-30bda-1	Twin Springs	5,200	100e	9-69	14.0	754	9-69	s	с.
14S-34E-32aaa-1	Lower Ireland Spring	5,250	1e	8-70	12.5	850	8-70	S	
14S-34E-33bb	Upper Ireland Spring	5,280	Зе	8-70	13.0	780	8-70	S	с.
15S-32E-13ac	Holbrook Springs	4,760	12,000m	8-70	20.0	789 504	7-72	I S	с. с.
165-30E-7ab		4,800	2e	9-72	13.0	504	10-0/	<u> </u>	1
			Pow	er County, Ida	ho 1	r			r
115-32E-25dcb-1		5,800	5e	8-72	13.5	446	8-72	S	c.

Table 6 .-- Chemical analyses of water

					,					Mi11	igrame
Location	Date of collection	Temperature (°C)	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Sodium plus potassium (Na+K)	Bicarbonate (HCO3)	Carbonate (CO3)
	L		J	1			L	L	•		ELLS
		.	· ····································	r	T				.	Box	Elder
(B-12-9)28add-1 30cda-1 (B-12-10)19bcb-1 20adc-1	10-10-67 7-7-72 9-25-72 4-25-72 4-25-72	15.0 14.0 15.5	39 - - - -		1.6 200 120 380 53	12 120 66 300 46	790 660 740 12,000 2,200	17 1.8 46 480 240	-	564 223 173 250 276	0 0 0 0
21daa-1 (B-12-11)4bcc-1 Sabb-1 Sbba-1	4-25-72 3-22-72 4-29-72 7-12-67 3-14-72	17.0 15.5 15.0	- - 40 -		130 130 150 72 130	120 69 76 39 58	3,000 190 460 112 150	380 18 30 14 18	-	220 226 206 222 231	0 0 0 0
5bbb-1	10-17-57 7-26-69 6-25-70 5-26-71 3- 9-72	14.5 14.0 14.0 13.5	22 - - 26 25	0.08	111 - 240 350	26 - - 49 75	- - 89 130	- - - 12 10	105 - - -	188 - - 193 234	0 - - 0 0
5bdc-1 5bdc-2	3-10-72 7-26-69 6-25-70 3-13-72 7-6-72	14.0 14.0 14.5 13.5	- 19 - -		330 200 - 250 310	76 58 - 58 68	110 86 - 110 100	11 7.2 - 8.4 7.1	- - - -	231 292 345 405	0 - 0 0
5dcd-1 6aab-1 6abb-1 8abb-1	3-11-72 3-22-72 6-7-56 3-22-72 7-11-72		29 - - -	.42 - - -	730 140 62 61 180	150 32 12 13 45	160 92 43 39 87	13 6.8 3.5 2.7 8.7	-	144 255 231 214 189	0 0 - 0 0
8baa-1 8bbb-1 8cda-1 21ddd-1	5-26-71 7-19-72 4-3-53 7-11-72 4-25-72	13.5 15.5 - -	23		250 230 51 68 440	45 62 23 19 590	120 170 69 42 22,000	8.2 8.2 32 4.7 690		264 337 171 205 445	0 0 0 0
(B-13-8)10dcc-1 (B-13-9)35bbd-1 (B-13-10)11dcd-1 34ddc-1 (B-13-11)10cdc-1	9-25-72 12-11-70 6-16-72 6-28-72 9-25-72	15.5 19.5 15.5 19.5 17.0	- 37 - 47 -	.09 .02	210 180 72 76 56	70 140 31 48 28	260 3,300 590 980 74	15 180 .0 66 11	-	167 164 255 193 222	0 0 0 0
(B-14-8)1ccc-1 11aba-1 11abb-1 11bca-1, 28bbb-1	8-15-68 10-16-57 10-11-67 7-12-67 8-9-67	10.0 12.5 14.0	42 28 - 44 43	.16 - - - -	200 252 23 172 108	130 112 77 90 46	375 - - 340 362	24 - - 18 18	765 146 -	445 544 326 316 272	- 0 0 0
(B-14-9)1dda-1	5-24-56 6-17-57 5-28-58 7-17-58 7-12-60	12.0 7.0 6.5 -	48 - - 42 44	-	102 100 95 97 94	36 47 38 37 38			132 118 138 138 141	359 355 346 343 337	0 0 0 0
1dda-3 4bbb-1 5bbb-1	6-27-64 10-16-57 5-24-56 7-27-55 5-24-56	11.5 22.0 16.5 17.5	42 36 61 64 55	- .00	95 91 146 66 67	41 38 35 16 16	- - 27 28	- - 8.0 -	147 141 123 -	336 338 186 174 176	0 0 0 0
	7-17-57 5-28-58 7-17-58 7-12-60 7-27-64		57 50 53 55 50		71 68 67 67 63	14 14 15 15 16		- - - -	31 34 34 34 34 35	179 175 174 176 176	0 0 0 0 0

Agency making analysis: BR, Bureau of Reclamation; DH, Utah State Department of Health; GS, U.S. Geological Survey; SU, Utah State University.

from selected wells and springs

per liter										1		T
					Dissolve	d solids			nce 25°C)		i ratio	analysis
Sulfate (SO $_4$)	Chloride (Cl)	Fluoride (F)	Nitrate (NO3)	Boron (B)	Residue at 180°C	Sum of determined constituents	Hardness (Ca,Mg)	Noncarbonate hardness	Specific conductance (micromhos/cm at 25°C)	Hd	Sodium-adsorption	Agency making and
County,	0tah 770	2.2	19	0.11	2,250	2,200	54	0	3,690	8.1	47	GS
170 100 1,100 110	1,500 1,500 19,000 3,700	-				2,200 2,760 2,660 33,400 6 480	990 570 2,200 320	810 430 2,000 95	5,190 4,890 - 12,100	7.4 7.5 6.8 7.6	9.1 13 110 46	GS GS GS GS
210 55 160 51 54	5,300 590 960 255 450		2.6	-	756	9,250 1,160 1,940 695 974	820 610 690 340 560	640 420 520 158 370	2,260 3,540 1,210 1,870	7.5 7.4 7.3 7.6 7.5	46 3.4 7.6 2.6 2.8	GS GS GS GS GS
68 - 77 150	272 475 525 550 820	- - .3 .2	3.1 - 8.3 10			699 - 1,180 1,720	382 - - 800 1,200	228 - - 640 990	1,050 1,930 2,090 2,110 3,050	7.1 - 7.4 7.2	2.3 - 1.4 1.6	GS GS GS GS
100 63 - 99 95	770 430 475 540 600	- .2 - -	18	- .09 - -		1,520 1,030 - 2,030 1,380	1,100 740 - 860 1,100	950 501 	2,960 1,850 1,950 2,270 2,610	7.2 7.6 - 7.2 7.3	1.4 1.4 - 1.6 1.3	GS GS GS GS GS
100 74 24 26 63	1,800 280 65 77 460	.2 - -	4.4 - -			3,070 750 324 324 937	2,400 480 202 210 630	2,300 270 13 30 480	5,720 1,420 606 615 1,850	7.2 7.3 - 7.5 7.6	1.4 1.8 1.3 1.2 1.5	GS GS SU GS GS
100 88 58 31 4,800	510 620 151 110 34,000	.3 - - -	6.1 - - -	.12 - - - -	- 460	1,220 1,340 468 375 62,700	810 830 222 250 3,500	590 550 82 80 3,200	2,040 2,520 760 713	7.2 7.1 - 7.6 7.1	1.8 2.6 2.0 1.2 160	GS GS DH GS GS
50 460 93 120 31	890 5,800 970 1,600 150	- - - 6	-4 - .9 -	1.07		1,580 10,000 1,880 3,040 459	810 987 310 390 250	680 852 98 230 73	3,000 15,600 3,540 5,420 901	7.8 7.7 7.5 7.7 7.5	4.0 45 15 22 2.0	GS GS GS GS GS
362 1,460 177 264 88	820 555 170 690 650	- - 1.6 .9	56 2.5 .2 .5	.63 - - .08 .09	2,484 - 771 1,900 1,570	2,230 3,440 1,720 1,450	1,036 1,090 374 800 460	671 642 107 541 237	3,670 4,820 1,280 2,950 2,520	7.4 7.3 7.2 7.6 7.6	5.1 10 3.3 5.2 7.3	DH GS GS GS GS
76 67 71 68 66	233 240 239 244 250		2.3 .4 .9 .7 .5	- - - -	- - - -	806 792 796 796 800	404 444 398 396 392	110 153 112 115 116	1,360 1,370 1,360 1,380 1,380	7.4 7.2 7.6 7.7 7.9	2.9 2.4 3.0 3.0 3.1	GS GS GS GS GS
79 72 34 22 29	262 239 426 90 93		.6 .4 3.6 4.4 4.0		878 - - 436 -	832 783 921 384 379	408 384 508 230 234	132 107 355 88 90	1,420 1,310 1,680 608 626	7.6 7.2 7.2 7.4 7.6	3.2 3.1 2.4 .8 .8	GS GS GS GS GS
23 22 23 23	90 94 94 94 94 94	- - - -	3.2 3.2 3.3 1.9 .7		- - - 422	377 371 374 377 369	232 227 227 228 224	85 84 84 84 80	618 618 622 612 608	7.4 7.8 7.7 7.8 7.4	.9 1.0 1.0 1.0 1.0	GS GS GS GS GS

Table 6. -- Chemical analyses of water from

<u></u>		T	_							M111	lgrams
Location	Date of collection	Temperature (°C)	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Sodium plus potassium (Na+K)	Bicarbonate (HCO ₃)	Carbonate (CO3)
	L	1	J	1	L					WE	LLS
			.					.		Box E	lder
B-14-9)5bbb-1 Sccd-1 7bbb-1	7-12-67 7-28-69 7-13-67 5-24-56 5-26-58	15.5 16.0 16.0	- 51 64 62		- - 85 69 75	- 20 21 19	- 53 -	- - 11 -	- - 37 48	- - 176 170 170	- 0 0 0
18bdd-1 B-14-10)15bb-1	7-17-58 10-15-58 8-8-67 5-24-56 6-17-57		61 65 31 60 61		75 77 168 46 57	18 20 36 24 16	210		47 45 - 28 31	169 174 146 194 193	0 0 0 0
	5-28-58 7-17-58 7-12-60 7-27-64 8- 8-67		57 58 59 54 52		59 59 59 61 66	15 16 15 16 15	- - 28		33 31 34 37	190 190 191 186 188	0 0 0 0
(B-15-9)28cbb-1	7-28-69 5-23-70 9-12-55 5-24-56 6-17-57	16.0 15.5 - -	- - 72 74		- 316 321 314	- 85 83 87	518	34	- - 381 436	- 152 142 146	- 0 0 0
	5-28-58 7-12-60 5-24-61 7-27-64 8- 8-67		71 74 75 64 77	0.00	325 319 339 345 369	91 94 81 97 92	- 382 439 452	- 30 29 32	411 417 - -	140 145 144 140 144	0 0 0 0
(B-15-9)31abc-1 (B-15-10)36bbb-1	7-28-69 8-12-70 9-30-69 5-17-56 5-24-56 6-17-57	24.0 24.0 16.0 - 16.5	- 63 59 56 63	-	- - 70 42 59 61	- 17 22 17 10	31	-	- - 19 18 25	- 181 187 198 173	- 0 0 0
			L		l					SPR	
			·····							Box El	der
B-11-9)5cca-Sl	9-29-59 9-30-59 1-5-60 4-19-60 2-6-69	15.0 14.5 10.5 14.5 9.0	38 29 35 32 22	0.00 20 .00	110 117 107 109 86	73 68 66 66 79	1,150 1,160 1,130 1,120	- 49 47 51 48	1,180	232 231 227 225 214	0 0 0 0 0
	9-16-69 2-19-70 12-11-70 9-30-71 3- 3-72	11.0 11.5 10.0 14.0	31 30 39 -	50 00 -	96 97 110 94 100	73 71 69 64 67	1,140 1,170 1,190 1,000 1,200	51 50 54 42 60	-	220 207 232 213 224	0 0 0 0
6cdc-51	2- 6-69 9-16-69 2-19-70 12-11-70 9-30-71	14.0 14.0 14.0 14.0	29 33 32 35 -	20	106 108 110 98 110	74 75 75 71 69	986 993 978 1,010 970	37 36 39 45 34	-	206 224 217 218 224	0 0 0 0
(B-11-10)1ødc-Sl	3-3-72 9-30-59 1-5-60 4-19-60 6-19-60	15.5 16.5 15.5 13.5 22.0	36 31 31 31	20 10 30	110 133 139 131 130	67 61 65 60 66	1,000 865 1,120 833 930	45 32 45 36 37	-	212 213 210 209 212	0 0 0 0

selected wells and springs - Continued

per lite	r	<u> </u>			ſ				1 _0		ratio	sis
						ed solids T⊽			tance t 25°			analysis
Sulfate (SO4)	Chloride (Cl)	Fluoride (F)	Nitrate (NO3)	Boron (B)	Residue at 180°C	Sum of determined constituents	Hardness (Ca,Mg)	Noncarbonate hardness	Specific conductance (micromhos/cm at 25°C)	Hď	Sodium-adsorption	Agency making a
- Conti								. <u></u>				
County,	Utah - Contin 94		-	_	-	-	-	-	613	-		GS
24 28 24	97 180 130 144	0.3	3.1 2.9 3.1	0.04	- 587 -	514 436 459	296 260 265	152 121 126	618 889 734 767	- 7.4 7.6 7.8	- 1.3 1.0 1.3	GS GS GS
23 22 25 31 24	142 145 610 66 66	- 4	2.8 2.2 3.1 .9 .8	- . 05 - -	- 1,400 -	452 462 1,170 352 351	263 274 570 214 209	124 131 450 55 51	766 - 2,170 558 567	7.8 7.9 7.4 7.6 7.3	1.3 1.2 3.8 .8	GS GS GS GS GS
26 25 28 28 27	67 69 70 82 82		1.0 1.8 .6 .9 .3		- - 404 391	351 353 360 370 370	206 213 210 218 224	50 57 53 65 70	553 564 560 592 583	7.8 7.9 8.0 7.6 7.4	1.0 .9 1.0 1.1 .8	GS GS GS GS GS
- 103 48 125	81 75 1,380 1,290 1,300	-	- - 3,9 5.9	- - .10 -		- 2,480 2,270 2,410	1,140 1,140 1,140 1,140	1,010 1,020 1,020	589 576 4,200 4,170 4,140	- - 7.2 6.9	- 6.7 4.9 5.6	GS GS SU GS GS
41 45 42 66 35	1,360 1,360 1,340 1,480 1,500	- .3 .1 .5	4.4 5.2 2.4 .6 12	- .40 .13 .03	- - - -	2,370 2,390 2,360 2,590 2,640	1,180 1,180 1,180 1,260 1,300	1,070 1,060 1,160 1,150 1,180	4,300 4,350 4,340 4,620 4,700	7.5 7.6 7.5 7.2 7.3	5.2 5.3 4.8 5.4 5.5	GS GS GS GS GS
20 25 23 18	1,520 1,550 99 50 51 60		1.6 1.9 2.2 2.8		432	- 391 311 324 325	244 197 218 194	- 96 44 56 52	4,700 4,730 626 480 502 548	- 7.8 8.2 7.4 7.4	- - 8 - 6 - 5 - 8	GS GS GS GS GS
County,	lir ah				1	I			l			1
88 161 169 152 167	1,960 1,960 1,970 1,970 1,970 1,890	0.3 - .7	2.0 1.5 2.5 2.2 .8	0.27 .34 .27 .37	3,800 3,880 3,770 3,570	3,660 3,650 3,670 3,620 3,520	575 572 540 544 540	385 383 354 360 365	6,470 6,540 6,570 6,140	7.7 7.2 7.7 7.6 8.0	21 21 22 22 21	GS GS GS GS GS
150 164 160 140 160	1,980 1,940 2,100 1,800 2,000	.6 .6 .5 -	.1 2.4 .6 -	.31 .38 .37 -	3,910 3,760 - -	3,630 3,630 3,840 3,330 <u>1</u> / 3,730 <u>1</u> /	540 532 558 500 530	360 363 368 320 340	6,380 6,270 6,520 6,110 6,790	7.9 8.0 7.6 8.0 8.1	21 22 22 20 23	GS GS GS GS GS
151 132 140 158 140	1,750 1,750 1,730 1,680 1,700	.7 .5 .4 .2	1.0 .9 1.1 .5	.27 .26 .28 .33	3,420 3,380 3,420 -	3,240 3,240 3,210 3,200 3,170 <u>1</u> /	570 580 582 536 560	401 396 404 357 370	5,710 5,680 5,630 4,500 5,910	7.7 7.9 8.0 7.6 7.6	18 18 18 19 18	GS GS GS GS GS
160 119 184 113 120	1,800 1,560 1,960 1,550 1,680	- .1 - -	2.1 4.0 2.8 2.5	.18 .20 .21	3,010 3,660 3,050 3,290	3,320 <u>1</u> / 2,910 3,650 2,860 3,110	550 584 616 576 596	380 409 444 405 422	6,040 5,250 6,430 5,190 5,420	7.8 7.5 7.8 8.0 7.7	19 16 20 15 17	GS GS GS GS

53

Table 6.--Chemical analyses of water from

		1								Milli	grams
Location	Date of collection	Temperature (°C)	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Sodium plus potassium (Na+K)	Bicarbonate (HCO3)	Carbonate (CO3)
		_								SPRI	NGS
										Box El	der
(B-11-10)ladc-Sl	10-12-60 2- 6-69 6-29-69 9-16-69 2-19-70	15.5 9.0 14.5 - 15.0	33 27 37 33 33	- - 20 -	127 114 126 112 116	69 69 72 75 75	910 875 - 939 926	35 42 - 34 34	- 946 -	209 208 224 225 219	0 0 0 0
12aac-S1	12-11-70 9-30-71 3- 3-72 9-30-59 1- 5-60	16.0 15.5 - 13.5 7.5	37 - - 36 34	30 - - 10 10	96 120 120 109 115	65 71 66 63 66	880 860 950 1,280 1,340	33 31 42 55 60	-	188 225 216 213 212	0 0 0 0
B-12-10)36cab-Sl	4-19-60 2- 6-69 9-16-69 2-19-70 9-30-59	12.5 8.0 - 9.5 13.5	29 22 24 27 47	10 - 30 - .00	119 96 68 103 114	67 73 88 69 50	1,330 1,150 1,110 1,110 744	56 48 47 46 53		210 210 162 205 206	0 0 0 0
	1- 5-60 4-19-60 10-12-60 2- 6-69 9-16-69	7.5 12.5 14.5 8.0	43 43 46 32 40	.00 10 - - 30	114 112 122 104 100	49 51 52 58 59	786 746 861 653 775	57 52 60 42 58		198 200 208 208 208 209	0 0 0 0
36dcc-51	2-19-70 12-11-70 9-30-71 3- 3-72 9-30-59	11.0 12.0 9.0 14.0 14.5	41 45 - - 30		90 98 87 100 125	59 49 45 49 51	789 698 630 790 493	61 47 41 63 27		204 195 205 203 220	0 0 0 0
	1~ 5-60 4-19-60 10-12-60 10-10-67 2- 6-69	10.0 14.5 14.5 - 8.0	33 36 37 33 23	.00 .00 - - -	120 119 125 120 126	54 57 54 59 72	494 502 483 537 681	27 27 28 28 38		215 218 216 216 266	0 0 0 0
	9-16-69 2-19-70 12-11-70 9-30-71 3- 3-72	12.0 14.0 13.0 14.0	33 33 41 - -	30 - 100 -	112 117 110 110 120	63 62 62 60 62	462 517 520 460 550	26 27 29 27 32		220 218 200 226 218	0 0 0 0
(B-13-12)30caa-S1 35ddd-S1 (B-14-10)33bcc-S1 (B-14-11)13bdd-S1 31cbd-S1	6-17-66 10-10-67 5-28-68 8-12-66 9-25-72	25.0 14.0 43.5 14.5 13.5	10 21 29 15 -	- - .00	39 59 87 43 30	11 21 19 25 33	44 48 1,070 - 65	.6 4.5 56 - 4.1		156 198 352 180 197	0 0 0 0
(B-14-12)11ddd-S1 22dcc-S1 24bac-S1	9-25-72 9-25-72 9-25-72	13.5 9.0 13.5		-	57 66 66	30 20 29	71 43 74	2.0 1.4 2.3		283 249 265	0 0 0
			·····			·	·····	.	•	WE	LLS
		·		r	r			F	1	One	ida
13S-33E-4dcc-1 16bda-1 29acc-2 14S-32E-10dcd-1 15add-1	9-13-69 8-15-70 9-15-69 5-29-47 9-16-31	12.0 10.0 10.0 9.5 9.0	53 48 45 21 51		61 102 96 122 130	12 23 37 28 33	- 42 - -	- 7.0	33 - 74 92 45	218 261 261 346 329	0 - 0 0 0
23aba-1 25bda-1 36aac-1 14S-33E-10aab-1 16bbb-1	5-29-47 9-17-69 8-15-70 5-29-47 5-29-47	10.5 11.0 10.5 10.0	19 40 42 22 22		124 120 113 82 90	38 41 45 27 22	- 62 85 -	- 11 13 -	67 - - 109 69	324 338 357 412 172	0 0 - 0 0

selected wells and springs - Continued

					Dissolv	ed solids		<u>-</u>	25°C)		ratio	analysis
Sulfate (SO4)	Chloride (Cl)	Fluoride (F)	Nitrate (NO3)	Boron (B)	Residue at 180°C	Sum of determined constituents	Hardness (Ca,Mg)	Noncarbonate hardness	Specific conductance (microminos/cm at 25°C)	Hd	Sodíum-adsorption	Agency making ana
Conti	nued Utah - Contin	nued				· · · · ·						
118 140 148 112 130	1,640 1,560 1,650 1,650 1,640	- 0.5 - .4 .4	1.6 .5 1.6 1.4 1.8	0.24	3,190 3,120 3,300 3,270	3,050 2,930 3,090 3,070 3,060	598 570 610 588 597	427 399 426 404 417	5,400 5,200 5,450 5,390 5,380	7.7 7.7 7.8 7.6 8.0	16 16 17 17 17	GS GS GS GS GS
120 120 130 156 159	1,500 1,600 1,700 2,180 2,280	.4 - .2 -	.2 - 2.7 3.5	.60 - .32 .29	- 4,140 4,290	2,800 2,950 <u>1</u> / 3,150 <u>1</u> / 3,990 4,160	510 590 570 532 560	356 410 390 357 386	5,040 5,610 5,840 7,120 7,400	7.9 7.6 7.6 7.8 7.9	16 15 17 24 24	GS GS GS GS GS
155 171 128 152 91	2,280 1,900 2,000 1,910 1,360	- .6 .4 .5 .2	2.8 .9 .1 .2 2.3	.34 .32 .36 .28 .25	4,420 3,680 3,700 3,720 2,750	4,140 3,560 3,550 3,520 2,560	572 540 532 543 490	400 368 399 375 321	7,690 6,250 6,060 6,160 4,660	7.9 7.9 8.0 7.8 7.9	24 22 21 21 15	GS GS GS GS GS
91 89 93 107 86	1,430 1,380 1,570 1,190 1,420	- - .6 .6	3.0 2.5 2.8 1.1 1.2	.31 .23 .29 .37	2,840 2,730 3,180 2,440 2,820	2,670 2,570 2,920 2,290 2,640	486 488 518 500 492	324 324 347 329 321	4,900 4,630 5,240 4,080 4,670	7.5 7.9 7.6 7.7 7.6	15 15 16 13 15	GS GS GS GS GS
93 95 95 93 88	1,400 1,300 1,100 1,400 970	.6 .5 - .1	1.4 .6 - 2.3	.39 .34 - .16	2,790	2,650 2,430 2,1402/ 2.6302/ 1,900	468 446 400 450 520	301 286 230 280 340	4,670 3,610 4,130 4,830 3,410	8.0 8.0 7.7 7.7 7.9	17 14 14 16 9.4	GS GS GS GS GS
89 90 87 68 116	970 980 960 1,050 1,260	- - - .8 .6	2.4 3.1 1.5 2.1 .6	.16 .16 - .01 .28	2,060 2,110 2,050 2,180 2,610	1,900 1,920 1,890 2,010 2,450	522 532 536 544 610	346 353 359 367 392	3,470 3,510 3,390 3,650 4,390	7.7 7.7 7.5 7.9 7.7	9.4 9.5 9.1 10 12	GS GS GS GS GS
81 70 92 96 92	975 1,010 990 920 1,100	.2 .5 .4 -	1.6 2.0 .6 -	.19 .17 .00 -	2,200 2,140 -	1,860 1,950 1,900 1,820 <u>1</u> / 2,100 <u>1</u> /	540 548 530 520 550	360 369 366 340 380	3,400 3,560 3,520 3,620 3,810	7.8 7.9 8.2 7.5 7.5	8.6 9.6 9.8 8.8 10	GS GS GS GS GS
19 27 70 28 46	65 100 1,620 80 110	.2 .3 2.7	1.4 .0 4.8 .1	.01 .00 .80 - -	274 391 3,240 332	268 378 3,130 317 385	144 232 294 210 210	16 70 5 62 49	482 657 5,590 585 733	8.0 7.5 7.6 7.5 7.7	1.6 1.4 27 1.1 1.9	CS GS GS GS GS
45 55 31	120 66 120	-	-	-	-	464 374 453	270 250 280	34 43 67	868 631 853	7.8 7.6 7.8	1.9 1.2 1.9	GS GS GS
			L	L	.	h			· · · · · · · · · · · · · · · · · · ·			···
16 37	41 135	0.2	24 23	-	350 628	347 545	201 349	22 135	530 934	7.1	1.0 1.0	GS BR
55 46 32	188 200 180	.2	20 6.2 .6		679 - -	643 686 755	392 420 460	178 136 190	1,070 1,180 -	7.8 - -	1.6 2.0 .9	GS GS GS
47 43 41 56 19	210 204 250 92 210	.4 .5 .3 .4 .2	.6 .2 3.7 33 8.3	0.22	- 765 796 -	666 688 769 624 625	466 470 467 316 315	200 193 174 22 174	1,190 1,190 1,390 1,030 970	8.0 7.8 -	1.4 1.2 1.7 2.7 1.7	GS GS BR GS GS

Table 6. -- Chemical analyses of water from

gram	Milli										
Carbonate (CO3)	Bicarbonate (HCO ₃)	Sodium plus potassium (Na+K)	Potassium (K)	Sodium (Na)	Magnesium (Mg)	Calcium (Ca)	Iron (Fe)	Silica (SiO ₂)	Temperature (°C)	Date of collection	Location
WELLS	1		·			L		L			
neida	01										
0	176 260 286 376	22 60 62 96	-		28 32 27 62	127 93 89 145	300	19 15 27 49	14,5 13.5 - 14.5	5-29-47 5-29-47 4- 6-49 9- 9-31	4S-33E-22dcc-1 31ab-1 31bc-4
0	287	38	-	-	26	84	390	31	-	9-21-31	31bd-3
- - - 0	293 296 275 250 236	- - - 95	7.8 8.5 8.6 16 -	116 115 116 94 -	34 36 43 23 36	56 88 71 38 119	- - 350	47 45 44 66 41	11.5 11.5 12.0 19.0 11.5	8-15-70 8- 7-70 8-15-70 8-15-70 9- 9-31	5S-32E-33add-1 33caa-1 33dcd-1 36aaa-1 5S-33E-5add-1
00000	251 256 291 277 258	- 89 - - 200	8.6 - 9.0 8.9	92 155 150	18 27 58 38 22	29 66 88 94 89	-	52 18 28 - 16	13.0 - - 11.5	8-15-70 5-29-67 9-14-69 5-31-72 5-29-47	8cda-1 65-32E-2ccc-1 14cbb-1 14ccc-1
0	248 235 231 201 281	134 - 196 94	- 18 20 - -	- 311 296 -	83 151 154 50 31	226 401 255 136 86	530	43 40 41 40 40	10.5 11.0 11.0 10.5	5-29-47 6-23-70 8-15-70 9-18-31 5-29-47	16aaa-1 16bcb-1 20ab-1 21dd-1
0	325 391	-	18 23	210 407	54 72	112 119	-	49 42	11.0 10.5	8- 9-70 8-15-70	26caa-1 27ddb-1
RINGS	SPR										
neida	On										
0 0 0 0	229 211 260 261 207	40 - 48 - -	- 3.0 - 5.5 1.2	- 46 - 65 24	28 18 25 22 19	74 80 66 54 50	- 340 -	49 22 16 - 15	14.0 13.0 18.5 20.0 13.0	9-11-69 8- 6-70 9-11-31 7-17-72 10-10-67	3S-32E-30bda-1 4S-34E-33bb 5S-32E-13ac 6S-30E-7ab
Power	F										·
0	266 216	-	1.3 4.2	7.3 38	5.9 18	79 74	-	-	13.5 9.0	8-8-72 8-8-72	1\$-32E-25dcb-1 2S-32E-24bbb-1

 $\frac{1}{2}$ / Includes estimated 35 mg/l of silica. $\frac{2}{2}$ / Includes estimated 40 mg/l of silica.

•

selected wells and springs - Continued

per liter Sodium-adsorption ratio Agency making analysis Specific conductance (micromhos/cm at 25°C) Dissolved solids (Ca,Mg) 180°C Sum of determine constituents Noncarbonate hardness (\$0¢) (C1) (EON) E at e Hardness Chloride Fluoride Sulfate Nitrate Boron Residue 뚼 - Continued County, Idaho - Continued 10 2.7 1.5 3.9 .4 432 364 323 617 317 45 45 49 160 41 197 163 128 247 85 536 539 524 1,120 473 288 51 88 309 82 970 958 925 46 14 15 17 9.3 GS GS GS GS GS 0.4 - - - - --2 98 83 134 31 127 1.8 1.0 3.7 2.5 1.9 280 366 354 190 445 40 123 128 15 251 1,300 1,220 1,500 1,040 7.5 7.8 7.4 7.5 3.0 2.6 2.7 3.0 20 780 777 880 616 202 707 BR GS BR BR GS .2 .3 .2 .3 0.00 735 812 572 842 212 256 178 230 --3.1 .4 .3 4.9 -.22 -503 524 906 827 852 147 276 460 390 312 59 66 221 160 100 935 919 1,520 1,530 1,500 7.9 8.0 7.5 3.3 23 3.1 3.3 49 145 144 304 290 325 32 83 120 110 69 .3 .5 .4 584 BR GS GS GS GS 936 -214 595 581 56 42 703 1,430 1,080 380 111 2.330 4,210 4,390 .2 .2 .2 1,370 2,720 2,500 1,240 625 906 1,620 1,270 545 342 7.6 7.1 -545 1,080 1,030 531 192 2.0 5.8 11 1.3 19 3.4 3.6 37 22 GS GS BR GS GS .00 --3,320 3,350 : 1,080 7.4 2,020 3,100 GS BR 172 994 380 246 .5 1.0 2.0 11 1,230 2,340 1,160 2,110 500 594 234 273 4.1 7.3 .12 County, Idaho 124 123 90 110 47 470 439 419 411 283 298 274 268 230 202 110 101 55 11 32 7.5 7.6 7.3 7.5 1.0 1.2 1.9 .7 2.1 20 .2 488 503 754 780 21 23 22 26 23 GS GS GS GS 0.1 0.00 --.3 - .30 789 504 -1.1 292 County, Idaho 220 260 446 712 0.2 8.3 19 7.0 100 7.6 7.7 GS GS -: 240 359 1 -3 82

Table 7. -- Logs of selected wells and test holes

Table Altitude of land surface given in feet above mean sea level. Depth to base of lithologic unit given in feet below land surface.

Material	Depth	Material	Depth	Material	De
		Box Elder County, Utah	—		
-12-9)5bcb-1. Log by Arnold Elsing.		(B-12-11)7abb-1 - Continued	100	(B-13-9)35bbd-1. Log by Ivan Bortz. Alt. 4,502 ft.	
Alt. 4,415 ft.	23	Clay, sandy, yellow	160 175	"Topsoil"	
opsoil"	49	Clay, white	180	Rock, broken, loose	
nders, brown	60	Clay, blue	200	Rock, gray, hard (lava[?])	
alt, brown, very hard	68	Clay, red	220 240	Rock, hard	
alt, gray, very hard	83 91	Clay, green	250	Rock, creviced; lost water	
nders, brown	135	oray, real	-	Cinders, red	;
salt, gray	200	(B-12-11)8abb-1. Log by R. C. Denton.		Rock, hard, solid	
alt, gray, broken; water bearing	215	Alt. 4,303 ft.	25	Lava, black.	1
nders, red-brown; water bearing	250	Clay and silt	28	Cinders, big	1
-12-9)30cda-1. Log by C. T. Sumsion.		Clay and gravel	32	Rock, hard	1
Alt. 4,239 ft.		Conglomerate	41	Rock, creviced	1
ay, silty	10	Sand and gravel	56 84	Rock, gray, hard	1
ay, silt, and sand	23	Sand and gravel.	95	Cinders, black and red	1
ermeable and very hard, dense	162	Gravel	107	Rock, solid	1-
		Gravel and boulders	119 129	Rock, rotten	2
-12-10)19bcb-1. Log by C. H. Baker, Jr.		Clay and sand	147	Rock, solid, hard	2
Alt. 4,220 ft. ay, blue-gray, silty	22	Clay and gravel.	155	Rock, rotten	2
ay, blue-gray, sandy	52	Clay, sand, and gravel	187	Rock, extra hard	2
lt, brown	64	Clay and gravel	201 275	Cinders, red	3
10 10 00 de la Vier be C. U. Beken Jr.	1	Clay	213	Rock; some water	3
<u>-12-10)20adc-1</u> . Log by C. H. Baker, Jr. Alt. 4,220 ft.		(B-12-11)8bbb-1. Log by D. E. Rogers.		Rock, hard	
y, blue-gray, silty	22	Alt. 4,326 ft.		Clay, brown	
nd, gray, fine-grained, moderately well		Topsoil	28	Lava Lava	4
rted	30	Rock and gravel.	103 105	Lava, hard; salty water	-
d, clayey	64	Clay	140	(B-13-10)11dcd-1. Log by C. T. Sumsion.	
12-10)21das-1. Log by C. H. Baker, Jr.		Clay, yellow	217	Alt. 4,335 ft.	
Alt. 4,225 ft.	1	Clay, sandy	230	Silt and clay	
t, sandy	6	Sandstone	231 235	increases with depth	
by, silty and sandy	20 24	Clay, white	350	Sand, silt, and clay with some gravel; pro-	
nd, medium- to coarse-grained	64	oray, bandy, and band offered in traje i i		portion of gravel increases with depth	
,,		(B-12-11)8cds-1. Log by Hughes and Goss.		Basalt, fractured, permeable	1
12-11)4bcc-1. Log by Arlo Lloyd.		Alt. 4,280 ft.		Sand, silt, clay, and gravel	1
Alt. 4,304 ft.	04	Topsoil	9 15	Basart, fractured, permeable	•
and gravel	96 118	Clay, brown	160	(B-13-10)34ddc-1. Log by C. T. Sumsion.	
y and sand	160	Clay and gravel.	200	Alt. 4,305 ft.	
wel	165	Sand, white	210	Clay, silty	
ay, gray, sticky	195	Clay, yellow	500	Silt, clay, and sand	
ay and sand, brown	230	Sand, gray, fine; warm salty water	510	Basalt, fractured, permeable	
12-11)5bdc-1. Log by Arlo Lloyd.		(B-12-11)16cdc-1. Log by C. A. Holland.		(B-13-11)10cdc-1. Log by C. T. Sumsion.	
Alt. 4,340 ft.		Alt. 4,233 ft.		Alt. 4,480 ft.	
ay and silt	13	Clay, sandy	30	Gravel, sand, and silt	
y and gravel	30	Clay and gravel; some water	72	Sand, silt, and clay with some fine-grained gravel.	
vel	50 57	Gravel; water	120 126	Clay, sandy.	
y and sand	75			Sand, medium- to fine-grained; some clay	
y	80	(B-12-11)21ddd-1. Log by C. H. Baker, Jr.		Clay, sandy.	1
y and gravel	138	Alt. 4,220 ft.	19	Sand, some clay, and a little gravel Sand, fine- to very fine grained	1
y, gravel, and boulders	145 180	Clay, blue-gray, silty, much iron stained Clay, blue-gray, sandy	18 63	Sand and clay.	
y and gravel	208	Gravel, fine, sandy.	64	Sand, clay, and gravel	1
12-11)6aab-1. Log by M. Page.				(B-14-7)2bab-1. Log by J. C. Peterson. Alt. 5,250 ft.	
Alt. 4,389 ft. 11"	6	(B-13-8)10dcc-1. Log by Arnold Elsing.		Silt and gravel	
bles	50	Alt. 4,685 ft.	(Gravel, large	
vel	160	С1ау	165	Clay and small gravel	
vel; water	190	Boulders	180	Clay and layered gravel	
d and gravel; no water	310 330	Clay and gravel	385 390	Clay and gravel.	
7el; water		Clay	408	Clay, white, and sand	
2-11)6abb-1. Log by D. E. Rogers.	ļ			Gravel, large	
Alt. 4,410 ft.				Clay, layered	
	4	(B-13-8)21dcd-1. Log by Arnold Elsing.		Clay, white and brown, and coarse sand	
oil	36	A1+ 4 605 FF			
and gravel	36 70	Alt. 4,605 ft. Clay	120	Limestone, large, gravelly	
i and gravel. <	36 70 110	Clay	140	Cobbles	
i and gravel	70 110 128	Clay	140 230	Cobbles	
I and gravel	70 110 128 135	Clay Boulders Rock, layered Rock, dark, hard	140 230 270	Cobbles	:
d and gravel	70 110 128 135 160	Clay Boulders Rock, layered Rock, dark, hard Rock, light, hard	140 230	Cobbles	
<pre>d and gravel</pre>	70 110 128 135	Clay Boulders Rock, layered Rock, dark, hard	140 230 270 325	Cobbles	
<pre>d and gravel</pre>	70 110 128 135 160 185 200 230	Clay	140 230 270 325	Cobbles	
<pre>i and gravel</pre>	70 110 128 135 160 185 200 230 265	Clay Boulders Rock, layered Rock, dark, hard Rock, light, hard No cuttings (presumed to be hard rock) (<u>B-13-9)ladc-1</u> . Log by A. P. Lloyd.	140 230 270 325	Cobbles	
d and gravel	70 110 128 135 160 185 200 230 265 267	Clay	140 230 270 325 362	Cobbles Limestone, large, gravelly Limestone, large, gravelly. and sand Clay, silt, sand, gravel, and gravelly lime- stone Clay, gravel, cobbles, and limestone Sand, gravel, cobbles, and limestone Clay, white, gray, and black, gravel, and cobbles	
<pre>i and gravel</pre>	70 110 128 135 160 185 200 230 265 265 267 270	Clay	140 230 270 325	Cobbles	
<pre>d and gravel</pre>	70 110 128 135 160 185 200 230 265 267	Clay Rock, layered Rock, dark, hard No cuttings (presumed to be hard rock) (<u>B-13-9)ladc-1</u> . Log by A. P. Lloyd. <u>Alt. 4,555 ft.</u> Clay Laya, broken, porous	140 230 270 325 362 12	Cobbles	
d and gravel	70 110 128 135 160 185 200 230 265 265 267 270	Clay	140 230 270 325 362 12 268 280 305	Cobbles	
<pre>d and gravel</pre>	70 110 128 135 160 185 200 230 265 267 270 278	Clay	140 230 270 325 362 12 268 280 305 325	Cobbles	
d and gravel	70 110 128 135 160 185 200 230 265 267 270 278	Clay	140 230 270 325 362 12 268 280 305 325 332	Cobbles	
d and gravel	70 110 128 135 160 185 200 230 265 267 270 278 12 48	Clay	140 230 270 325 362 268 280 305 325 332 364	Cobbles	
d and gravel	70 110 128 135 160 185 200 230 265 267 270 278 12 48 53	Clay	140 230 270 325 362 12 268 280 305 325 332	Cobbles	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
d and gravel	70 110 128 135 160 185 200 230 265 267 270 278 12 48	Clay	140 230 270 325 362 12 268 280 305 325 332 364 372 364 372 385 402	Cobbles	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
aoil	70 110 128 135 160 185 200 230 265 267 270 278 12 48 53 73 90 0105	Clay	140 230 325 362 12 268 280 305 325 332 364 372 385 402 412	Cobbles Limestone, large, gravelly, and sand Clay, silt, sand, gravel, and gravelly lime- stone Sand, gravel, cobbles, and limestone Clay, white, gray, and black, gravel, and cobbles Sand and gravel Clay, white, gray, and black, and cobbles. Sand and gravel Clay, white, gray, and black, and gravel. Sand, gravel, and cobbles Clay, white, gray, and black, and gravel. Sand, gravel, and cobbles Clay and gravel. Lay and gravel. Clay and gravel. Clay and gravel. Clay and gravel. Clay and gravel. Sand and gravel. Sand and gravel. Sand and gravel. Sand and gravel. Clay and gravel. Sand and gravel.	1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
d and gravel	70 110 128 135 160 185 200 230 265 267 270 278 12 48 53 73 90 105 107	Clay	140 230 270 325 362 12 268 280 305 325 332 364 372 364 372 385 402	Cobbles	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
d and gravel	70 110 128 135 160 185 200 230 265 267 270 278 12 48 53 73 90 0105	Clay	140 230 325 362 12 268 280 305 325 332 364 372 385 402 412	Cobbles Limestone, large, gravelly, and sand Clay, silt, sand, gravel, and gravelly lime- stone Sand, gravel, cobbles, and limestone Clay, white, gray, and black, gravel, and cobbles Sand and gravel Clay, white, gray, and black, and cobbles. Sand and gravel Clay, white, gray, and black, and gravel. Sand, gravel, and cobbles Clay, white, gray, and black, and gravel. Sand, gravel, and cobbles Clay and gravel. Lay and gravel. Clay and gravel. Clay and gravel. Clay and gravel. Clay and gravel. Sand and gravel. Sand and gravel. Sand and gravel. Sand and gravel. Clay and gravel.	

Table 7.--Logs of selected wells and test holes - Continued

Material	Depth	Material	Depth	Material	Dep
		Box Elder County, Utah - Continued			
B-14-7)5aca-1 - Continued		(B-14-8) 6acd-1. Log by Waymon Yarbrough.		(B-14-9)1dda-3 - Continued	
onglomerate	135 150	Alt. 4,490 ft. Clay and sand	72	Lava	243 253
lay, yellow	190	Lava, black	100	Clay	255
ay and gravel	210	Clay and sand	160		
ay and sand	225	С1ау	170	(B-14-9)3bbb-1. Log by J. C. Peterson.	
avel	235	Sand, red; first water	190	Alt. 4,412 ft.	_
y and boulders	250	Lava, black	220	Topsoil	5
14-7) Zees-1 Lee by Waymon Verbrauch		Gravel, red	230 280	Clay and silt	34 38
<u>14-7)7aaa-1</u> . Log by Waymon Yarbrough. Alt. 4,705 ft.		Clay and gravel	300	Clay, brown	42
opsoil"	3	Gravel, dark	380	Clay and sand.	4
avel	5	Rock, dark (lava[?])	420	Clay, brown	57
ay, gray	32	Gravel, dark	460	Clay, sand, and gravel	7:
ay, brown	38			Clay, buff	79
avel, pea	54 60	(B-14-8)11bca-1. Log by T. J. Burkhart Co. Alt. 4,526 ft.		Clay, sandy, and small gravel	9
ay, brown, with gravel	69	Clay, light	30	Clay, red	13
avel, cemented	72	Clay, light, sandy	34	Clay, white	14
ay, soft; first water	74	Lava, fractured	41	Cobbles, lava	14
ivel	84	Lava, hard	51	Sand and fractured lava	15
ay and gravel	86 90	Clay, light, sandy	77	Clay, white	15 19
y and gravel	93	Clay, brown.	131	Sand and fractured lava	20
vel	94	Sand and gravel	145		
avel with brown clay	100	Gravel	160	(B-14-9)4bbb-2. Log by Waymon Yarbrough.	
-14-8)2aba-2. Log by Waymon Yarbrough.		Gravel, crushed	200 216	Alt. 4,415 ft. "Topsoil"	1
Alt. 4,535 ft.		Clay, gray, dense	220	Clay	8
psoil"	8	Gravel	237	Sand and pea gravel	9
11, sandy	40	Clay, blue, and gravel	281	Clay	17
avel and sand; first water	47	Gravel, pea	287	Lava	19
ay, blue	80 90	Gravel	313 346	Lava, red	20 22
ay, brown	100	Gravel	346	Lava, Diack	22
y, brown.	128	Clay, light	381	Sand, clayey	24
vel	132	Clay, gravel, and slate	395	Clay	26
y	138	Slate	416	Sand, cemented	270
wel	147 151	(B-14-8)28bbb-1. Log by T. J. Burkhart.		Clay	28 30
vel	155	Alt. 4,539 ft.		Gravel	32
y, brown	158	Clay, light	20	Clay	340
vel	161	Sand, light	24	Clay, sandy	36
19, brown	164 171	Lava, dark	132 138	Sand and gravel	370
y, blue	197	Clay and gravel.	145	Clay	37
vel	206	Sand and gravel; water	155	(B-14-9)4ccc-1. Log by Waymon Yarbrough.	
ay, brown, gravelly	241	Clay, light	175	Alt. 4,394 ft.	
ay, gray	244	Clay, dark	188	Topsoil	20
avel	247	Lava, dark	246 486	Clay, brown, and topsoil	80 120
-14-8)2das-1. Log by G. Beukenhurst.		Sand and gravel.	511	Clay, light	140
Alt. 4,540 ft.		Bedrock.	650	Sand, red	160
soil	3			Clay, brown	17
ny and cobbles	48	(B-14-8)32aaa-1. Log by L. H. Stoddard.		Clay, blue-green	18
avel; water bearing	50 72	Alt. 4,550 ft. Topsoil	3	Lava and gravel; water	19 20
avel; water bearing	74		50	Lava, plack	200
ay and cobbles	240		162	Lava, hard	24
		Limestone, blue	283	Lava, red, hard	25
14-8)3dcb-1. Log by Siaperas Drilling Co.	J	Lava	330	Clay, red, sandy	26
Alt. 4,575 ft.	10			Clay	270
psoil	10 22	(B-14-9)ldda-1. Log by T. J. Burkhart, Alt. 4,469 ft.		Clay, brown	28: 290
y and sand	41	Topsoil	2	Clay, hard	29
d and gravel	55	Clay, sandy	6	Sand	30
vel; water bearing	63	Clay	11	Clay, hard	31
14-8)5dcc-1. Log by Waymon Yarbrough.		Sand	13 56	Clay, brown	32
Alt. 4,510 ft.		Clay and gravel	107	Sand	33 34
t and sand	40	Shale and fractured lava	139	Sandstone	34
y and sard	61	Shale, sandy	154	Clay, sandy	35
a	93 113	Shale	188	Clay	36
y and sand; water	184	Lava	258 276	(B-14-9)5aas-1. Log by Waymon Yarbrough.	
y, cobbles, and lava	185	Gravel, cemented	314	Alt. 4,412 ft.	
lders and lava,	187	Gravel and sand	332	Topsoil	:
1, hard	198	Gravel, cemented	372	Hardpan	
y	212	Clay	380	Clay, brown.	6
vel, cemented	214 217	(B-14-9)1dda-2. Log by F. P. Conley.		Clay, light brown, and gravel	120
vel, cemented	217	$\frac{(B-14-9)1dda-2}{Alt. 4,465 ft.}$		Clay, brown	18
y	224	Clay, sandy	42	Rock	222
vel, cemented	225	С1ау	46	Clay and sand	230
y and pea gravel	238	Lava	104	Clay, sandy	27
vel, pea	242 247	Clay	181 242	(B-14-9) Sabb-1. Log by Waymon Yarbrough.	
vel	248	Clay, brown	256	Alt. 4,416 ft.	
y and sand	268	Gravel, coarse	258	Topsoil	14
y, hard	270	Clay	264	Clay	130
y and sand	310 312	Clay, sandy	312	Sand and gravel	150
vel	312 324	(B-14-9)1dda-3. Log by F. P. Conley.		Clay	193
y and sand	340	$\frac{(B-14-9)1dda-3}{Alt. 4,465 ft.}$ Log by F. P. Conley.	ł	Clay	210
y and boulders	342	Topsoil	21	Lava	217
y	344	Clay	41	Clay	235
y, sand, and cobbles	347	Lava	106	Sand and gravel	265
y, sand, and gravel	365	Clay, brown	130	Clay	275
	367	Clay; water	135	Silt	280
	375		100 1		300
y and sand	375 381	Clay, brown	190 192	Clay	300 335

Table 7. -- Logs of selected wells and test holes - Continued

Material	Depth	Material	Depth	Material	De
		Box Elder County, Utah - Continued			
-14-9)5abb-1 - Continued		(B-14-9) 5cdb-1 - Continued	-	(B-14-9)21bbb-1 - Continued	
1t	355	Gravel	340	Clay, red-brown	נ נ
ndstone	360 385	Clay, sandy	355	Clay, red	1
nd and gravel	405	(B-14-9)9baa-1. Log by J. S. Lee and Sons.		Clay, red, and small gravel	1
		Alt. 4,395 ft.	120	Clay, red	í
-14-9)5bbb-1. Log by T. J. Burkhart. Alt. 4,420 ft.		Clay, brown	185	Clay, sand, and gravel	1
paoil	2	Lava	255	Sand	1
#y	26 76	Clay, brown, sandy	300 512	Clay, red	j
ay and gravel	160		660	Clay, sandy	1
ay and gravel	167	Lava, loose	672	Lava and clay	1
va	191 240	(B-14-9)11bcb-1. Log by F. A. Cagle.		Lava	
avel and sandy clay.	275	Alt. 4,398 ft.		Gravel	
ay, sandy.	280 300	Topsoil	3 34	Clay, lava, and gravel	
avel and sandy clay	300	Rock	44	Sand, fine, coarse gravel, and clay	
-14-9)5bcc-1. Log by Waymon Yarbrough.		Clay	60 104	Clay, buff	
Alt. 4,410 ft.	14	Rock	120	Clay, white	
opsoil"	138	Clay, bluish white	145	Sand, fine	
nd and gravel	150	Lava	245	Clay, buff	
ay	195 210	(B-14-9)14acd-1. Log by Arlo Lloyd.		Clay, red,	
va, broken; first water.	212	Alt. 4,410 ft.		Clay, sandy	
18	217	Well deepened from 338 ft	366	Sand, medium	
ay	235 265	Sand, brown	385	Sand, gravel, and cobbles	
	275	Clay, blue-green	405	Clay, buff	
	280	Diatomaceous earth, white (tuff[?]) Sand, clean,	410 416	Clay, sandy	
xy	300 3 3 5	Sand, clean	410	Clay, red	
ıy	340	Sand, brown.	439	Sand, coarse	
.t	355	Lava, dark	450	Clay	
undstone"	360 385	(B-14-9)18bdd-1. Log by Waymon Yarbrough.		Sand, fine	
	405	A1t. 4,369 ft.		Clay, black	
-		Clay, yellow	60 66	Sand, fine	
14-9) Sccd-1. Log by Waymon Yarbrough. Alt. 4,397 ft.		Clay, brown, hard	178	Clay, tuff	
soil and hardpan.	2	Lava, dark	265	Clay, lava cobbles, and small gravel	
ay	29	Clay, brown, sandy	290 300	Clay and lava	
rdpan,	31 53	Clay, yellow, sticky	385	Clay, sandy, and lava cobbles	
ay and gravel.	67	Clay, blue, sticky	400	Cobbles and clay with small gravel	
ndstone	75 94	(B-14-9)19bbb-1. Log by Waymon Yarbrough.		Sand, gravel, and lava cobbles	
ay, sandy	100	Alt. 4,371 ft.		Clay, gravel, and sand; water	
ay	110	Topsoil	5	Gravel and sand, coarse, and clay	
ndstone	112 153	Clay and silt	14 17	Gravel, clay, and cobbles	
ay, light	155	Clay, brown	20	Sand, clay, and gravel; water	
ay	172	Sand and small gravel	23		
ay, hard	175 178	Clay	25 27	(B-14-10)1bbb-1. Log by F. P. Conley. Alt. 4,438 ft.	
ay	182	Sand and silt	32	Topsoil	
va boulders	210	Sand and small gravel	37	Lava, gray, with crevices	
va	216	Gravel, sand, and clay	39 45	Lava, soft, light red, with crevices Lava, dark red, hard	
va, porous; water	222 231	Clay, brown	48	Lava, hard, gray, with large crevices.	
va, gravelly	233	Gravel, small, sand, and clay	129	Lava, hard, gray	
va boulders, porous.	248	Sand and clay	161 164	Lava, very hard	
va, hard	253 264	Bentonite	180	Clay, sandy; first water	
ay, sandy	272	Lava cinders	183	Rock, hard, white, brittle	
ay	274		198 200	Clay, brown, sandy; water	
ay, sandy	301 307	Clay	214	Clay, metallic	
Ly, sandy	323	Lava, red	218	Gravel and brown lava	
ay	327 338	Lava, black	224 230	Gravel, cemented	
iy	343	Lava, porous	235	Sand and gravel, cemented	
ay, hard, and gravel	344	Lava, hard	245	Sandstone, brown	
y, hard, and gravel.	345 347	Clay and lava boulders	248 260	Sand, brown, and shale	
and and clay.	365	Clay, hard	290	Gravel and sand	
nd; water	366	Clay, sandy	320	Sandstone.	
19, sandy	375 377	Sand, gray	350	Gravel and sand	
vel	379	(B-14-9)21bbb-1. Log by J. C. Peterson.		Sand	
ly, sandy	400	Alt. 4,365 ft.	4	(B-14-10)1dca-1. Log by F. P. Conley.	
14-9)5ccd-2. Log by Waymon Yarbrough.		Topsoil	18	Alt. 4,405 ft.	
Alt. 4,397 ft.		Silt and sand	20	Clay	
орвоі1"	12 135	Gravel, small	21 31	Gravel	
ay	142	Clay, sand, and gravel	55	Clay	
ıy	181	Clay	59	Lava	
cks"	253 290	Sand and clay	60 63	Clay and sand	
ay	300	Clay, brown.	70		
ay	305	Sand, brown	75	(B-14-10)5baa-1. Log by F. A. Cagle.	
nd, red, with clay	320	Clay, blue-green, and tuff	81 83	Alt. 4,510 ft. Gravel	
-14-9)5cdb-1. Log by F. P. Conley.		Sand, brown, fine	83 -88	Gravel	
Alt. 4,398 ft.		Sand, brown and black	92	Rock	
ay, sandy	113	Clay and lava gravel	116	Clay	
á y	179 252	Gravel, fine, and cobbles	118 121	Bentonite	
VA	265	Clay and lava.	131		
ale, red	329	Clay and lava gravel	133		

Table 7, -- Logs of selected wells and test holes - Continued

		Table 7Logs of selected wells and test holes	- Continu	Jed	
Material	Depth	Material	Depth	Material	Depth
		Box Elder County, Utah - Continued			
(B-14-10)5bba-1. Log by F. A. Cagle.		(B-14-10) 34bbb-1 - Continued		(B-15-9)29dbc-1 - Continued	
Alt. 4,610 ft.		Sandstone	323 335	Clay, sandy	178 180
Gravel and clay	105 108	Clay, brown	340	Clay	190
Hardpan	220	Grave1	350	Sandstone	
Gravel and clay	240 283	Clay, sandy, brown	365	Lava	238
Sandstone and clay, layered	303	(B-15-7)29dac-1. Log by S. Siaperas		Gravel and sand	250
(1) 1/ 10)1/and 2 . The full larger Verbrauch		Drilling Co. Alt. 4,800 ft.	12	Clay and sand	295 305
(B-14-10)14acd-2. Log by Waymon Yarbrough. Alt. 4,392 ft.		Topsoil	128	Clay	315
Clay	90	Gravel	130 158	Gravel	325 350
Lava	170 220	Sandstone and sand	161	Clay, sandy	375
Clay, pale gray	240 260	Sand and sandstone	175	Sandstone	385 395
Sand and pea gravel		(B-15-7)30cbc-1. Log by David Musselman.		Sandstone	400
Sand and shale		Alt. 4,575 ft. Clay, white	110	Sand	405 415
Lava, porous.	5.00	Clay, blue	154	Clay	425
(B-14-10)14bbc-1. Log by F. P. Conley. Alt. 4,423 ft.		Limestone and gravel	185 228	Gravel, cemented	430 440
Topsoil	25	num, billet to	220	Gravel, cemented	448
Gravel	39	(B-15-7) 32aca-1. Log by Waymon Yarbrough. Alt. 4,700 ft.		Clay	455 460
Clay	47 145	Topsoil, gravel, and clay	15	Lava boulders	480
Lava, decomposed	160	Clay, hard, and gravel	75		
Lava, hard	197 207	Boulders	100 115	(B-15-9)35abb-1. Log by Waymon Yarbrough. Alt. 4,484 ft.	
Lava, solid	267	Sand, clay, and gravel	145	Clay, yellow	98
Clay, white	286 385	Gravel, cemented, and sand	175 190	Rock, dark	145 185
Lava, hard	420	Gravel, cemented	195	First water	245
Clay, brown	480 530	Gravel and sand	210 240	Rock, brown	250
Sandstone	815	Shale and gravel	255	ROCK, gray	280 290
Gravel	840	Boulders and clay	275 290	Rock, brown	377
(B-14-10)14cbc-1. Log by Waymon Yarbrough.		Gravel, cemented	315	Lava, porous	404
Alt, 4,408 ft.	6	(B-15-8)25ddd-1. Log by David Musselman.		(B-15-10) 33ddd-1. Log by A. P. Lloyd.	
"Topsoil"	6 53	Alt. 4,560 ft.		Alt. 4,563 ft. Gravel	30
Lava	130	Clay, white	39	Boulders	51
Clay	137 215	Hardpan and conglomerate	41 94	Clay and gravel	72 87
Lava, porous	247	Hardpan	95	Lava, black	167
Rock, hard (lava)	255 260	Gravel	100	Clay, gray	233 355
Lava, porous	280	(B-15-8)31ccc-1. Log by Waymon Yarbrough.			335
Lava, hard	283 304	Alt. 4,590 ft. Clay	76	(B-15-10)36bbb-1. Log by F. P. Conley. Alt. 4,464 ft.	
Lava, hard	310	Lava	88	Topsoil.	2
Clay, gray	320 340	Clay	140	Clay and gravel	35
Clay, white	355	Sand and pea gravel; first water	187 290	Gravel	45 78
Clay	360 365	Sand and pea gravel	320	Clay, sticky	110
Clay, sandy	400	Clay, blue	345 360	Clay and gravel	123 127
(B-14-10)34bbb-1. Log by Gary Yarbrough.		Clay	380 400	Sandstone	137 174
Alt. 4,390 ft.		Clay	430	Lava	236
Clay, brown	7 25	Sand and muck	460 490	Lava, fractured, and clay	253
Boulders.	30	Lava	525	Clay, brown, red, and gray, and sandstone Sandstone	311 313
Clay, brown	40	Lava, hard	550	Clay	314
Sand and gravel	47 51	(B-15-9)29dbc-1. Log by Waymon Yarbrough.		Sandstone and clay, layered	405 416
Sand and gravel	73	Alt. 4,455 ft.		Sandstone and clay, layered	574
Clay, gray	110 168	Topsoil and gravel	2 55	Gravel, pea	588 598
Clay, blue	180	Sandstone	65	Lava, porous	607
Clay, brown	200 212	Sand	70 80	Lava, nonporous	613
Clay, brown	230	Sand	90	(B-15-11) 36ccc-1. Log by A. P. Lloyd.	
Sandstone	238 243	Clay	95 115	Alt. 4,900 ft. Clay, gravel, and cobbles	150
Sandstone	250	Clay	120	Limestone, dark gray	153
Clay, white, sandy	270 272	Sandstone	125 135	Clay and boulders	181 235
Clay, sandy, brown	310	Clay	145	Clay and gravel	259
Sandstone	312 322	Sand and pea gravel	155 165	Clay and sand	267 300
		,		Limestone, gray	320
		Oneida County, Idaho			
13S-33E-4aaa-1. Log by Waymon Yarbrough.		14S-30E-32cdd-1 - Continued		155-308-8aaa-1. Log by Sherman Couch.	
Alt. 5,260 ft.		Clay, gray, with gravel	19	Alt. 5,150 ft.	
Topsoil	2 21	Gravel and sandy clay	42 124	Topsoil	7 112
Gravel, loose	24	Limestone, gray, hard	127	Clay, brown, sandy	147
Gravel, cemented	26 55	Rock, gray, soft; water Limestone, gray, hard; water	131 133	Clay, brown	214 275
Sand, clayey	57	Limestone, gray, hard; water	202	Clay, sandy	357
Clay, yellow, with gravel	72 75			Gravel	367
Sand, clayey, soft	99	14S-33E-31acc-1. Log by Bernard Gardner. Alt. 4,800 ft.		Clay, sandy	490 760
21ay, soft	101	Soi1	1		
Sand, packed	105	Clay, gravelly	17 63	15S-30E-15bbb-1. Log by D. V. Robinson. Alt. 4,900 ft.	
14S-30E-32cdd-1. Log by Stanley Lloyd.		Gravel; water bearing	84	Topsoil	4
Alt. 5,150 ft. Sail	2	Clay, blue	95	Clay and gravel, light brown	25 70
	-				70

Material	Depth	Material	Depth	Material	Depth
		Oneida County, Idaho - Continued			
5S-30E-15bbb-1 - Continued		16S-32E-2bcd-1 - Continued		16S-32E-26caa-1 - Continued	
lay, yellow, with gravel	75	G ra vel	120	Sandstone	50
lay, sandy, brown.	80	Clay	125	Clay, hard	55
lay, brown, with gravel	90	Gravel	165	Clay, soft	70
lay, yellow, with gravel	267	Clay	167	Clay	85
ravel, small; making water	268	Gravel	178	Gravel	95
lay, yellow, with gravel	275	Rock	180	$Clay \dots \dots$	110
ravel, small; water.	280	Clay and gravel.	185	Gravel	120
and, fine, with gravel	285		190	Clay	130
		Clay	190		130
and and gravel, cemented	400			Sandstone	
ravel, fine, cemented.	410	16S-32E-14cbb-1. Log by Waymon Yarbrough.		Clay, sandy	140
ravel, fine, and sand, cemented	430	Alt. 4,590 ft.	[Clay, hard	145
ravel, fine, cemented	443	Clay and soil	40	Sandstone	147
lay, sandy, with gravel	458	Sand and gravel	65	Clay, pale, soft	150
lay and gravel	525	С1ау	75	Sandstone	155
ravel, fine; water	535	Gravel	78	Clay	170
	J	Sandstone	80	Clay, sandy	201
5S-30E-35dac-1. Log by Harry King.		Gravel	85	Clay, blue	207
Alt. 4,700 ft.	1	Sandstone	90	Gravel	217
and, windblown	16	Clay	105	Clay, brown	220
lay, tan	47	Gravel	110		
lay, tan, with gravel	83	Clay	118	16S-32E-27ddb-1. Log by Waymon Yarbrough.	
1ay, tan	102	Gravel	125	Alt. 4,559 ft.	
ay, tan, with gravel	150	Clay	128	Topsoil	8
ay, brown, with gravel	246	Gravel	135	Clay	23
ay, brown	342	Clay	145	Sand and clay; first water	40
ay, brown, with gravel	373	Sandstone.	150	Gravel	45
lay, tan, with gravel.	384	Clay	155	Sandstone	48
ravel, clayey; water	386	Gravel, big (coarse)	175	Sand and clay.	70
lay, brown, with gravel.	395	Clay, brown.	185		85
lay, tan, with gravel.	415		210	Clay, blue	
cavel, clayey; water	428	Clay, blue	210	Clay, hard	90
lay, brown	428	100 200 10hrs 1 - Yes by Hermon Harborn 1	1	Sand and clay	115
		16S-32E-16baa-1. Log by Waymon Yarbrough.		Sand and gravel,	125
ravel, clayey, tan; water	474	Alt. 4,576 ft.		Sandstone.	128
lay, brown	505	Topsoil	3	Gravel	135
		Clay	30	Clay and gravel	145
6S-32E-2bcd-1. Log by H. Vanderwood.	1	Sand and pea gravel; first water	40	Gravel	160
Alt. 4,604 ft.		С1ау	70	Clay, hard	185
psoil	2	Sandstone	71	Sand and clay	200
ay	33	Clay	80	Gravel, pea	210
ay, sandy	38	Sandstone	81	Clay	230
avel and sand	41	Sand and clay; little water	88 (
ay	43	Sandstone	90	16S-33E-18bbc-2. Log by Waymon Yarbrough.	
avel and sand	47	Sand and clay	100	Alt. 4,685 ft.	
avel	76		1	Topsoil	5
ay and gravel	85	16S-32E-26caa-1. Log by Waymon Yarbrough.		Clay, brown	10
ay	96	Alt. 4,562 ft.		Clay, yellow, sandy	20
avel	97	Topsoil	2	Gravel	24
.ay,	103	Clay	16		
ravel	108	Muck, sandy.	24	Clay, yellow	35
	111			Gravel, cemented	40
		С1ау	38	Clay, rusty and brown, with gravel	55
				Clay, gray	65

Table 7, --Logs of selected wells and test holes - Continued

Table	8	-Water	levels	ín	selected	observation	wells

								~)	
Water	levels	are	given	in	teet	below	Land	surface	

							Box Elde	r County, Utah	
(B-12-11) 5bbb-1.								(B-14-9)7hbb-1, Records available 1955-60, 1962, 1964-73.	
Nov. 5, 1953 Apr. 15, 1954	134.37 138.30		5, 1963 14, 1964	153.62 151.11	Mar. Nov.	11, 1970 4	158.91 159.11		.20 .90
Oct. 14	136.40		11, 1965	156.16	Mar.	22, 1971	159.07	Mar. 28, 1957 155.20 Mar. 11, 1965 159.00 Nov. 5 185	5.21
Nov. 2, 1955 Oct. 31, 1956	140.79 145.88	Nov.	2	156.51	Mar.	1, 1972 8	158.69		7.56
Mar. 28, 1957	140.15		14, 1966 10, 1967	161,48 163,10		9	154.30 154. 2 4		7.25 5.81
Oct. 17	149.60	Oct.	ร์	154.17	Dec.	20	159.68	Mar. 19, 1958 155.62 Mar. 9, 1967 183.24 Mar. 22, 1972 163	8.71
Oct. 16, 1958 Oct. 14, 1959	148.61 154.55	Nov.	5, 1969	171.83	Apr. Sept	4, 1973 18	157.47 168.17		L.79 4.54
	******						100.17	Mar. 29, 1960 154.20 Mar. 22, 1968 170.80	
(B-12-11)16cdc-1	. Records a 1967-68,			, 1938-46	, 1948-	59, 1961-65,		(B-14-9)9baa-1, Records available 1957-70.	
Oct. 31, 1935	9.26		2, 1949	8.60		12, 1961	13.28		0.24
May 11, 1936 Aug. 16	8.35 9.38		14, 1950 29, 1951	8.50 8.92	May Mar,	9, 1962 7, 1963	11.52 12.01),55),83
Oct. 10	9,55	Nov.	1	8.61	Dec.	5	12.92	Jan, 31, 1958 166,97 Sept. 30 163.94 Oct. 15 159	62
Oct. 12, 1938	8.97		24, 1952	8.88		14, 1964	12.25		8.08
Sept. 29, 1939 Oct. 9, 1940	8,34 8,33		5, 1953 14, 1954	8,98 8,36	Oct. Mar.	28 11, 1965	12.78 12.15		.68 .12
Oct. 8, 1941	8.94	Oct.	14	9.35	Aug.	5	13,68	May 31 166,57 Jan. 5, 1961 162,95 Mar. 31 156	.61
Aug. 6, 1942 Oct. 5	8,79		2, 1955	9,59	Nov.	2	12.90		.60
Sept. 27, 1943	9,08 9,08		31, 1956 28, 1957	10,05 9,32	Oct,	10, 1967 5	13.50 17.10		1.72
Oct. 24, 1944	8,86	Oct,	17	10,70	Oct.	29, 1968	13.72	Sept. 30 166.84 May 25 163.10 July 31 159	.34
Oct. 25, 1945 Oct. 24, 1946	8.24		16, 1958 14, 1959	11.24 11.57	Aug. Mar	4, 1971 22, 1972	14.50 12.34	Oct. 15 166.82 July 5 164.05 Aug. 31 158 Feb. 28, 1959 165.93 Oct. 31 163.80 Sept. 30 158	
Oct. 23, 1948	8.57	Apr.	5, 1961	11.37	Dec.		13.41	Mar, 31 165.63 Nov, 30 163.53 Oct. 31 157	
								Apr. 30 165.37 Dec. 31 163.37 Nov. 30 156	
(B-14-8)1ddd-1. Oct. 16, 1957	Records ava 58.22		1957, 196	55,64	Oct.	29, 1968	56.03	May 31 165.62 Jan. 31, 1962 163.04 Dec. 15 156 June 30 165.89 Feb. 28 162.75 Jan. 31, 1965 155	.32
Mar, 29, 1960	55.63	Aug.	5	55.72	Nov.	5, 1969	56.86	July 31 165.78 Mar. 31 162.55 Feb. 28 155	.15
Oct, 26 Apr. 4, 1961	55.59 55.58	Mar. Oct.	23, 1966	55.71 55.90	Mar. Mar.	10, 1970 22, 1971	55.97 56.25	Aug, 31 165,52 June 30 163.57 Mar. 31 155 Sept. 30 165.47 July 20 163.90 Apr. 30 154	
Oct. 17, 1962	55,92	Mar,	9, 1967	55,77	Mar.		56.44	Sept. 30 165.47 July 20 163.90 Apr. 30 154 Oct. 31 165.47 Aug. 31 163.80 May 31 156	
Mar, 6, 1963	55.80	Oct.	6	56.19	Dec.	20	56.92	Nov, 30 165.09 Sept. 5 163.62 June 30 157	.83
Oct. 28, 1964	55.85	Mar.	22, 1968	55.89	Apr.	4, 1973	57.19	Dec. 31 164.60 Oct. 15 164.02 July 31 159 Jan. 31, 1960 164.55 Dec. 20 163.37 Aug. 31 158	
(B-14-8)2aba-1.	Records av	ailable	1948-70.					Feb. 29 164.42 Mar. 31, 1963 159.12 Sept. 30 158	
Oct. 22, 1948	30.96		28, 1957	31,46		28, 1964	31.15	Mar. 31 164,30 Apr. 30 159.27 Oct. 31 157	
Oct. 18, 1949 Nov. 15, 1950	30.42 31.30	Oct. Mar	16 19, 1958	30.00 32,71	Mar. Aug.	11, 1965 5	33.54 28.06	Apr. 30 164.35 May 31 158.99 Nov. 30 157 May 31 164.43 June 30 159.41 Dec. 22 156	
Aug. 28, 1951	23.80	Oct.		33.53	Nov.	2	30.34	Well plugged back to 341 feet in summer of 1966; water levels from October 1	
Oct. 31	27.31		24, 1959	30.57		23, 1966	32.16	on do not represent the same water-bearing zones as earlier records.	2.0
May 28, 1952 Oct. 23	27.45 29.53	Oct. Mar.	29, 1960	29.86 33.60	Oct. Aug.	8, 1967	31.57 30.18	Mar. 25, 1966 155.44 Nov. 30, 1967 172.08 Jan. 22, 1969 171 Oct. 31 171.97 Dec. 10 171.58 Mar. 21 171	.35
Mar. 31, 1953	31.95	Oct,	26	31.04	Oct.	6	31,50	Nov. 30 171.49 Jan. 25, 1968 171.27 Apr. 16 171	. 50
Nov. 5	31,25 32,77		4, 1961	33.58		22, 1968 29	33.50	Dec. 31 171.13 Feb. 29 171.20 May 13 171 Feb. 5, 1967 171.00 Mar. 31 170.90 26 174	
Apr. 14, 1954 Oct. 12	31.35	May Oct.	9, 1962 17	29.84 30.69	Oct, Nov.	5, 1969	32.95 32.37	Mar. 10 170.50 Apr. 30 170.95 June 23 174	
Nov. 1, 1955	30,42	Mar.	6, 1963	33.48		10, 1970	33,98	June 30 172.40 May 31 173.58 July 29 176	
Apr. 4, 1956	31.03	Dec.	4	30.06				Aug. 20 172.02 June 30 174.54 Mar. 10, 1970 171 Oct. 31 174.38 Oct. 29 1/2.33 Nov. 4 174	
(B-14-8) 11aba-1.	Records av			1943-73.		0 10/0	12.01		
Oct. 9, 1936 Mar. 13, 1937	46.24 47.60	July Nov.	1, 1950 15	43.45 42.02	May Oct	9, 1962 17	43.84 40.82	<u>(B-14-9)10ada-1</u> . Records available 1936-42, 1944-55, 1957-72. May 11, 1936 100.13 Oct. 25, 1945 96.66 Apr. 4, 1961 98	.74
Sept. 24	46.50		27, 1951	40.08	Mar.	6, 1963	43,82		.85
Feb. 10, 1938	45.20	Oct.		39.55	Dec.	4	40.13		.93
Apr. 18 June 25	46.00 46.80		28, 1952 23	40.40 40.76	Oct,	13, 1964 28	44.10 40.49	Mar. 13, 1937 98.80 Oct. 22, 1948 96.74 Dec. 4 99 Sept. 24 97.72 Oct. 18, 1949 96.50 Mar. 13, 1964 100	.68
Oct. 11	45.30	Nov.	5, 1953	42.76		11, 1965	42.36	Apr. 18, 1938 99,90 Nov. 15, 1950 96.00 Oct. 28 98	.43
Dec. 10	45.79		14, 1954	45.78	Aug.	5 2	40.49	June 25 99,65 Aug. 28, 1951 96.41 Mar. 11, 1965 101	
Aug. 8, 1939 Sept. 28	47.70 46,92	Oct. Nov,	1, 1955	43,50 39,66	Nov. Oct.	12, 1966	40.90 41.40	Oct. 11 97.24 Oct. 31 96.14 Aug. 5 100 Dec. 10 98.01 May 28, 1952 98.05 Nov. 2 99	
Dec. 26	46.47	Apr.	4, 1956	42.85	Mar,	9, 1967	45.03	Apr. 6, 1939 100.50 Oct. 23 97.73 Mar. 23, 1966 100	.17
Apr. 1, 1940 Oct. 9	48.00 47.73	Oct. Mar,	31 28, 1957	40.94 44.12	Oct, Mar	6 22, 1968	40.54 45.13	Aug. 8 96.67 Nov. 5, 1953 97.19 Oct. 12 100 Sept. 28 97.33 Apr. 14, 1954 98.57 Mar. 9, 1967 99	.90 .80
Mar. 13, 1941	47.02	Oct.	16	41.48	Oct.	29	41.31	Dec. 26 95.92 Oct. 12 97.98 Oct. 6 97	.65
Oct. 8	47.00		19, 1958	43.35	Oct.	29, 1969	41.31		.35
Sept. 26, 1943 Oct. 23, 1944	45.50 46.13		15 24, 1959	41.02 43.98	Nov. Mar.	5 10, 1970	41.57 42.79		.30 .74
Oct. 25, 1945	44.42	Oct.	13	40.69	Mar.	22, 1971	41.13	Oct. 7 97.20 Oct. 15 98.70 Nov. 5 102	.73
Oct. 24, 1946 Oct. 28, 1947	43.59 44.98	Mar. Oct.	29, 1960 26	44.55 41.72	Mar, Dec.	23, 1972 20	43.29 41.81	Aug. 6, 1942 97.55 Mar. 24, 1959 98.45 Mar. 10, 1970 99 Oct. 5 96.90 Oct. 13 98.10 Mar. 23, 1971 100	.46
Oct. 22, 1948	43.25		4, 1961		Mar.	7, 1973	45.04	Oct. 23, 1944 97.34 Mar. 29, 1960 99.20 Dec. 20, 1972 101	
Oct. 18, 1949	41.47							(B-15-10)36bbb-1. Records available 1956-61, 1963-73.	
(B-14-9) 1dda-1.	Records ava							May 24, 1956 164.62 Mar. 6, 1963 165.36 Oct. 29, 1968 169	
July 27, 1955 Nov. 1	167.33		24, 1959 29, 1960	172,67 174.25		11, 1967 22, 1968	183.29 182.10	Aug. 15 164.76 Mar. 13, 1964 165.85 Apr. 5, 1969 169. Oct. 16, 1957 163.25 Dec. 16 167.07 Nov. 5 177.	
NOV. 1 Apr. 4, 1956	167.45 172.30		4, 1960	174.25	Mar. Oct.		182.10	Oct. 16, 1957 163.25 Dec. 16 167.07 Nov. 5 177. Oct. 16, 1958 163.25 Mar. 11, 1965 166.27 Mar. 11, 1970 176.	
Aug. 14	172.81	May	9, 1962	173.92	Mar.	18, 1969	176.44	Mar. 24, 1959 162.96 Oct. 12, 1966 184.30 Nov. 4 171.	.08
Dec. 18 Mar. 28, 1957	1 1.87 171.50		28, 1964 11, 1965	174.74 174.92	Apr. Nov.		194.70 218.33	July 9 164.26 Mar. 9, 1967 185.10 Mar. 23, 1971 174. Oct. 13 164.37 Oct. 5 183.60 Mar. 23, 1972 180.	
Oct. 16	173.17	Oct.	12, 1966	181.18		24, 1970	177.06	Mar. 29, 1960 163.58 Mar. 22, 1968 181.20 Apr. 4, 1973 170.	
Dec. 13	172,32	Mar,	9, 1967	183.07				Apr. 4, 1961 164,85 Sept. 18 173.	

West Locomotive Spring at Locomotive Springs, near Snowville, Utah

Location.--Lat 41°43'20", long 112°56'07", in SW2 sec. 36, T. 12 N., R. 10 W., Box Elder County, at Locomotive Springs State Waterfowl Management Area on the north end of Great Salt Lake and 20 miles (32 km) southwest of Snowville.

Period of record .-- December 1968 to September 1973.

Gage.--Water-stage recorder. Datum of gage is 4,214.6 ft (1,284.61 m) above mean sea level.

Remarks.--Records poor. Figures given herein include discharge of Baker Spring (lat 41°42'54", long 112°56'32", in NW%NE½ sec. 2, T. 11 N., R. 10 W.) measured at outlet of spring pond. The two spring ponds are connected by a canal, and most of the flow can be diverted to either gage. At times water is diverted from the ponds and is not measured by either gage.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1968 TO SEPTEMBER 1969

DAY	OCT	VCM	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		/	17	16	16	16	19	17	25	21	11	16
2			17	17	16	16	19	17	25	23	11	17
2 3			20	17	16	16	20	17	25	24	11	17
4			19	16	16	16	20	17	25	24	11	17
5			17	16	16	17	20	17	25	24	11	17
6			16	16	16	17	20	16	25	24	11	16
7			16	16	16	17	20	16	24	24	11	16
8			16	16	16	17	20	21	24	24	11	16
9			16	16	16	17	20	24	22	23	11	16
10			16	16	16	18	20	24	24	23	11	13
11			16	16	16	18	20	23	23	23	11	12
12			16	16	16	18	20	22	23	22	11	12
13			16	16	16	18	21	22	23	22	11	14
14			16	16	16	18	21	24	23	22	11	14
15			16	16	16	18	21	23	23	17	11	14
16			16	16	16	18	20	23	23	13	11	20
17			16	16	16	18	20	22	23	14	20	20
18			16	16	16	18	20	21	24	14	16	14
- 19			16	16	16	18	20	21	24	14	12	12
20			16	16	16	18	19	20	24	14	12	13
21			17	16	16	18	18	20	23	14	12	13
22			17	16	16	18	18	20	23	14	12	13
23			17	16	16	18	18	21	23	13	12	12
24			17	16	16	18	18	21	24	13	13	11
25			17	16	16	18	18	21	23	13	13	11
26			17	16	16	20	18	21	22	13	13	13
27			17	16	16	20	18	22	22	13	13	13
28			17	16	16.	20	18	22	21	13	14	13
29			17	16		20	17	22	21	13	14	14
30			17	16		19	17	22	21	12	14	15
31			18	16		19		22		12	16	
TOTAL			518	498	448	555	578	641	700	552	382	434
MEAN			16.7	16.1	16.0	17.9	19.3	20.7	23.3	17.8	12.3	14.5
MAX			20	17	16	20	21	24	25	24	20	20
MIN			16	16	16	16	17	16	21	12	11	11
AC-FT			1,030	988	889	1,100	1,150	1,270	1,390	1,090	758	861

		DISCHARGE	IN CUBIC	FEETI	PER SECOND,	WATER	YEAR OCTOBER	1969	TO SEPTEMB	ER 1970		
DAY	OCT	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15	17	21	21	22	24	23	23	20	17	1.9	13
2	15	16	21	21	23	24	23	23	20	17	1.9	9.8
3	15	17	22	21	23	24	23	23	20	17	1.9	9.0
5	15 15	17	22	21	23	23	23	23	21	17	1.9	9.0
2	15	17	22	21	22	24	23	23	21	17	1.9	9.4
6	15	17	22	21	22	24	23	23	21	17	1.9	9.0
7	15	17	22	21	23	23	23	23	21	17	1.9	9.0
8	13	18	22	21	24	23	22	23	21	17	1.9	9.0
9	13	18	22	21	24	23	22	24	21	17	1.9	9.0
10	13	18	22	22	23	23	22	23	20	17	1.9	9.0
11	13	18	22	22	23	23	22	23	18	17	1.9	9.4
12	14	18	22	22	23	23	22	23	20	17	1.9	9.4
13	14	18	22	22	24	23	23	23	21	17	1.9	9.4
14	15	18	20	21	23	23	23	23	20	17	1.9	9.0
15	15	18	20	21	24	23	22	23	20	17	1.9	9.0
16	15	18	20	21	24	23	22	23	20	16	1.9	9.0
17	15	18	20	21	24	22	22	25	21	16	1.9	9.0
18	16	18	20	21	24	24	22	24	21	13	1.9	9.0
19	16	18	20	22	23	23	23	23	20	1.9	1.9	23
20	15	20	20	22	23	23	23	23	21	1.9	1.9	20
21	15	21	22	22	24	24	23	23	20	1.9	1.9	18
22	16	20	20	22	24	24	23	23	20	1.9	1.9	17
23	15	20	20	22	24	24	23	23	20	1.9	1.9	18
24	15	20	20	22	24	22	23	22	20	1.9	1.9	19
25	16	20	20	22	24	24	24	22	19	1.9	1.9	19
26	16	20	21	22	24	23	23	14	19	1.9	1.9	19
27	16	20	20	22	24	23	23	15	17	1.9	1.9	19
28	16	20	20	21	24	24	23	17	19	1.9	1.9	19
29	16	21	20	21		24	23	18	18	1.9	1.9	19
30 31	16	21	20	21		23	23	18	17	1.9	1.9	19
31	17		21	22		23		18		1.9	6.7	
TOTAL	466	557	648	665	656	723	682	677	597	324.7	63.7	397.4
MEAN	15.0			21.5	23.4	23.3		21.8	19.9	10.5	2.05	13.2
MAX	17	21	22	22	24	24	24	25	21	17	6.7	23
MIN	13	16	20	21	22	22	22	14	17	1.9	1.9	9.0
AC-FT	924	1,100 1	1,290 1	,320	1,300	1,430	1,350 1	,340	1,180	644	126	788
		AL 6,459.0			(25 MIN		AC-FT 12,810					
WTR YR	1970 TOT/	AL 6,456.8	MEAN 17.	7 MA)	(25 MIN	1.9	AC-FT 12,810					

Table 9.--Records of discharge of selected springs in the Locomotive Springs group - Continued West Locomotive Spring at Locomotive Springs, near Snowville, Utah - Continued

NOTE .-- No gage-height record May 26 to Sept. 18 at West Locomotive Spring.

65

÷.

		DISCHARGE	IN CUBIC	FEET	PER SECOND.	WATER	YEAR OCTOBE	R 1970	TO SEPTEM	BER 1971		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	20	20	19	20	20	20	22	22	26	25	9.0	25
2	19	20	19	19	20	20	22	22	24	25	29	25
3	20	20	19	18	20	20	22	22	25	25	26	25
4	20	20	19	21	20	21	22	22	25	25	25	24
5	20	20 -	19	21	20	20	22	22	24	25	24	24
6	20	20	19	20	19	21	22	23	24	25	24	25
7	20	20	19	20	19	21	22	23	24	9.2	23	25
8	20	19	19	21	19	21	23	22	24	7.7	23	24
9	20	19	20	21	19	22	22	22	26	7.8	23	25
10	20	19	20	21	19	22	22	22	24	7.9	23	25
11	20	19	20	21	19	22	23	22	27	7.9	23	24
12	20	19	20	21	19	22	23	22	25	7.9	23	24
13	20	19	20	20	20	22	22	22	26	7.9	22	24
14	20	19	20	20	20	22	23	22	26	7.9	27	24
15	20	19	20	20	21	22	22	22	26	7.9	26	24
16	20	19	20	20	21	22	23	22	24	7.9	26	22
17	20	19	20	20	21	22	23	23	24	7.9	24	23
18	20	18	20	20	20	22	22	19	26	7.9	24	23
19	20	19	19	20	20	22	22	22	26	9.0	24	20
20	20	19	19	20	20	22	22	23	26	9.0	24	19
21	20	19	20	20	20	22	22	23	25	9.0	24	20
22	20	19	20	20	20	22	22	24	25	7.9	24	21
23	21	19	20	20	20	22	22	24	26	7.9	24	21
24	20	19	20	20	20	22	22	24	27	7.9	24	21
25	20	19	20	20	19	22	23	24	25	7.9	24	21
26	19	19	20	20	21	22	23	25	25	7.9	24	21
27	20	19	20	20	20	22	23	24	26	9.0	24	21
28	20	19	20	20	20	22	22	24	26	9.0	25	21
29	20	19	20	20		22	22	23	25	9.0	26	21
30	20	20	20	20		22	23	24	25	9.0	25	22
31	20		20	20		22		24		9.0	25	
TOTAL	619	577	610	624	556	670	670	704	757	357.3	741.0	684
MEAN	20.0		19.7	20.1	19.9	21.6	22.3	22.7	25.2	11.5	23.9	22.8
MAX	21	20	20	21	21	22	23	25	27	25	29	25
MIN	19	18	19	18	19	20	22	19	24	7.7	9.0	19
AC-FT	1,230	1,140 1	,210 1	,240	1,100	1,330	1,330	1,400	1,500	709	1,470	1,360
CAL YR WTR YR		AL 6,591.8 AL 7,569.3	MEAN 18 Mean 20		X 25 MIN X 29 MIN		AC-FT 13,070 AC-FT 15,010					

West Locomotive Spring at Locomotive Springs, near Snowville, Utah - Continued

		DISCHARGE	IN CUBIC	FEET PS	EP SECOND.	WATER	YFAR OCTOBER	1971	TO SEPTEMBE	P 1972		
DAY	0 C T	NOV	DEC	JAN	FEB	MAP	APR	MAY	JUN	JUL	AUG	SEP
1	21	19	19	20	20	22	21	21	23	11	8.7	15
2	21	19	19	20	20	22	20	19	23	11	8.7	15
3	21	19	20	19	žõ	22	21	20	24	12	8.7	15
4	21	19	20	17	20	22	21	21	22	11		
5	20	19	19	20	20	22					8.7	15
-	20	.,	17	20	20	22	21	22	21	11	8.7	15
6	21	19	19	20	20	21	21	23	24	11	8.2	15
7	20	18/	19	20	21	22	21	23	25	11	8.3	15
8	20	19	17	20	21	22	21	23	23	11	8.3	15
9	20	19	21	20	20	22	21	23	23	11	8.3	15
10	20	19	20	19	20	22	21	22	22	13	8.3	16
11	20	19	21	20	20	21	21	22	22	13	8.3	16
12	20	19	20	19	20	21	21	22	20	14		
13	20	19	21	20	20	22					8.3	16
14	20	20	20	20			21	22	20	14	8.3	16
15	20	19	20	19	21	21	21	22	20	8.3	8.4	15
13	20	19	20	19	20	22	21	21	19	8.2	8.5	15
16	20	19	20	20	21	22	21	21	18	8.2	8.5	15
17	20	19	21	20	20	21	21	21	18	8.2	8.5	15
18	20	19	20	20	21	21	21	21	18	8.2	8.5	15
19	20	19	21	21	21	21	21	21	17	8.2	8.5	16
20	19	19	20	21	21	21	20	21	16	8.2	8.6	15
21	19	20	21	20	21	21	21	21	16	8.7		
22	20	19	21	20	21	21	21	21	-		8.6	15
23	20	20	21	20	21				14	8.7	8.7	15
24	19	19	21	20		20	21	22	14	8.7	22	15
25	19	19			21	21	21	22	14	8.7	15	15
23	17	19	21	20	22	21	21	22	13	8.7	15	19
26	19	19	21	20	21	21	21	22	12	9.2	15	16
27	19	20	20	20	21	21	21	23	12	9.2	15	16
28	18	19	20	20	22	21	21	22	13	9.2	15	16
29	18	19	20	20	22	21	20	23	13	9.2	15	16
30	19	19	20	20 -		21	21	22	11	9.2	16	16
31	19		20	20 -		21		23		9.2	15	
TOTAL	613	573	623	615	599	117	() 7					
MEAN	19.8			19.8	20.7	662	627	674	550	310.2	329.6	464
MAX	21					21.4		21.7	18.3	10.0	10.6	15.5
MIN		20	21	21		22	21	23	25	14	22	19
	18	18	17	17	20	20	20	19	11	8.2	8.2	15
AC-FT	1,220	1,140 1	,240 1	,220	1,190	1,310	1,240 1	,340	1,090	615	654	920
CAL YR WTR YR	1971 TOTA 1972 TOTA	AL 7,572.3 AL 6,639.8	MEAN 20. Mean 18.				AC-FT 15,020 AC-FT 13,170					

West Locomotive Spring at Locomotive Springs, near Snowville, Utah - Continued

DISCHARGE, IN CUBIC FEET PEP SECOND, WATER YEAR OCTOBER 1971 TO SEPTEMBER 1972

NOTE.--No gage-height record Jan. 13 to Feb. 18 at Baker Spring.

67

È.

		DISCHARGE	, IN CUBIC	FEET	PER SECOND,	WATER	YEAR DCTOBER	1972	TO SEPTEM	BER 1973		
YAG	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	15	16	18	20	22	20	21	24	19	6.4	7.9
2	16	15	15	18	20	20	20	21	19	19	4.7	7.9
3	16	15	15	18	20	20	20	21	20	19	4.7	7.9
4	16	15	15	18	20	22	20	21	19	19	4.7	7.9
5	16	15	14	20	20	20	21	21	20	19	6.4	7.9
6	16	15	16	20	20	20	19	21	20	19	4.7	7.9
7	16	15	16	20	20	20	20	20	20	19	4.7	7.9
8	16	15	16	20	20	20	21	21	18	19	6.4	7.9
9	16	15	12	20	20	20	21	21	19	19	6.4	7.9
10	16	15	14	20	20	22	21	21	19	19	4.7	7.9
11	16	15	14	20	20	22	21	21	19	20	6.4	7.9
12	16	15	16	20	22	22	21	21	19	20	4.7	7.9
13	16	15	16	20	20	21	21	22	19	18	6.4	7.9
14	16	14	16	20	20	21	21	22	22	21	6.4	9.1
15	16	14	16	20	20	21	21	22	20	11	6.4	9.1
16	16	16	18	20	20	21	21	20	19	10	6.4	8.0
17	16	16	18	20	20	21	21	22	19	12	4.7	8.0
18	15	16	18	20	20	21	21	23	19	13	6.5	8.0
19	16	16	18	20	20	21	21	22	20	13	6.5	8.1
20	16	14	13	20	20	21	21	23	19	9.0	6.5	8.0
21	16	14	18	20	20	21	21	22	20	7.9	6.5	8.0
22	16	14	18	20	20	21	22	21	19	9.0	6.5	8.0
23	16	15	18	18	20	21	21	20	20	7.9	6.5	8.0
24	16	15	18	20	22	21	21	20	19	6.5	6.5	8.1
25	16	16	18	20	20	21	21	24	20	6.4	6.5	8.1
26	16	14	18	20	22	21	21	20	19	7.8	7.9	8.1
27	16	14	18	20	22	21	21	20	20	5.4	6.5	10
28	16	14	18	20	20	20	21	21	19	6.4	7.9	9.2
29	16	14	13	20		21	21	22	19	7.8	4.8	9.2
30	16	14	18	20		20	21	22	19	6.4	4.8	9.2
31	16		13	20		20		19		6.4	7.9	
TOTAL	496	445	515	610	568	640	624	658	587	415.9	187.0	246.9
MEAN	16.0	14.8	16.6	19.7	20.3	20.8	20.8	21.2	19.6	13.4	6.03	8.23
M A X	ló	16	19	20	22	22	22	24	24	21	7.9	10
MIN	15	14	12	18	20	20	19	19	18	5.4	4.7	7.9
AC-FT	934			,210		1,280		,310	1,160	825	371	490
		AL 6,286.3 AL 5,998.3	MEAN 17. MEAN 16.		AX 25 MIN AX 24 MIN		AC-FT 12,470 AC-FT 11,900					

West Locomotive Spring at Locomotive Springs, near Snowville, Utah - Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1972 TO SEPTEMBER 1973

NOTE. -- No gage-height record Dec. 6 to Mar. 22 at Baker Spring.

Bar M Spring at Locomotive Springs, near Snowville, Utah

Location.--Lat 41°42'22", long 112°55'32", in SEz sec. 1, T. 11 N., R. 10 W., Box Elder County, at Locomotive Springs State Waterfowl Management Area on the north end of Great Salt Lake and 20 miles (32 km) southwest of Snowville.

Period of record. -- December 1968 to September 1973.

Gage. --Water-stage recorder and sharp-crested weirs. Datum of gage is 4,215.2 ft (1,284.79 m) above mean sea level.

Remarks. -- Records good.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1968 TO SEPTEMBER 1969

DAY	OC T	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			11	12	11	12	12	11	11	11	11	11
1 2 3			11	12	11	12	12	ii	11	11	ii	ii
			11	12	11	12	12	11	11	11	ĩĩ	ii
4			11	12	11	12	12	11	11	11	11	11
5			11	12	11	12	12	11	11	11	11	11
6			11	12	12	12	12	11	11	11	11	
7			11	12	12	12	12	11	11			11
8			11	12	11	12	12	11	11	11	11 11	11
9			11	11	11	12	12	11	11	11	11	
10			11	11	11	12	12	11	11	11	11	11
					**	12	12	11	11	11	11	. 11
11			11	11	12	12	12	11	11	11	11	11
12			11	11	12	12	12	11	11	iī	ii	ii
13			11	11	12	12	12	11	11	11	11	11
14			11	11	12	12	12	11	11	11	11	11
15			11	12	12	11	12	11	11	11	ĩĩ	ii
16			11	12	12							
17			11	11		11	12	11	11	11	11	11
18			11	11	12	11	11	11	11	11	11	11
19			11	11	12	11	12	11	11	11	11	11
20			11	12	12 12	11	12	12	11	11	11	11
20				12	12	11	11	11	11	11	11	11
21			12	12	12	11	11	11	11	11	11	11
22			12	12	12	11	11	11	11	11	11	11
23			12	11	12	11	11	11	ii	11	11	10
24			12	11	12	11	11	ii	ii	11	11	10
25			12	11	12	11	11	11	11	ii	11	10
26			12		12							
27				11	12	11	11	.11	11	11	11	10
28			12	11	12	11	11	11	11	11	11	10
29			12	11	12	12	11	11	11	11	11	11
30			12	11		12	11	11	11	11	11	-11
			12	11		12	11	11	11	11	11	11
31			12	11		. 12		11		11	11	
TOTAL			352	354	328	359	348	342	330	341	341	325
MEAN			11.4	11.4	11.7	11.6	11.6	11.0	11.0	11.0	11.0	10.8
MAX			12	12	12	12	12	12	11	11	11	11
MIN			11	11	11	11	11	11	11	11	11	10
AC-FT			698	702	651	712	690	678	655	676	676	645
							375	010	699	010	010	040

Bar M Spring at Locomotive Springs, near Snowville, Utah - Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1969 TO SEPTEMBER 1970

DAY	0C T	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10	11	11	10	10	11	11	10	11	9.7	10	10
2	11	11	11	10	10	10	11	10	11	10	10	10
3	10	11	11	10	10	10	10	11	11	10	10	9.4
4	10	11	11	10	10	10	10	11	11	10	10	10
5	10	11	11	11	10	11	11	11	11	10	10	9.4
											••	7 • •
6	10	11	11	11	10	11	11	11	11	10	10	9.4
7	10	11	11	11	10	11	11	11	11	10	10	9.4
8	11	11	11	11	10	11	10	11	12	10	10	9.4
9	11	11	11	11	10	11	10	11	12	10	10	9.4
10	11	11	11	11	10	11	11	11	12	10	10	9.4
11	11	11	11	11	10	11	10	11	11	10	10	9.4
12	10	11	11	11	10	11	10	11	12	10	10	9.4
13	10	11	ii	11	ii	11	11	11	11	10	10	9.4
14	11	11	11	ii	11	11	11	11	12	10	10	
15	11	11	11	11	10	11	11	11	12			9.2
	••	•••			10	11	11	11	12	10	10	9.2
16	11	11	11	11	11	11	11	11	12	10	10	9.2
17	11	11	11	11	11	11	11	11	11	10	10	9.2
18	11	11	11	11	10	11	11	11	11	10	10	9.2
19	11	11	11	11	10	11	11	11	11	10	10	9.4
20	11	11	11	11	10	11	11	11	11	10	10	9.4
21	11	11	11	11	11	11	11	11	10	10	10	9.4
22	11	11	11	11	11	11	10	11	10	10	10	9.4
23	11	11	11	11	10	11	10	11	10	10	10	9.4
24	11	11	11	11	10	11	10	11	10	10	10	9.2
25	11	11	11	10	10	10	10	11	10	10	10	9.2
26	11	11	11	10	10	11	11		10	10	10	
27	11	11	11	10	10	10	11	11 11	10	10	10	9.2
28	11	11	10						10	10	10	9.2
29	10			10	10	10	11	11	10	10	10	9.2
30		11	10	10		11	11	11	10	10	10	8.9
	10	11	10	10		11	11	12	9.7	10	10	8.9
31	10		10	10		11		11	*******	10	10	*****
TOTAL	330	330	337	330	286	335	320	340	326.7	309.7	310	280.8
MEAN	10.6	11.0	10.9	10.6	10.2	10.8	10.7	11.0	10.9	9.99	10.0	9.36
MAX	11	11	11	11	11	11	11	12	12	10	10.0	10
MIN	10	11	10	10	10	10	10	10	9.7	9.7	10	8.9
AC-FT	655	655	668	655	567	664	635	674				
- - · · ·			000	077		004	660	014	648	614	615	557
CAL YR WTR YR	1969 TOTA 1970 TOTA	L 4,065.0 L 3,835.2	MEAN I MEAN I			10 8.9	AC-FT 8,06 AC-FT 7,61					

Bar M Spring at Locomotive Springs, near Snowville, Utah - Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1970 TO SEPTEMBER 1971

DAY	OCT	NOV	DEC	J AN	FFB	MAF	APR	MAY	JUN	JUL	AU G	SEP
1	9.2	9.7	10	10	11	9.7	9.7	10	9.7	9.4	9.7	9.4
2	9.2	9.7	10	10	11	9.7	9.7	10	9.7	9.4	9.4	9.7
3	9.2	9.7	10	10	11	9.7	9.7	10	9.7	9.4	9.7	9.4
4	9.2	9.7	10	10	10	10	9.7	10	9.7	9.4	9.7	9.2
5	9.4	9.7	10	10	10	9.7	9.7	10	9.7	9.4	9.7	9.2
6	9.2	9.7	10	10	10	9.7	10	10	9.7	9.7	10	9.4
7	9.2	9.7	10	10	10	10	10	9.7	9.7	9.4	10	9.2
8	9.2	9.7	10	10	10	10	10	10	10	9.7	9.7	9.2
9	9.4	9.7	10	10	10	10	10	10	10	9.7	9.7	9.2
10	9.7	9.7	10	10	10	10	10	10	10	10	9.7	9.2
11	9.4	9.7	10	11	10	10	10	10	12	9.7	9.4	9.4
12	9.7	10	10	10	9.7	10	10	10	10	9.7	9.4	9.2
13	9.7	9.7	10	10	9.7	10	10	11	10	9.7	9.4	9.2
14	9.7	9.7	10	10	9.7	10	11	10	10	9.7	9.2	9.4
15	9.7	9.7	10	10	10	10	11	10	9.7	9.7	9.2	9.4
16	9.7	10	10	10	9.7	10	10	11	9.7	10	9.2	9.4
17	9.7	10	10	10	10	10	10	10	9.7	9.7	9.2	9.4
18	9.7	11	10	10	9.7	9.7	10	10	9.7	10	9.2	9.4
19	9.7	11	10	10	11	9.7	10	10	9.4	10	9.2	9.4
20	9.7	11	10	10	10	9.7	10	10	9.4	10	8.9	9.7
21	9.7	11	10	10	10	9.7	10	10	9.4	10	9.2	9.7
22	9.7	10	10	10	10	9.7	10	10	9.4	10	9.2	9.4
23	9.7	10	9.7	10	10	10	10	10	9.4	10	9.2	9.4
24	9.7	11	10	10	10	10	11	9.7	9.4	10	8.9	9.4
25	9.7	11	10	10	10	10	11	9.7	9.4	10	9.2	9.7
26	9.4	11	10	10	9.7	10	10	9.7	9.7	10	9.2	9.7
27	9.4	10	11	11	9.7	9.7	10	10	9.4	9.4	9.2	9.7
28	9.4	10	11	11	9.7	9.7	10	9.7	9.7	9.7	9.4	9.7
29	9.7	10	11	11		9.7	10	9.7	9.4	9.7	9.4	9.7
30	9.7	11	11	11		10	10	9.7	9.4	9.7	9.4	11
31	9.7		10	11		9.7		9.7		9.7	9.4	
TOTAL	295.4	303.8	313.7	316	281.6	305.8	302.5	309.6	292.1	301.9	291.3	284.4
MEAN	9.53	10.1	10.1	10.2	10.1	9.86	10.1	9.99	9.74	9.74	9.40	9.48
MAX	9.7	11	11	11	11	10	11	11	12	10	10	11
MIN	9.2	9.7	9.7	10	9.7	9.7	9.7	9.7	9.4	9.4	8.9	9.2
AC-FT	586	603	622	627	559	607	600	614	579	599	578	564

 CAL YR
 1970
 TOTAL
 3,751-1
 MEAN
 10.3
 MAX
 12
 MIN
 8.9
 AC-FT
 7,440

 WTR
 YR
 1971
 TOTAL
 3,598-1
 MEAN
 9.86
 MAX
 12
 MIN
 8.9
 AC-FT
 7,140

71

-

T a ble	9Records of	of discharge of	selected	springs i	<u>n the</u>	Locomotive	Springs	group -	Continued
----------------	-------------	-----------------	----------	-----------	--------------	------------	---------	---------	-----------

Bar M Spring at Locomotive Springs, near Snowville, Utah - Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1971 TO SEPTEMBER 1972

DAY	OCT	NOV	DEC	NAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10	10	9.7	9.7	9.7	9.4	10	10	10	10	10	10
2	10	10	9.7	10	9.7	9.7	10	10	10	10	10	10
3	9.7	9.7	10	10	9.7	9.7	10	10	ĩõ	10	10	10
4	9.7	9.7	9.7	10	9.7	9.7	10	11	10	10	10	10
5	9.7	10	9.7	10	9.7	9.7	10	10	10	10	10	11
								10	10	10	10	**
6	9.7	10	9.7	10	9.7	9.4	10	10	10	10	10	10
7	10	10	9.7	10	9.7	9.4	10	11	11	10	10	10
8	10	10	9.4	10	9.7	9.4	10	11	10	10	10	10
9	9.7	10	9.4	10	9.7	9.7	10	10	10	10	10	10
10	9.7	10	9.4	9.7	9.7	9.7	10	10	ii	10	10	10
		-					*0	10	••	10	10	10
11	9.7	10	9.4	9.4	9.7	9.7	10	10	10	10	10	10
12	9.7	10	9.4	9.7	9.7	9.7	10	10	9.7	10	10	10
13	9.7	9.7	9.4	9.7	9.7	9.7	10	10	9.7	10	10	9.7
14	10	10	9.4	9.4	9.7	9.7	10	10	9.7	10	10	
15	9.7	9.7	9.4	9.4	9.7	9.7	9.7	10	10	10	10	10
					, , , ,		7 • •	10	10	10	10	10
16	10	9.7	9.4	9.7	9.7	9.7	10	11	10	10	10	10
17	9.7	9.7	9.4	9.7	9.7	9.7	10	11	10	10		
18	9.7	9.7	9.4	9.7	9.4	9.7	10	11	10	10	10	10
19	9.7	9.7	9.4	10	9.4	9.7	10	10	9.7		10	10
20	9.4	9.7	9.4	9.7	9.4	9.7		10	9.7	10	10	9.7
					7.4.4	7 • 1	7.1	10	7.1	10	10	9.4
21	9.4	9.7	9.4	9.7	9.4	9.7	10	10	10	10	10	9.4
22	9.7	9.7	9.4	9.7	9.7	10	10	11	10	10	10	9.4
23	9.7	9.7	9.4	9.7	9.4	10	10	11	10	10		
24	10	9.7	9.4	9.4	9.7	9.7	10	11	10	10	10	9.7
25	10	9.7	9.7	9.7	9.7	10	10	10	10	10	10	9.7
						10	10	10	10	10	10	9.4
26	10	9.7	10	9.7	9.7	10	11	10	10	10	10	0.2
27	10	9.7	9.7	9.7	9.7	10	10	10	10	10	10	9.2
28	10	9.7	9.7	9.4	9.7	10	10	10	9.7	10	10	9.4
29	10	10	9.7	9.4	9.7	10	11	10	10	10	10	8.9
30	10	9.7	9.7	9.4		10	10	10	10	10	10	8.9
31	10		9.7	9.4	****	10		10			10	9.2
						10		10		10	10	
TOTAL	304.3	294.6	296.2	301.0	279.8	302.2	301.4	319	300.2	310	210	20.2 2
MEAN	9.82	9.82	9.55	9.71	9.65	9.75	10.0	10.3	10.0		310	293.3
MAX	10	10	10	10	9.7	10	11	10.5	10.0	10.0 10	10.0	9.78
MIN	9.4	9.7	9.4	9.4	9.4	9.4	9.7	10			10	11
AC-FT	604	584	588	597	555	599	598		9 . 7	10	10	8.9
- •			200			279	270	633	595	615	615	582
CAL YR	1971 TO	TAL 900.3	S MEAN	2.47 MA	X 12 MI	N 8.9	AC-FT 1.790					
		TAL 3,612.0) MEAN			N 8.9	AC-FT 7,160					
				200 °15	11 11	4 0.47	AC-FI (1100					

NOTE.--Backwater from moss July 4 to Sept. 1.

							YEAR OCTOBER					
YAC	OC T	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEI
1	9.2	9.4	9.2	9.2	9.2	9.7	9.7	9.2	10	8.9	9.4	9.4
2	9.2	9.4	9.2	9.2		9.7	9.7	8.9	9.7	8.9	9.4	9.4
3	9.2	9.4	9.2	9.2	9.2	9.4	9.7	8.9	9.7	8.9	9.4	9.4
4	9.4	9.4	9.2	9.2	9.2	9.7	9.4	9.4	9.7	8.9	9.7	9.0
5	9.4	9.4	9.2	9.2	9.2	9.7	9.4	9.4	9.7	8.9	9.4	9.
6	9.4	9.2	9.2	9.2	9.4	9.7	9.4	9.2	9.7	9.2	9.4	9.
7	9.4	9.2	9.2	9.2	9.7	9.7	9.4	9.2	9.7	8.9	9.4	9.
8	9.4	9.4	9.2	9.2	9.4	9.7	9.4	9.2	9.7	8.9	9.4	9.
9	9.4	9.2	9.2	9.2	9.4	9.7	9.4	9.2	9.7	8.9	9.4	9.
10	9.2	9.4	9.2	9.2	9.4	9.7	9.4	9.2	9.7	8.9	9.4	9.
11	9.2	9.4	9.2	9.2	9.4	10	9.4	8.9	9.7	9.2	9.4	9.
12	9.4	9.4	9.2	9.2	9.7	9.7	9.4	9.2	9.7	9.2	9.4	9.
13	9.4	9.2	9.2	9.2	9.4	9.7	9.7	9.4	9.7	9.2	9.4	9.
14	9.4	9.2	9.2	9.2	9.4	9.7	9.7	9.4	10	9.4	9.4	9.
15	9.4	9.2	9.2	9.2	9.4	9.4	9.4	9.4	9.7	9.2	9.4	9.
16	9.4	9.4	9.4	9.2	9.4	9.4	9.4	9.4	9.7	9.2	9.4	9.
17	9.4	9.4	9.4	9.2	9.4	9.4	9.7	9.7	9.7	9.4	9.4	9.
18	9.4	9.2	9.4	9.2	9.7	9.7	9.7	9.7	9.7	9.4	9.4	9.
19	9.7	9.4	9.4	9.2	9.4	9.4	9.7	9.7	9.7	9.7	9.4	9.
20	10	9.4	9.4	9.2	9.4	9.7	9.4	9.7	9.7	9.7	9.4	9.
21	9.4	9.2	9.4	9.2	9.4	9.7	9.4	9.7	9.7	9.7	9.7	9.
22	9.4	9.2	9.4	9.2	9.4	9.7	9.4	9.7	9.7	9.7	9.7	9.
23	9.4	9.2	9.4	9.2	9.7	9.7	9.4	9.7	9.7	9.7	9.7	9.
24	9.4	9.2	9.4	9.2	9.4	9.4	9.4	9.7	9.4	9.7	9.7	9.
25	9.4	9.2	9.4	9.2	9.4	9.7	9.4	10	9.4	9.7	9.7	9.
26	9.4	9.2	9.4	9.2	9.4	9.7	9.2	9.7	9.4	9.7	9.7	9.
27	9.4	9.2	9.4	9.2	9.7	9.7	9.2	9.7	9.4	9.7	9.4	9.
28	9.4	8.9	9.4	9.2	9.7	9.7	9.4	9.4	9.2	9.7	9.4	9.
29	9.4	8.9	9.4	9.2		9.7	9.4	9.7	9.2	9.7	9.4	10
30	9.4	9.2	9.4	9.2		9.4	9.4	9.7	9.2	9.4	9.4	10
31	9.4		9.4	9.2		9.7		9.7		9.4	9.7	
OTAL	291.3			285.2	264.0	298.9	284.0 2	93.0	288.9 2	89.0	293.8	289.
IEAN	9.40	9.27	9.30	9.20	9.43	9.64	9.47	9.45	9.63	9.32	9.48	9.6
AX	10	9.4	9.4	9.2	9.7	10	9.7	10	10	9.7	9.7	1
IIN	9.2	8.9	9.2	9.2	9.2	9.4	9.2	8.9	9.2	8.9	9.4	9.
C-FT	578	551	572	566	524	593	563	581	573	573	583	57

Bar M Spring at Locomotive Springs, near Snowville, Utah - Continued

WTR YR 1973 TOTAL 3,444.0 MEAN 9.44 MAX 10 MIN 8.9 AC-FT 6,830

73

-

Sparks Spring at Locomotive Springs, near Snowville, Utah

Location.--Lat 41°41'50", long 112°53'32", in NEz sec. 8, T. 11 N., R. 9 W., Box Elder County, at Locomotive Springs State Waterfowl Management Area on the north end of Great Salt Lake and 20 miles (32 km) southwest of Snowville.

Period of record. -- December 1968 to September 1973.

Gage.--Water-stage recorder and 6-inch Parshall flume. Datum of gage is 4,212 ft (1,283.8 m) above mean sea level.

Remarks.--Records fair.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	ALG	SEP
1			1.6	1.2	1.2	1.7	1.6	1.9	1.4	1.3	1.2	1.2
2			1.6	1.2	1.1	1.7	1.6	1.8	1.4	1.3	1.2	1.2
2 3			1.6	1.2	1.1	1.7	1.7	1.7	1.5	1.2	1.2	1.3
4			1.6	1.2	1.2	1.7	1.6	1.8	1.5	1.2	1.2	1.2
5			1.6	1.2	1.5	1.6	1.6	1.8	1.4	1.2	1.2	1.2
-												
6			1.6	1.2	1.7	1.7	1.7	1.7	1.4	1.3	1.2	1.2
7			1.6	1.2	1.7	1.7	1.7	1.7	1.3	1.2	1.2	1.3
8			1.6	1.2	1.7	1.6	1.6	1.7	1.4	1.2	1.2	1.3
9			1.6	1.2	1.7	1.7	1.6	1.7	1.4	1.2	1.2	1.3
10			1.6	1.2	1.7	1.6	1.6	1.7	1.4	1.2	1.2	1.3
11			1.6	1.2	1.7	1.7	1.7	1.7	1.4	1.2	1.3	1.3
12			1.9	1.2	1.7	1.7	1.6	1.7	1.4	1.2	1.3	1.3
13			1.2	1.2	1.7	1.7	1.7	1.7	1.3	1.2	1.2	1.3
14			1.3	1.2	1.7	1.6	1.7	1.7	1.3	1.1	1.3	1.3
15			1.3	1.2	1.7	1.6	1.8	1.6	1.3	1.2	1.3	1.2
16			1.3	1.2	1.7	1.7	1.7	1.6	1.4	1.1	1.3	1.3
17			1.3	1.2	1.7	1.7	1.6	1.6	1.4	1.1	1.2	1.2
18			1.2	1.2	1.7	1.7	1.8	1.6	1.3	1.1	1.3	1.2
19			1.3	1.2	1.7	1.7	1.6	1.6	1.3	1.1	1.3	1.2
20			1.0	1.2	1.7	1.7	1.7	1.6	1.3	1.2	1.2	1.2
21			1.0	1.2	1.7	1.7	1.7	1.6	1.3	1.2	1.2	1.3
22			1.1	1.3	1.7	1.6	1.7	1.6	1.3	1.2	1.2	1.3
23			1.2	1.2	1.7	1.8	1.7	1.6	1.2	1.2	1.2	1.3
24			1.2	1.2	1.7	1.5	1.9	1.6	1.4	1.2	1.2	1.3
25			1.2	1.2	1.9	1.6	1.8	1.5	1.3	1.2	1.2	1.3
26			1.2	1.2	1.8	1.6	1.8	1.5	1.3	1.2	1.2	1.3
27			1.2	1.2	1.7	1.6	1.7	1.6	1.3	1.2	1.2	1.3
28			1.2	1.2	1.7	1.6	1.7	1.4	1.2	1.2	1.2	1.3
29			1.2	1.1		1.6	1.9	1.4	1.3	1.2	1.2	1.3
30			1.2	1.1		1.6	1.7	1.6	1.2	1.2	1.2	1.3
31			1.2	1.1		1.6		1.5		1.2	1.2	
TOTAL			42.3	37.0	45.5	51.3	50.8	53.8	40.3	37.0	37.9	38.0
MEAN			1.36	1.19	1.63	1.65	1.69	1.64	1.34	1.19	1.22	1.27
MAX			1.9	1.3	1.9	1.8	1.9	1.9	1.5	1.3	1.3	1.3
MIN			1.C	1.1	1.1	1.5	1.6	1.4	1.2	1.1	1.2	1.2
AC-FT			84	73	90	132	101	101	80	73	75	75

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1968 TO SEPTEMBER 1969

Sparks Spring at Locomotive Springs, near Snowville, Utah - Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1969 TO SEPTEMBER 1970

DAY	DCT	NOV	DEC	JAN	FER	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.3	1.6	1.5	1.4	1.9	1.6	1.5	1.7	1.8	1.3	1.1	1.3
2	1.4	1.5	1.5	1.5	1.6	1.6	1.7	1.7	1.8			
3	1.3	1.6								1.3	1.1	1.3
4			1.5	1.5	1.6	1.5	1.6	1.7	1.8	1.3	1.1	1.3
	1.3	1.6	1.6	1.6	1.6	1.6	1.5	1.7	1.7	1.3	1.1	1.4
5	1.3	1.6	1.5	1.5	1.6	1.6	1.6	1.7	1.7	1.3	1.2	1.4
6	1.3	1.6	1.4	1.5	1.6	1.5	1.6	1.7	1.7	1.3	1.2	1.3
7	1.4	1.7	1.6	1.4	1.6	1.5		1.7	1.7	1.2	1.1	1.3
8	1.4	1.6	1.5	1.5	1.6	1.6		1.7	1.7	1.2	1.1	1.3
9	1.4	1.6	1.6									
10				1.7	1.6	1.5		1.7	1.9	1.2	1.2	1.2
10	1.5	1.6	1.5	1.7	1.6	1.6	1.6	1.7	2.0	1.2	1.1	1.3
11	1.4	1.6	1.5	1.7	1.6	1.5	1.7	1.7	1.7	1.2	1.1	1.3
12	1.3	1.6	1.6	1.7	1.6	1.6	1.6	1.7	1.8	1.1	1.1	1.3
13	1.4	1.6	1.5	1.7	1.7	1.5	1.6	1.7	1.7	1.2	1.1	1.3
14	1.4	1.6	1.5	1.7	1.6	1.6		1.6	1.7	1.1	1.1	1.3
15	1.4	1.6	1.5	1.7	1.6	1.7						
	•••	1.0	1	1.1	1.0	1	1.1	1.6	1.7	1.1	1.1	1.3
16	1.5	1.7	1.5	1.8	1.6	1.5	1.6	1.7	1.6	1.1	1.1	1.3
17	1.6	1.6	1.5	1.8	1.7	1.6	1.6	1.8	1.6	1.1	1.1	1.3
18	1.6	1.5	1.5	1.7	1.6	1.6	1.6	1.8	1.6	1.1	1.1	1.3
19	1.6	1.6	1.5	1.7	1.6	1.6	1.6	1.8	1.5	1.0	1.1	1.4
20	1.4	1.6	1.6	1.7	1.6	1.5						
		1.0	1.0	T • 1	1.0	1.00	1.6	1.8	1.5	1.1	1.2	1.3
21	1.5	1.6	1.6	1.7	1.6	1.6		1.9	1.5	1.0	1.2	1.3
22	1.4	1.6	1.5	1.7	1.6	1.5	1.6	1.8	1.5	1.1	1.2	1.3
23	1.5	1.5	1.5	1.7	1.6	1.6	1.6	1.9	1.4	1.0	1.2	1.3
24	1.5	1.6	1.5	1.7	1.6	1.7		1.8	1.4	1.1	1.2	1.3
25	1.5	1.5	1.6	1.6	1.6	1.4		1.8				
				1.0	1.0	1 • •	1.0	1.0	1.4	1.1	1.2	1.3
26	1.5	1.6	1.6	1.7	1.6	1.7	1.6	1.8	1.4	1.1	1.2	1.3
27	1.5	1.5	1.6	1.8	1.6	1.5		1.9	1.4	1.1	1.3	1.3
28	1.6	1.5	1.5	1.7	1.5	1.6		1.9	1.4	1.1	1.2	1.3
29	1.4	1.5	1.3	1.6								
30	1.5	1.5				1.6	1.6	1.8	1.4	1.1	1.2	1.3
			1.6	1.6		. 1.7	1.6	1.9	1.3	1.1	1.2	1.3
31	1.5		1.6	1.6		1.6		1.7		1.1	1.2	
TOTAL	44.6	47.4	47.3	51.0	45.2	48.8	48.2	54.4	48.3	35.6	35.7	39.2
MEAN	1.44	1.58	1.53	1.65	1.61	1.57		1.75	1.61	1.15	1.15	1.31
MAX	1.6	1.7	1.6	1.8	1.9	1.7		1.9				
MIN	1.3	1.5	1.3	1.4	1.5				2.0	1.3	1.3	1.4
						1.4		1.6	1.3	1.0	1.1	1.2
AC-FT	88	94	94	101	90	97	96	108	96	71	71	78
**	10/0											
	1969 TOTA		MEAN 1.45				AC-FT 1,050					
WTR YR	1970 TOTA	L 545.7	MEAN 1.50	MAX (2.0 MIN	1.0	AC-FT 1,080					

Table 9Records	of discharge of	selected sprin	gs in the	Locomotive	Springs	group - Continued

Sparks Spring at Locomotive Springs, near Snowville, Utah - Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1970 TO SEPTEMBER 1971

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AU G	SEP
1	1.3	1.4	1.5	1.5	1.6	1.6	1.5	2.0	1.7	1.6	1.2	1.1
2	1.3	1.4	1.5	1.5	1.6	1.6	1.6	2.0	1.7	1.5	1.2	1.1
3	1.3	1.4	1.5	1.5	1.6	1.6	1.7	2.0	1.7	1.5	1.2	1.1
4	1.3	1.4	1.5	1.5	1.6	1.6	1.6	2.0	1.7	1.5	1.2	1.1
5	1.4	1.4	1.4	1.5	1.6	1.6	1.7	2.0	1.7	1.5	1.2	
-				1	1.0	1.0	1	2.0	1	1.5	1.2	1.1
6	1.4	1.5	1.4	1.5	1.5	1.6	1.7	1.9	1.7	1.5	1.2	1.1
7	1.4	1.5	1.4	1.5	1.5	1.6	1.8	1.7	1.7	1.4	1.2	1.1
8	1.3	1.4	1.5	1.5	1.5	1.6	1.6	1-6	1.7	1.4	1.2	1.1
9	1.4	1.4	1.5	1.5	1.5	1.6	1.6	1.6	1.7	1.4	1.1	1.1
10	1.4	1.4	1.4	1.5	1.5	1.6	1.9	1.7	1.7	1.4	1.1	1.1
11	1.3	1.4	1.4	1.6	1.5	1.6	1.5	1.7	1.7	1.4	1.1	1.1
12	1.4	1.5	1.4	1.5	1.5	1.6	1.7	1.7	1.7	1.4	1.1	1.1
13	1.3	1.4	1.4	1.5	1.6	1.6	1.6	1.7	1.7			
14	1.4	1.4	1.4	1.5	1.6					1.3	1.1	1.1
15	1.4	1.4	1.4	1.5		1.6	1.7	1.7	1.7	1.3	1.1	1.1
	***	1.4	1	1.7	1.6	1.6	1.8	1.7	1.7	1.3	1.1	1.1
16	1.4	1.5	1.5	1.5	1.5	1.6	1.6	1.7	1.7	1.3	1.1	1.1
17	1.4	1.4	1.5	1.5	1.6	1.6	2.0	1.7	1.7	1.3	1.1	1.1
18	1.4	1.5	1.4	1.5	1.6	1.5	1.8	1.7	1.7	1.3	1.1	1.1
19	1.4	1.4	1.4	1.5	1.8	1.6	1.8	1.7	1.7	1.3	1.1	1.1
20	1.4	1.5	1.4	1.5	1.8	1.6	1.7	1.7	1.6	1.2	1.1	1.1
21	1.4	1.5	1.4	1.5	1.6	1.6	2.0	1.7	1.6	1.2	1.1	1.1
22	1.5	1.5	1.4	1.5	1.6	1.6	1.7	1.7		1.2		
23	1.4	1.4	1.4	1.5	1.6		1.8	1.7	1.6		1.1	1.1
24	1.5	1.5	1.4	1.5		1.6			1.6	1.2	1.1	1.1
25	1.4	1.5	1.4	1.5	1.5 1.7	1.6	1.8	1.7	1.6	1.2	1.1	1-1
23	1.4	1.5	1.4	1+5	1	1.6	2.1	1.7	1.6	1.2	1.1	1.3
26	1.5	1.5	1.4	1.6	1.6	1.6	2.0	1.7	1.6	1.2	1.1	1.3
27	1.3	1.5	1.5	1.6	1.6	1.6	1.9	1.7	1.6	1.2	1.1	1.3
28	1.4	1.4	1.5	1.6	1.6	1.6	1.9	1.7	1.6	1.2	1.1	1.3
29	1.4	1.5	1.5	1.6		1.6	1.9	1.7	1.6	1.2	1.1	1.3
30	1.4	1.5	1.5	1.6		1.6	1.9	1.7	1.6	1.2	1.1	1.7
31	1.4		1.5	1.6		1.8		1.7		1.2	1.1	
TOTAL	42.9	43.4	44.7	47.2	44.4	49.7	52.9	54.2	49.9	(1.0	24 0	74.4
MEAN	1.38	1.45	1.44	1.52	1.59	1.60	1.76			41.0	34.9	34.6
MAX	1.5	1.5	1.5	1.52		1.50		1.75	1.66	1.32	1.13	1.15
MIN	1.3	1.5	1.4		1.8		2.1	2.0	1.7	1.6	1.2	1.7
AC-FT	85		89	1.5	1.5	1.5	1.5	1.6	1.6	1.2	1.1	1.1
AC-FI	00	86	87	94	88	99	105	108	99	81	69	69
	1970 TOT 1971 TOT		MEAN 1.4 MEAN 1.4				AC-FT 1,070 AC-FT 1,070					

NOTE.--No gage-height record Dec. 19 to Feb. 9, May 5 to Aug. 17, Aug. 24 to Sept. 30.

Sparks Spring at Locomotive Springs, near Snowville, Utah - Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1971 TO SEPTEMBER 1972

DAY	οcτ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.4	1.3	1.3	1.4	1.4	1.4	1.4	1.4	1.2	1.0	.80	• 80
2	1.4	1.3	1.2	1.4	1.4	1.5	1.4	1.4	1.2	1.0	.80	.80
3	1.3	1.3	1.3	1.4	1.4	1.6	1.4	1.4	1.2	1.0	.80	.80
4	1.3	1.3	1.3	1.4	1.4	1.4	1.4	1.3	1.2	.90		
5	1.3	1.3	1.3	1.4	1.4	1.5	1.4	1.3			-80	- 80
	,	,		1.44	1.4	1+9	1.4	1.5	1.2	•90	•80	.80
6	1.4	1.3	1.3	1.4	1.4	1.5	1.4	1.3	1.2	•90	•80	.90
7	1.4	1.3	1.3	1.4	1.4	1.4	1.4	1.3	1.2	. 90	.80	.80
8	1.3	1.3	1.3	1.4	1.4	1.4	1.4	1.3	1.2	.90	.80	.80
9	1.3	1.3	1.3	1.4	1.4	1.4	1.4	1.3	1.2	•90	.80	.80
10	1.3	1.3	1.3	1.4	1.5	1.5.	1.4	1.3	1.1	• 90	.80	.80
11	1.4	1.2	1.3	1.4	1.5	1.5	1.4	1.3	1.2	•90	.80	.80
12	1.4	1.3	1.3	1.4	1.5	1.4	1.4	1.3	1.2	.90		
13	1.4	1.3	1.3	1.4	1.6	1.5	1.4	1.3			- 80	.80
14	1.4	1.4	1.3	1.4	1.5	1.4			1.1	•90	•80 ⁽	- 80
15	1.4	1.3	1.3	1.4	1.5		1.4	1.3	1.2	• 90	•80	•80
	1.44	1.5	1.5	1.4.4	1.5	1.4	1.4	1.3	1.2	•90	•80	• 80
16	1.4	1.3	1.3	1.4	1.6	1.4	1.4	1.3	1.1	.90	.80	-80
17	1.3	1.3	1.3	1.4	1.5	1.4	1.4	1.3	1.2	.90	.80	.80
18	1.3	1.3	1.3	1.4	1.5	1.5	1.4	1.3	1.2	.80	.80	.80
19	1.3	1.2	1.3	1.4	1.5	1.4	1.4	1.3	1.1	.90	-80	.90
20	1.3	1.3	1.3	1.4	1.5	1.4	1.4	1.3	1.1	1.0	.80	.80
21	1.3	1.3	1.3	1.4	1.5	1.4	1.4					
22	1.3	1.3	1.3	1.4	1.6			1.3	1.2	•90	.80	- 80
23	1.3	1.3	1.3	1.4		1.4	1.4	1.3	1.1	•90	.80	- 90
24	1.3	1.3			1.5	1.4	1.4	1.3	1.2	• 90	•80	-90
25	1.3		1.3	1.4	1.6	1.4	1.4	1.3	1.1	•90	-80	•80
25	1.0	1.3	1.3	1.4	1.5	1.4	1.4	1.3	1.2	•90	-80	-80
26	1.3	1.3	1.3	1.4	1.5	1.4	1.4	1.2	1.1	•90	.80	.80
27	1.3	1.3	1.3	1.4	1.5	1.4	1.4	1.2	1.0	.80	.80	.90
28	1.3	1.3	1.3	1.4	1.5	1.4	1.4	1.2	1.0	.80	.80	.90
29	1.3	1.3	1.3	1.4	1.6	1.4	1.4	1.2	1.0	.80		
30	1.3	1.3	1.3	1.4		1.4	1.4	1.2	1.0		•80	.80
31	1.3		1.3	1.4		1.4		1.2		•80 •80	-80 -80	.80
TOTAL	41.3	30.0	(A. A.									
MEAN		38.9	40.2	43.4	43.1	44.3	42.0	40.0	34.4	27.70	24.80	24.60
	1.33	1.30	1.30	1.40	1.49	1.43	1.40	1.29	1.15	.89	.80	- 82
MAX	1.4	1.4	1.3	1.4	1.6	1.6	1.4	1.4	1.2	1.0	.80	.90
MIN	1.3	1.2	1.2	1.4	1.4	1.4	1.4	1.2	1.0	.80	.80	.80
AC-FT	82	77	80	86	85	88	83	79	68	55	49	49
CAL YR		AL 529.20	MEAN 1		2.1 MI	N 1.1	AC-FT 1,05	50				

WTR YR 1972 TOTAL 444.70 MEAN 1.22 MAX 1.6 MIN .80 AC-FT 882

NOTE.--No gage-height record Dec. 7 to Feb. 9, Mar. 22 to Apr. 24, Apr. 28 to June 5.

Sparks Spring at Locomotive Springs, near Snowville, Utah - Continued

DISCHARGE, IN CURIC FEET PER SECOND, WATER YEAR OCTOBER 1972 TO SEPTEMBER 1973

DAY	οςτ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	•90	•90	1.1	1.7	1.3	1.4	1.3	1.4	1.2	1.1	1.1	1.2
2	.80	1.0	1.2	1.2	1.3	1.4	1.3	1.4	1.2	1.1	1.1	1.2
3	.80	1.0	1.2	1.2	1.3	1.4	1.3	1.5	1.2	1.1	1.1	1.1
4	.90	1.0	1.0	1.2	1.3	1.4	1.3	1.5	1.2	1.1	1.1	
5	.90	1.1	1.0	1.2	1.3	1.4	1.2	1.6	1.2	1.1		1.1
	•			1.00	1.5	1	1 • 2	1.0	12	1 • 1	1.1	1.1
6	• 80	1.0	1.0	1.2	1.3	1.4	1.4	1.5	1.2	1.1	1.2	1.0
7	•80	1.0	1.0	1.2	1.3	1.4	1.3	1.	1.2	1.0	1.1	1.1
8	.90	1.0	1.0	1.2	1.2	1.4	1.2	1.6	1.2	1.0	1.1	1.0
9	.80	1.0	1.0	1.2	1.3	1.4	1.3	1.5	1.2	1.0	1.1	1.0
10	• 80	1.0	1.0	1.2	1.3	1.4	1.3	1.5	1.2	1.0	1.1	
			,2			1		1.4.2	1+2	1.0	1.1	1.0
11	.90	1.0	1.0	1.2	1.3	1.4	1.3	1.5	1.2	1.0	1.1	1.0
12	. 90	1.0	1.0	1.2	1.3	1.4	1.3	1.5	1.2	1.0	1.1	1.0
13	.00	1.0	1.0	1.2	1.3	1.4	1.4	1.4	1.2	1.0	1.1	1.0
14	.00	1.0	1.0	1.2	1.3	1.4	1.4	1.4	1.2	1.0	1.0	
15	.90	1.0	1.0	1.2	1.3	1.4	1.3	1.4	1.2			1.1
					1	1	1.	1	1.02	1.0	1.0	1.0
16		1.0	1.0	1.2	1.3	1.3	1.4	1.4	1.2	1.0	1.0	1.1
17	.90	1.0	1.0	1.2	1.3	1.3	1.5	1.4	1.2	1.0		
19	1.0	1.0	1.0	1.2	1.3	1.3	1.4	1.4			1.1	1.0
10	1.1	1.0	1.0	1.2	1.3	1.3	1.4		1.2	1.0	1.1	1.1
20	1.3	1.0	1.0	1.2	1.3	1.3		1.4	1.2	1.0	1.1	1.1
	••-		1.0	1.07	L • 0	1.5	1.4	1.4	1.2	1.0	1.1	1.2
21	.90	1.0	1.0	1.2	1.3	1.3	1.4	1.4	1.1	1 0		• •
22	. 90	1.0	1.0	1.2	1.3	1.3	1.3	1.3		1.0	1.1	1.0
23	្នុំខ្ល	1.0	1.0	1.2	1.4	1.3	1.5		1.1	1.0	1.1	1.1
24		1.0	1.0	1.2	1.4			1.3	1.1	1.0	1.1	1.1
25	G. 7	1.0	1.0	1.2	1.4	1.3	1.4	1.3	1.1	1.0	1.1	1.1
c .	•	1.0	1.0	1 • 4	1	1.3	1.4	1.4	1.1	1.0	1.1	1.1
26	•90	1.0	1.0	1.7	1.4	1.3	1.3	1.3	1.1	1.0	1.1	1.0
27	• • (1.0	1.0	1.2	1.4	1.3	1.4	1.3	1.1	1.0	1.1	
28	1.0	1.0	1.0	1.2	1.4	1.3	1.5	1.3	1.1			1.0
20	.00	1.0	1.0	1.2		1.3	1.6			1.0	1.1	1.1
30	90	1.1	1.0	1.2		1.3	1.0	1.3	1.1	1.1	1.1	1.1
31	¢r.		1.0	1.2		1.1	1•4	1.2	1.1	1.1	1.1	1.1
	•		••	1		1		1 • 2		1.1	1.2	
TOTAL	27.00	30.10	31.5	37.2	37.0	41.8	40.9	43.5	35.0	31.9	34.0	32.1
MEAN	.40	1.00	1.02	1.20	1.32	1.35	1.36	1.40	1.17	1.03	1.10	
MAY	1.2	1.1	1.2	1.2	1.4	1.4	1.50	1.40	1.17			1.07
MIN	.90	• 40	1.0	1.2	1.3	1.3	1.0			1.1	1.2	1.2
AC-FT		έr	62	74	73	1.1.2	81	1.2	1.1	1.0	1.0	1.0
		<u> </u>	07	/ **	1.5	63	51	86	69	63	67	64
CAL YO	1072 101	413.80	MEAN 1	17 MAY	1.6. MTM		AC - ET 621					

CAL YR 1972 JOTAL 413.80 MEAN 1.12 MAX 1.6 MIN .50 AC-FT 521 WTS YS 1973 JUTAL 422.90 MEAN 1.16 MAX 1.6 MIN .50 AC-FT 539

NOTE. -- No gage-height record Dec. 4 to Feb. 22, Feb. 25 to Apr. 4.

,

Off Spring at Locomotive Springs, near Snowville, Utah

Location.--Lat 41°42'12", long 112°54'40", in SW2 sec. 6, T. 11 N., R. 9 W., Box Elder County, at Locomotive Springs State Waterfowl Management Area on the north end of Great Salt Lake and 20 miles (32 km) southwest of Snowville.

Period of record. -- December 1968 to September 1973.

Gage.--Water-stage recorder. The control is an 8-inch submerged orifice set inside a 24-inch by 8-foot culvert under an earthfill dam. Datum of gage is 4,208.4 ft (1,282.72 m) above mean sea level.

Remarks .-- Records fair.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1968 TO SEPTEMBER 1969

DAY	0C T	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			1.5	1.6	1.6	1.6	1.6	1.6	1.5	1.3		
2			1.5	1.6	1.6	1.0	1.6	1.6	1.5	1.3	1.1	1.1
3			1.5	1.6	1.6	1.0	1.6	1.6	1.5		1.1	1.1
4			1.5	1.6	1.6	1.0	1.6	1.0	1.5	1.3	1-1	1.1
5			1.5	1.6	1.6					1.3	1.1	1.1
-			1	1.0	1.00	1.6	1.6	1.6	1.5	1.3	1.1	1.1
6			1.5	· 1.6	1.6	1.6	1.6	1.6	1.5	1.3	1.1	1.1
7			1.5	1.6	1.6	1.6	1.6	1.6	1.5	1.2	1.1	1.1
8			1.5	1.6	1.6	1.6	1.6	1.6	1.5	1.2	1.1	1.1
9			1.5	1.6	1.6	1.6	1.6	1.6	1.5	1.2	1.1	1.1
10			1.5	1.6	1.6	1.6	1.6	1.6	1.5	1.2	1.1	1.1
11			1.5	1.6	1.6	1 4		• •				
12			1.5	1.6	1.6	1.6	1.6	1.6	1.5	1.2	1.1	1.1
13			1.5			1.6	1.6	1.6	1.5	1.2	1.1	1.1
14				1.6	1.6	1.6	1.6	1.6	1.5	1.2	1.1	1.1
15			1.5	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.1	1.1
1)			1.5	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.1	1.1
16			1.5	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.1	1.1
17			1.5	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.1	1.1
18			1.6	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.1	1.1
19			1.6	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.1	1.1
20			1.6	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.1	
_							1.0	1.0	1.4	1 • 2	1.1	1.1
21			1.5	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.1	1.1
22			1.5	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.1	1.1
23			1.6	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.1	1.1
24			1.6	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.1	1.1
25			1.6	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.1	1.1
26			1.6	1 4	• •	• •	• •					
27			1.6	1.6	1.6	1.6	1.6	1.6	1.3	1.2	1.1	1.1
28				1.6	1.6	1.6	1.6	1.6	1.3	1.2	1.1	1.1
29			1.6	1.6	1.6	1.6	1.6	1.6	1.3	1.2	1.1	1.1
30			1.6	1.6		1.6	1.6	1.6	1.3	1.1	1.1	1.2
			1.6	1.6		1.6	1.6	1.6	1.3	1.1	1.1	1.2
31			1.6	1.6		1.6		1.5		1-1	1.1	
TOTAL			47.7	49.6	44.8	. 49.6	48.0	49.5	42.8	37.5	34.1	33.2
MEAN			1.54	1.60	1.60	1.60	1.60	1.60	1.43	1.21	1.10	1.11
MAX			1.6	1.6	1.6	1.6	1.6	1.00				
MIN			1.5	1.6	1.6	1.6	1.6		1.5	1.3	1.1	1.2
AC-FT			95	98	89	98	95	1.5	1.3	1.1	1.1	1.1
			,,	70	60	98	75	98	85	74	68	66

Off Spring at Locomotive Springs, near Snowville, Utah - Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1969 TO SEPTEMBER 1970

DAY	0 C T	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUS	SEP
1	1.2	1.2	1.3	1.3	1.4	1.6	1.6	1.6	1.5	1.3	1.1	1.0
2	1.2	1.2	1.3	1.3	1.4	1.6	1.6	1.6	1.5	1.3	1.1	1.0
3	1.2	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.5	1.3	1.1	1.0
4	1.2	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.5	1.2	1.1	1.0
5	1.2	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.5	1.2	1.1	• 99
6	1.2	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.5	1.2	1.1	1.0
7	1.2	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.5	1.2	1.1	1.0
8	1.2	1.2	1.3	1.3	1.4	1.6	1.6	1.6	1.4	1.2	1.1	1.0
9	1.2	1.2	1.3	1.3	1.4	1.6	1.6	1.6	1.4	1.2	1.1	. 99
10	1.2	1.2	1.3	1.3	1.4	1.6	1.6	1.6	1.4	1.2	1.1	1.0
11	1.2	1.2	1.3	1.3	1.4	1.6	1.6	1.6	1.4	1.2	1.1	1.0
12	1.2	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.4	1.2	1.1	1.0
13	1.2	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.4	1.2	1.1	.99
14	1.2	1.2	1.3	1.3	1.4	1.6	1.6	1.5	1.4	1.2	1.1	. 98
15	1.2	1.2	1.3	1.3	1-4	1.6	1.6	1.5	1.4	1.2	1.1	•98
16	1.2	1.2	1.3	1.3	1.5	1.6	1.6	1.5	1.4	1.2	1.1	• 98
17	1.2	1.2	1.3	1.3	1.5	1.6	1.6	1.5	1.4	1.2	1.1	.97
18	1.2	1.2	1.3	1.3	1.5	1.6	1.6	1.5	1.4	1.2	1.1	.97
19	1.2	1.2	1.3	1.3	1.5	1.6	1.6	1.5	1.4	1.2	1.1	.97
20	1.2	1.3	1.3	1.3	1.5	1.6	1.6	1.5	1.4	1.2	1.1	.95
21	1.2	1.3	1.3	1.3	1.5	1.6	1.6	1.5	1.4	1.2	1.1	•94
22	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.5	1.3	1.2	1.0	.94
23	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.5	1.3	1.2	1.1	• 94
24	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.5	1.3	1.2	1.1	.95
25	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.5	1.3	1.2	1.0	1.0
26	1.2	1.3	1.3	1.4	1.5	1.6	1.6	1.5	1.3	1.2	1.0	1.0
27	1.2	1.3	1.3	1.4	1.6	1.6	1.6	1.5	1.3	1.2	1.0	1.0
28	1.2	1.3	1.3	1.4	1.6	1.6	1.6	1.5	1.3	1.1	1.0	1.0
29	1.2	1.3	1.3	1.4		1.6	1.6	1.5	1.3	1.1	1.0	1.0
30	1.2	1.3	1.3	1.4		1.6	1.6	1.5	1.3	1.1	1.0	1.0
31	1.2		1.3	1.4		1.6		1.5		1.1	1.0	
TOTAL	37.2	37.1	40.3	41.3	40.7	48.9	48.0	47.8	41.8	37.1	33.3	29.54
MEAN	1.20	1.24	1.30	1.33	1.45	1.58	1.60	1.54	1.39	1.20	1.07	.98
MAX	1.2	1.3	1.3	1.4	1.6	. 1.6	1.6	1.6	1.5	1.3	1.1	1.0
MIN	1.2	1.2	1.3	1.3	1.4	1.5	1.6	1.5	1.3	1.1	1.0	.94
AC-FT	74	74	80	82	81	97	95	95	83	74	66	59
	1969 TOTA 1970 TOTA		MEAN 1.			N 1.1	AC-FT 999					

WTR YR 1970 TOTAL 483.04 MEAN 1.32 MAX 1.6 MIN .94 AC-FT 958

Off Spring at Locomotive Springs, near Snowville, Utah - Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1970 TO SEPTEMBER 1971

DAY	OC T	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.0	1.0	1.0	1.3	1.4	1.5	1.6	1.5	1.4	1.3	1.2	1.1
2	1.0	1.0	1.0	1.3	1.4	1.5	1.6	1.5	1.4	1.3	1.2	1.1
3	1.0	1.0	1.0	1.3	1.4	1.5	1.6	1.5	1.4	1.3	1.2	1.1
4	1.0	1.0	1.0	1.3	1.4	1.5	1.6	1.5	1.4	1.3	1.2	1.1
5	1.0	1.0	1.0	1.3	1.4	1.5	1.6	1.5	1.4	1.3	1.2	1.1
2	100	1.0	1.0	1.5	1.4.4	1.7	1.0	1.9	1.4	1.5	1.2	1+1
6	1.0	1.0	1.0	1.3	1.4	1.5	1.6	1.5	1.4	1.3	1.2	1.1
7	1.0	1.0	1.0	1.4	1.4	1.5	1.6	1.5	1.4	1.3	1.2	1.1
8	1.0	1.0	1.0	1.4	1.4	1.5	1.6	1.5	1.4	1.3	1.1	1.1
9	1.0	1.0	1.0	1.4	1.4	1.5	1.6	1.5	1.4	1.3	1.1	1.1
10	1.0	1.0	1.0	1.4	1.4	1.5	1.6	1.5	1.3	1.3	1.1	1.1
11	1.0	1.0	1.1	1.3	1.4	1.5	1.6	1.5	1.3	1.3	1.1	1.1
12	1.0	1.0	1.1	1.4	1.4	1.6	1.6	1.5	1.3	1.3	1.1	1.1
13	1.0	1.0	1.1	1.4	1.4	1.5	1.6	1.5	1.3	1.3	1.1	1.1
14	1.0	1.0	1.1	1.4	1.4	1.5	1.6	1.5	1.3	1.3		
15	1.0	1.0	1.1	1.4	1.5	1.5		1.5			1.1	1.1
	1.0	1.0		1.4	1.5	1.5	1.6	1.02	1.3	1.3	1.1	1.1
16	1.0	1.0	1.1	1.4	1.4	1.6	1.6	1.4	1.3	1.3	1.1	1.1
17	1.0	1.0	1.1	1.4	1.5	1.6	1.6	1.4	1.3	1.2	1.1	1.1
18	1.0	1.0	1.1	1.4	1.4	1.5	1.6	1.4	1.3	1.2	1.1	1.1
19	1.0	1.0	1.1	1.4	1.5	1.6	1.6	1.4	1.3	1.2	1.1	1.1
20	1.0	1.0	1.1	1.4	1.5	1.6	1.6	1.4	1.3	1.2	1.1	1.1
												•••
21	1.0	1.0	1.1	1.4	1.5	1.6	1.6	1.4	1.3	1.2	1.1	1.1
22	1.0	1.0	1.1	1.4	1.5	1.6	1.6	1.4	1.3	1.2	1.1	1.1
23	1.0	1.0	1.1	1.4	1.5	1.6	1.6	1.4	1.3	1.2	1.1	1.1
24	1.0	1.0	1.2	1.4	1.5	1.6	1.6	1.4	1.3	1.2	1.1	1.1
25	1.0	1.0	1.2	1.4	1.5	1.5	1.6	1.4	1.3	1.2	1.1	1.1
26	1.0	1.0	1.3	1.4	1.5	1.6	1.5	1.4	1.3	1.2	1.1	1.1
27	1.0	1.0	1.3	1.4	1,5	1.5	1.5	1.4	1.3	1.2	1.1	1.1
28	1.0	1.0	1.3	1.4	1.5	1.6	1.5	1.4	1.3	1.2		
29	1.0	1.0	1.3	1.4		1.6	1.5				1.1	1.1
30	1.0	1.0	1.3	1.4		1.6		1.4	1.3	1.2	1.1	1.1
31	1.0		1.3	1.4			1.5	1.4	1.3	1.2	1.1	1.1
51	1.0		1.5	1.4		1.6		1.4		1.2	1.1	
TOTAL	31.0	30.0	34.5	42.7	40.4	47.9	47.5	44.9	39.9	38.8	34.8	33.0
MEAN	1.00	1.00	1.11	1.38	1.44	1.55	1.58	1.45	1.33	1.25	1.12	1.10
MAX	1.0	1.0	1.3	1.4	1.5	1.6	1.6	1.5	1.4	1.3	1.2	1.1
MIN	1.0	1.0	1.0	1.3	1.4	1.5	1.5	1.4	1.3	1.2	1.1	1.1
AC-FT	61	60	68	85	. 30	95	94	89	79	77	69	65
									.,	• •		60
	1970 TOT		MEAN 1		L.6 MIN	N .94	AC-FT 920					
WTR YR	1971 TOT	AL 465.40	MEAN 1	-28 MAX	1.6 MIN	1.0	AC-FT 923					

NOTE.--No gage-height record Oct. 1 to Dec. 10, Apr. 12 to May 25.

Off Spring at Locomotive Springs, near Snowville, Utah - Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1971 TO SEPTEMBER 1972

DAY	OCT	NOV	DEC	JAN	FEB	MAP	APE	MAY	JUN	JUL	AU G	SEP
1	1.2	1.2	1.2	1.4	1.5	1.4	1.5	1.5	1.4	.92	1.1	1.1
2	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.5	1.4	.91	1.1	1.1
3	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.5	1.4	.91	1.1	1.1
4	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.5	1.4	.92	1.1	1.1
5	1.2	1.2	1.3	1.4	1.5	1.4	1.5	1.5	1.3	.92	1.1	i.i
			-									
6	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.5	1.3	.92	1.1	1.1
7	1.2	1.2	1.3	1.4	1.4	1.4	1.5	1.5	1.3	.92	1.1	1.1
9	1.2	1.2	1.3	1.4	1.4	1.4	1.5	1.5	1.2	1.0	1.1	1.1
9	1.2	1.2	1.3	1-4	1.4	1.4	1.5	1.5	1.2	1.0	1.1	1.1
10	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.5	1.1	1.0	1.1	1.1
11	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.5	1.1	1.0	1.1	1.1
12	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.5	1.0	1.0	1.2	1.1
13	1.2	1.2	1.3	1.4	1.5	1.5	1.5	1.5	1.0	1.0	1.2	1.1
14	1.2	1.2	1.3	1.4	1.5	1.5	1.5	1.5	1.0	1.0	1.2	1.1
15	1.2	1.2	1.3	1.4	1.5	1.5	1.5	1.5	•98	1.0	1.2	1.1
16	1.2	1.2	1.3	1.4	1.5	1.5	1.5	1.5	.97	1.0	1.2	1.1
17	1.2	1.2	1.4	1.4	1.4	1.5	1.5	1.5	.98	1.0	1.2	1.1
18	1.2	1.2	1.4	1.4	1.4	1.5	1.5	1.5	1.0	1.0	1.2	1.1
19	1.2	1.2	1.4	1.4	1.4	1.5	1.5	1.5	.99	1.0	1.2	1.1
20	1.2	1.3	1.4	1.4	1.4	1.5	1.5	1.5	1.0	1.0	1.2	1.1
21	1.2	1.3	1.4	1.4	1.4	1.5	1.5	1.5	1.0	1.0	1.2	1.1
22	1.2	1.3	1.4	1.4	1.4	1.5	1.5	1.5	1.0	1.0	1.2	1.1
23	1.2	1.3	1.4	1.4	1.4	1.5	1.5	1.5	1.0	1.1	1.2	1.1
24	1.2	1.3	1.4	1.4	1.4	1.5	1.5	1.5	1.0	1.1	1.2	1.1
25	1.2	1.3	1.4	1.4	1.4	1.5	1.5	1.4	.97	1.1	1.2	1.1
26	1.2	1.3	1.4	1.4	• •			• •				
27	1.2	1.3	1.4	1.4	1.4 1.4	1.5	1.5	1.4	•94	1.1	1.2	1.1
28	1.2	1.3	1.4			1.5	1.5	1.4	•92	1.1	1.2	1.1
29	1.2	1.3	1.4	1.4 1.4	1.5 1.5	1.5 1.5	1.5	1.4	.92	1.1	1.2	1.1
30	1.2	1.3	1.4	1.4	£ + J	1.5	1.5 1.5	1.4	•94	1.1	1.2	1.1
31	1.2		1.4	1.5				1.4	•94	1.1	1.2	1.1
51	1.2		1.4	1.7		1.5		1.4		1.1	1.1	
TOTAL	37.2	37.1	41.7	43.5	41.4	46.0	45.0	45.8	32.65	31.32	36.0	33.0
MEAN	1.20	1.24	1.35	1.40	1.43	1.48	1.50	1.48	1.09	1.01	1.16	1.10
MAX	1.2	1.3	1.4	1.5	1.5	1.5	1.5	1.5	1.4	1.1	1.10	1.10
MIN	1.2	1.2	1.2	1.4	1.4	1.4	1.5	1.4	.92	.91	1.1	1.1
AC-FT	74	74	83	86	82	91	89	91	65	62	71	65
		••				×1		71	05	02	1	60
CAL YR	1971 TOTA	AL 485.90	MEAN 1.	33 MAX	1.6 41	N 1.1	AC-FT 964					
		AL 470.67	MEAN 1			N .91	AC-FT 934					
				_, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								

NOTE.--No gage-height record Oct. 1 to Nov. 11, July 8 to Aug. 19.

		DISCHARGE,	IN CUBIC	FEET PE	R SECOND,	WATER	YEAR OCTOBER	1972 TD	SEPTEMBER	1973		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.1	1.2	1.2	1.4	1.4	1.4	1.4	1.4	1.2	1.1	1.1	1.1
2	1.1	1.2	1.2	1.4	1.4	1.4	1.3	1-4	1.2	1.1	1.1	1.1
3	1.1	1.2	1.2	1.4	1.4	1.4	1.3	1.4	1.2	1.1	1.1	1.1
4	1.1	1.2	1.2	1.4	1.4	1.4	1.3	1.4	1.2	1.1	1.1	1-1
5	1.1	1.2	1.2	1.4	1.4	1.4	1.4	1.4	1.2	1.1	1-1	1.1
6	1.1	1.2	1.2	1.4	1.4	1.4	1.4	1.4	1.2	1.1	1.1	1.1
7	1.1	1.2	1.2	1.4	1.4	1.4	1.4	1.4	1.2	1.1	1.1	1.1
8	1.2	1.2	1.3	1.4	1.4	1.4	1.3	1.4	1.2	1.1	1.1	1.1
9	1.2	1.2	1.3	1.4	1.4	1.4	1.3	1.4	1.2	1.1	1.1	1.1
10	1.2	1.2	1.3	1.4	1.4	1.4	1.3	1.4	1.2	1.1	1.1	1.1
11	1.2	1.2	1.3	1.4	1.4	1.4	1.3	1.4	1.2	1.1	1.1	1.1
12	1.2	1.2	1.3	1.4	1.4	1.4	1.3	1.4	1.2	1.1	1.1	1.1
13	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.4	1.2	1.1	1.1	1.1
14	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.4	1.2	1.1	1.1	1.1
15	1.2	1.2	1.3	1.4	1.4	1.4	1.3	1.4	1.2	1.1	1.1	1.1
16	1.2	1.2	1.3	1.4	1.4	1.4	1.3	1.4	1.2	1.1	1.1	1.1
17	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.4	1.2	1.1	1.1	1-1
18	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.4	1.2	1.1	1.1	1.1
19	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.4	1.2	1.1	1.1	1.1
20	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.4	1.2	1.1	1.1	1.1
21	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.3	1.2	1.1	1.1	1.1
22	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.3	1.2	1.1	1.1	1.1
23	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.3	1.2	1.1	1.1	1.1
24	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.3	1.2	1.1	1.1	1.1
25	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.3	1.2	1.1	1.1	1.1
26	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.3	1.2	1.1	1.1	1.1
27	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.2	1.2	1.1	1.1	1.1
28	1.2	1.2	1.3	1.4	1.4	1.4	1.4	1.2	1.2	1.1	1.1	1.1
29	1.2	1.2	1.3			1.4	1.4	1.2	1.2	1.1	1.1	1.1
30	1.2	1.2	1.3			1.4	1.4	1.2	1.1	1.1	1.1	1.1
31	1.2		1.4	1.4 -		1.4		1.3 -		1.1	1.1	
TOTAL	36.5			43.4	39.2	43.4		41.9	35.9	34.1	34.1	33.0
MEAN	1.18			1.40	1.40	1.40	1.37	1.35	1.20	1.10	1.10	1.10
MAX	1.2	1.2	1.4	1.4	1.4	1.4	1.4	1.4	1.2	1.1	1.1	1.1
MIN	1.1	1.2	1.2	1.4	1.4	1.4	1.3	1.2	1.1	1.1	1.1	1.1
AC-FT	72	71	79	86	78	86	81	83	71	68	68	65
CAL YR			MEAN 1.28	MAX 1	.5 MIN	.91	AC-FT 926					
WTR YR	1973 TOTA	AL 458.20	MEAN 1.26	MAX 1		1.1	AC-FT 909					

Table 9.--<u>Records of discharge of selected springs in the Locomotive Springs group</u> - Continued Off Spring at Locomotive Springs, near Snowville, Utah -Continued

NOTE.--No gage-height record Jan. 9 to Feb. 22.

PUBLICATIONS OF THE UTAH DEPARTMENT OF NATURAL RESOURCES, DIVISION OF WATER RIGHTS

(*)-Out of Print

TECHNICAL PUBLICATIONS

- No. 1. Underground leakage from artesian wells in the Flowell area, near Fillmore, Utah, by Penn Livingston and G. B. Maxey, U.S. Geological Survey, 1944.
- No. 2. The Ogden Valley artesian reservoir, Weber County, Utah, by H. E. Thomas, U.S. Geological Survey, 1945.
- *No. 3. Ground water in Pavant Valley, Millard County, Utah, by P. E. Dennis, G. B. Maxey and H. E. Thomas, U.S. Geological Survey, 1946.
- *No. 4. Ground water in Tooele Valley, Tooele County, Utah, by H. E. Thomas, U.S. Geological Survey, in Utah State Eng. 25th Bienn. Rept., p. 91-238, pls. 1-6, 1946.
- *No. 5. Ground water in the East Shore area, Utah: Part I, Bountiful District, Davis County, Utah, by H. E. Thomas and W. B. Nelson, U.S. Geological Survey, in Utah State Eng. 26th Bienn. Rept., p. 53-206, pls. 1-2, 1948.
- *No. 6. Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah, by P. F. Fix, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S. Geological Survey, in Utah State Eng. 27th Bienn. Rept., p. 107-210, pls. 1-10, 1950.
- No. 7. Status of development of selected ground-water basins in Utah, by H. E. Thomas, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S. Geological Survey, 1952.
- *No. 8. Consumptive use of water and irrigation requirements of crops in Utah, by C. O. Roskelly and Wayne D. Criddle, 1952.
- No. 8. (Revised) Consumptive use and water requirements for Utah, by W. D. Criddle, K. Harris, and L. S. Willardson, 1962.
- No. 9. Progress report on selected ground water basins in Utah, by H. A. Waite, W. B. Nelson, and others, U.S. Geological Survey, 1954.
- *No. 10. A compilation of chemical quality data for ground and surface waters in Utah, by J. G. Connor, C. G. Mitchell, and others, U.S. Geological Survey, 1958.

- *No. 11. Ground water in northern Utah Valley, Utah: A progress report for the period 1948-63, by R. M. Cordova and Seymour Subitzky, U.S. Geological Survey, 1965.
- No. 12. Reevaluation of the ground-water resources of Tooele Valley, Utah, by Joseph S. Gates, U.S. Geological Survey, 1965.
- *No. 13. Ground-water resources of selected basins in southwestern Utah, by G. W. Sandberg, U.S. Geological Survey, 1966.
- *No. 14. Water-resources appraisal of the Snake Valley area, Utah and Nevada, by J. W. Hood and F. E. Rush, U.S. Geological Survey, 1966.
- *No. 15. Water from bedrock in the Colorado Plateau of Utah, by R. D. Feltis, U.S. Geological Survey, 1966.
- No. 16. Ground-water conditions in Cedar Valley, Utah County, Utah, by R. D. Feltis, U.S. Geological Survey, 1967.
- *No. 17. Ground-water resources of northern Juab Valley, Utah, by L. J. Bjorklund, U.S. Geological Survey, 1968.
- No. 18. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah, by J. W. Hood and K. M. Waddell, U.S. Geological Survey, 1968.
- No. 19. An appraisal of the quality of surface water in the Sevier Lake Basin, Utah, by D. C. Hahl and J. C. Mundorff, U.S. Geological Survey, 1968.
- No. 20. Extensions of streamflow records in Utah, by J. K. Reid, L. E. Carroon, and G. E. Pyper, U.S. Geological Survey, 1969.
- No. 21. Summary of maximum discharges in Utah streams, by G. L. Whitaker, U.S. Geological Survey, 1969.
- No. 22. Reconnaissance of the ground-water resources of the upper Fremont River valley, Wayne County, Utah, by L. J. Bjorklund, U.S. Geological Survey, 1969.
- No. 23. Hydrologic reconnaissance of Rush Valley, Tooele County, Utah, by J. W. Hood, Don Price, and K. M. Waddell, U.S. Geological Survey, 1969.
- No. 24. Hydrologic reconnaissance of Deep Creek valley, Tooele and Juab Counties, Utah, and Elko and White Pine Counties, Nevada, by J. W. Hood and K. M. Waddell, U.S. Geological Survey, 1969.

- No. 25. Hydrologic reconnaissance of Curlew Valley, Utah and Idaho, by E. L. Bolke and Don Price, U.S. Geological Survey, 1969.
- No. 26. Hydrologic reconnaissance of the Sink Valley area, Tooele and Box Elder Counties, Utah, by Don Price and E. L. Bolke, U.S. Geological Survey, 1969.
- No. 27. Water resources of the Heber-Kamas-Park City area, north-central Utah, by C. H. Baker, Jr., U.S. Geological Survey, 1970.
- No. 28. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah, by R. M. Cordova, U.S. Geological Survey, 1970.
- No. 29. Hydrologic reconnaissance of Grouse Creek valley, Box Elder County, Utah, by J. W. Hood and Don Price, U.S. Geological Survey, 1970.
- No. 30. Hydrologic reconnaissance of the Park Valley area, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1971.
- No. 31. Water resources of Salt Lake County, Utah, by Allen G. Hely, R. W. Mower, and C. Albert Harr, U.S. Geological Survey, 1971.
- No. 32. Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah, by C. T. Sumsion, U.S. Geological Survey, 1971.
- No. 33. Hydrologic reconnaissance of Hansel Valley and northern Rozel Flat, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1971.
- No. 34. Summary of water resources of Salt Lake County, Utah, by Allen G. Hely, R. W. Mower, and C. Albert Harr, U.S. Geological Survey, 1971.
- No. 35. Ground-water conditions in the East Shore area, Box Elder, Davis, and Weber Counties, Utah, 1960-69, by E. L. Bolke and K. M. Waddell, U.S. Geological Survey, 1972.
- No. 36. Ground-water resources of Cache Valley, Utah and Idaho, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1971.
- No. 37. Hydrologic reconnaissance of the Blue Creek Valley area, Box Elder County, Utah, by E. L. Bolke and Don Price, U.S. Geological Survey, 1972.
- No. 38. Hydrologic reconnaissance of the Promontory Mountains area, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1972.

- No. 39. Reconnaissance of chemical quality of surface water and fluvial sediment in the Price River Basin, Utah, by J. C. Mundorff, U.S. Geological Survey, 1972.
- No. 40. Ground-water conditions in the Central Virgin River Basin, Utah, by R. M. Cordova, G. W. Sandberg, and Wilson McConkie, U.S. Geological Survey, 1972.
- No. 41. Hydrologic reconnaissance of Pilot Valley, Utah and Nevada, by Jerry C. Stephens and J. W. Hood, U.S. Geological Survey, 1973.
- No. 42. Hydrologic reconnaissance of the Northern Great Salt Lake Desert and summary hydrologic reconnaissance of northwestern Utah, by Jerry C. Stephens, U.S. Geological Survey, 1973.
- No. 43. Water resources of the Milford area, Utah with emphasis on ground water, by R. W. Mower and R. M. Cordova, U.S. Geological Survey, 1974.
- No. 44. Ground-water resources of the lower Bear River drainage basin, Box Elder County, Utah, by L. J. Bjorkland and L. J. McGreevy, U.S. Geological Survey, 1974.

WATER CIRCULARS

- No. 1. Ground water in the Jordan Valley, Salt Lake County, Utah, by Ted Arnow, U.S. Geological Survey, 1965.
- No. 2. Ground water in Tooele Valley, Utah, by J. S. Gates and O. A. Keller, U.S. Geological Survey, 1970.

BASIC-DATA REPORTS

- *No. 1. Records and water-level measurements of selected wells and chemical analyses of ground water, East Shore area, Davis, Weber, and Box Elder Counties, Utah, by R. E. Smith, U.S. Geological Survey, 1961.
- *No. 2. Records of selected wells and springs, selected drillers' logs of wells, and chemical analyses of ground and surface waters, northern Utah Valley, Utah County, Utah, by Seymour Subitzky, U.S. Geological Survey, 1962.
- *No. 3. Ground water data, central Sevier Valley, parts of Sanpete, Sevier, and Piute Counties, Utah, by C. H. Carpenter and R. A. Young, U.S. Geological Survey, 1963.

- *No. 4. Selected hydrologic data, Jordan Valley, Salt Lake County, Utah, by I. W. Marine and Don Price, U.S. Geological Survey, 1963.
- *No. 5. Selected hydrologic data, Pavant Valley, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
- *No. 6. Ground-water data, parts of Washington, Iron, Beaver, and Millard Counties, Utah, by G. W. Sandberg, U.S. Geological Survey, 1963.
- No. 7. Selected hydrologic data, Tooele Valley, Tooele County, Utah, by J. S. Gates, U.S. Geological Survey, 1963.
- No. 8. Selected hydrologic data, upper Sevier River basin, Utah, by
 C. H. Carpenter, G. B. Robinson, Jr., and L. J. Bjorklund,
 U.S. Geological Survey, 1964.
- No. 9. Ground-water data, Sevier Desert, Utah, by R. W. Mower and R. D. Feltis, U.S. Geological Survey, 1964.
- *No. 10. Quality of surface water in the Sevier Lake basin, Utah, by
 D. C. Hahl and R. E. Cabell, U.S. Geological Survey, 1965.
- *No. 11. Hydrologic and climatologic data, collected through 1964, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.
- No. 12. Hydrologic and climatologic data, 1965, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.
- No. 13. Hydrologic and climatologic data, 1966, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1967.
- No. 14. Selected hydrologic data, San Pitch River drainage basin, Utah, by G. B. Robinson, Jr., U.S. Geological Survey, 1968.
- No. 15. Hydrologic and climatologic data, 1967, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1968.
- No. 16. Selected hydrologic data, sourthern Utah and Goshen Valleys, Utah, by R. M. Cordova, U.S. Geological Survey, 1969.
- No. 17. Hydrologic and climatologic data, 1968, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1969.

- No. 18. Quality of surface water in the Bear River basin, Utah, Wyoming, and Idaho, by K. M. Waddell, U.S. Geological Survey, 1970.
- No. 19. Daily water-temperature records for Utah streams, 1944-68, by G. L. Whitaker, U. S. Geological Survey, 1970.
- No. 20. Water quality data for the Flaming Gorge area, Utah and Wyoming, by R. J. Madison, U.S. Geological Survey, 1970.
- No. 21. Selected hydrologic data, Cache Valley, Utah and Idaho, by L.J. McGreevy and L. J. Bjorklund, U.S. Geological Survey, 1970.
- No. 22. Periodic water- and air-temperature records for Utah streams, 1966-70, by G. L. Whitaker, U.S. Geological Survey, 1971.
- No. 23. Selected hydrologic data, Lower Bear River drainage basin, Box Elder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1973.
- No. 24. Water-quality data for the Flaming Gorge Reservoir area, Utah and Wyoming, 1969-72, by E. L. Bolke and K. M. Waddell, U.S. Geological Survey, 1972.

INFORMATION BULLETINS

- *No. 1. Plan of work for the Sevier River Basin (Sec. 6, P. L. 566), U.S.Department of Agriculture, 1960.
- *No. 2. Water production from oil wells in Utah, by Jerry Tuttle, Utah State Engineer's Office, 1960.
- *No. 3. Ground-water areas and well logs, central Sevier Valley, Utah, by R. A. Young, U.S. Geological Survey, 1960.
- *No. 4. Ground-water investigations in Utah in 1960 and reports published by the U.S. Geological Survey or the Utah State Engineer prior to 1960, by H. D. Goode, U.S. Geological Survey, 1960.
- *No. 5. Developing ground water in the central Sevier Valley, Utah, by R. A. Young and C. H. Carpenter, U.S. Geological Survey, 1961.
- *No. 6. Work outline and report outline for Sevier River basin survey, (Sec. 6, P.L. 566), U.S. Department of Agriculture, 1961.
- No. 7. Relation of the deep and shallow artesian aquifers near Lynndyl, Utah, by R. W. Mower, U.S. Geological Survey, 1961.

- *No. 8. Projected 1975 municipal water-use requirements, Davis County, Utah, by Utah State Engineer's Office, 1962.
- No. 9. Projected 1975 municipal water-use requirements, Weber County, Utah, by Utah State Engineer's Office, 1962.
- *No. 10. Effects on the shallow artesian aquifer of withdrawing water from the deep artesian aquifer near Sugarville, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
- No. 11. Amendments to plan of work and work outline for the Sevier River basin (Sec. 6, P.L. 566), U.S. Department of Agriculture, 1964.
- *No. 12. Test drilling in the upper Sevier River drainage basin, Garfield and Piute Counties, Utah, by R. D. Feltis and G. B. Robinson, Jr., U.S. Geological Survey, 1963.
- *No. 13. Water requirements of lower Jordan River, Utah, by Karl Harris, Irrigation Engineer, Agricultural Research Service, Phoenix, Arizona, prepared under informal cooperation approved by Mr. William W. Donnan, Chief, Southwest Branch (Riverside, California) Soil and Water Conservation Research Division, Agricultural Research Service, U.S.D.A., and by Wayne D. Criddle, State Engineer, State of Utah, Salt Lake City, Utah, 1964.
- *No. 14. Consumptive use of water by native vegetation and irrigated crops in the Virgin River area of Utah, by Wayne D. Criddle, Jay M. Bagley, R. Keith Higginson, and David W. Hendricks, through cooperation of Utah Agricultural Experiment Station, Agricultural Research Service, Soil and Water Conservation Branch, Western Soil and Water Management Section, Utah Water and Power Board, and Utah State Engineer, Salt Lake City, Utah, 1964.
- *No. 15. Ground-water conditions and related water-administration problems in Cedar City Valley, Iron County, Utah, February, 1966, by Jack A. Barnett and Francis T. Mayo, Utah State Engineer's Office.
- *No. 16. Summary of water well drilling activities in Utah, 1960 through 1965, compiled by Utah State Engineer's Office, 1966.
- *No. 17. Bibliography of U.S. Geological Survey Water Resources Reports for Utah, compiled by Olive A. Keller, U.S. Geological Survey, 1966.
- *No. 18. The effect of pumping large-discharge wells on the ground-water reservoir in southern Utah Valley, Utah County, Utah, by R. M. Cordova and R. W. Mower, U.S. Geological Survey 1967.

- No. 19. Ground-water hydrology of southern Cache Valley, Utah, by L. P. Beer, 1967.
- No. 20. Fluvial sediment in Utah, 1905-65, A data compilation by J. C. Mundorff, U.S. Geological Survey, 1968.
- No. 21. Hydrogeology of the eastern portion of the south slopes of the Uinta Mountains, Utah, by L. G. Moore and D. A. Barker, U.S. Bureau of Reclamation, and James D. Maxwell and Bob L. Bridges, Soil Conservation Service, 1971.
- No. 22. Bibliography of U.S. Geological Survey Water-Resources Reports for Utah, compiled by Barbara A. LaPray, U.S. Geological Survey, 1972.

Measurements by the Utah Division of Wildlife Resources in 1967 (written commun., 1967) show that the discharge of Bar M Spring ranged from 10.7 to 11.6 ft³/s ($0.30-0.33 \text{ m}^3/\text{s}$) (23 measurements) and that of Sparks Spring ranged from 1.1 to 1.8 ft³/s ($0.03-0.05 \text{ m}^3/\text{s}$) (15 measurements). On March 3, 1967, the combined discharge of West Locomotive, Baker, Bar M, Off, and Sparks Springs was about 38 ft³/s ($1.08 \text{ m}^3/\text{s}$); on April 4, 1967, it was about 41 ft³/s ($1.16 \text{ m}^3/\text{s}$).

The Geological Survey established gaging stations at West Locomotive, Baker, Bar M, Off, and Sparks Springs in December 1968, and records of discharge at these stations are given in table 9. The mean combined discharge of the five springs during 1969-72 was about 32 ft³/s $(0.90 \text{ m}^3/\text{s})$ or about 23,000 acre-feet (28.4 hm³) per year. The average March-April discharge from the springs during 1969-72 was about 36 ft³/s $(1.02 \text{ m}^3/\text{s})$. Graphs of the mean monthly discharge at these springs are shown in figure 9. Because of flow regulation and diversions, the discharge records at West Locomotive and Baker Springs are fragmentary and of questionable reliability during July-September. The discharge of all the springs fluctuates seasonally and annually (table 9).

The combined discharge of West Locomotive, Baker, Bar M, Off, and Sparks Springs probably represents about 95 percent of the total groundwater discharge at Locomotive Springs; thus, the total discharge during 1969-72 averaged about 24,000 acre-feet (29.6 hm³) per year. The remaining 5 percent was from a few small unnamed springs and seeps and from Teal Spring. The discharge of Teal Springs is estimated as about 1-2 ft 3 /s (0.03-0.06 m³/s). The spring pond is sometimes submerged by East Lake, and even when it is not, the velocity of flow in the flat, tortuous, marshy channel between the pond and the lake is too small for reliable discharge measurements.

Chemical quality

The water discharged at Locomotive Springs is slightly to moderately saline and is of the sodium chloride type; these ions account for about 85 percent of the total ions in solution. (See table 3.) The concentration of dissolved solids in water from each spring varies somewhat throughout the year, but no consistent trend of change from year to year has been observed. (See table 6.) Part of the observed range of dissolved solids may be due to sampling error--samples obtained from a pond, even near the point of inflow, are not consistently representative of the inflow water.

The wide range in concentration of dissolved solids among the springs is believed to result when water from upvalley acquires varying quantities of additional salts near the discharge points. The springs are adjacent to the Great Salt Lake and are surrounded by saline sediments that contain sodium chloride brines. The data in table 3 show that the differences in average concentration of dissolved solids among the springs are primarily due to differences in concentration of sodium and chloride. These two ions account for nearly 96 percent of the