STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES AND ENERGY

Technical Publication No. 74

SEEPAGE STUDY OF THE SEVIER RIVER AND THE CENTRAL UTAH, MCINTYRE, AND LEAMINGTON CANALS, JUAB AND MILLARD COUNTIES, UTAH

by

L. R. Herbert, R. W. Cruff, Walter F. Holmes U.S. Geological Survey

Prepared by the United States Geological Survey in cooperation with the Utah Department of Natural Resources and Energy, Division of Water Rights

.

.

· · · ·

CONTENTS

Page

Abstract	1
Introduction	1
General description of river and canal systems	1
Methods of investigation	2
Procedures used in computing gains and losses	3
Evaluation of the canal and river systems	4
Sevier River	4
Central Utah Canal	5
McIntyre Canal	6
Leamington Canal	7
Summary	7
References cited	8
Publications of the Utah Department of Natural Resources and Energy,	
Division of Water Rights	34

ILLUSTRATIONS

Figures	s 1-4.	Maps 1.	showing measuring sites along the: Sevier River	9
		2. 3. 4.	Central Utah Canal McIntyre Canal Leamington Canal	10 11 12
	5-8.	Grapi dur:	hs showing gage heights at recorder sites ing seepage runs along the:	
		5. 6. 7. 8.	Sevier River Central Utah Canal McIntyre Canal Leamington Canal	13 16 19 20
	9-11.	Grap) 9. 10. 11.	hs showing gain or loss for reaches of the: Sevier River Central Utah Canal McIntyre and Leamington Canals	21 22 23
			TABLES	
Tables	1-4.	Measur 1. Se 2. Ce 3. Mo 4. Le	rements made along the: evier River entral Utah Canal cIntyre Canal eamington Canal	24 28 31 32
	5. G	ains o reache	or losses determined from seepage measurements for es of the river and canals	33

CONVERSION FACTORS

Most values are given in this report in inch-pound units followed by metric (SI) units. The conversion factors are shown to four significant figures. In the text, however, the metric equivalents are shown only to the number of significant figures consistent with the accuracy of the value in inch-pound units.

Inch	pound		Metric	
Unit (Multiply)	Abbreviation	(by)	(to obtain)	Abbreviation
Cubic foot per second	ft ³ /s	0.02832	Cubic meter per second	m ³ /s
Cubic foot per second per mile	(ft ³ /s)/mi	0.01760	Cubic meter per second per kilometer	(m ³ /s)/km
Foot	ft	0.3048	Meter	m
Mile	mi	1.609	Kilometer	km

Water temperature is given in degrees Celsius (^oC), which can be converted to degrees Fahrenheit (^oF) by the following equation: ${}^{o}F=1.8({}^{o}C)+32$.

SEEPAGE STUDY OF THE SEVIER RIVER AND THE CENTRAL UTAH, MCINTYRE, AND LEAMINGTON CANALS, JUAB AND MILLARD COUNTIES, UTAH

By L. R. Herbert, R. W. Cruff, and Walter F. Holmes U.S. Geological Survey

ABSTRACT

A study of the gains or losses of the Sevier River and the Central Utah, McIntyre, and Leamington Canals in the Leamington area, in Juab and Millard Counties, Utah, was made to determine changes in those reaches. Three to seven sets of seepage measurements made during 1980 were used in the analysis. Adjustments for fluctuations in flow were made from information obtained from water-stage recorders operated at selected locations during the time of each seepage run.

The study showed an overall net gain of about 9 cubic feet per second (0.25 cubic meter per second) in the Sevier River and about 1.3 cubic feet per second (0.04 cubic meter per second) in the Leamington Canal. It also showed a net loss of about 7 cubic feet per second (0.20 cubic meter per second) in the Central Utah Canal and about 0.8 cubic foot per second (0.02 cubic meter per second) in the McIntyre Canal. The gains in the Sevier River and Leamington Canal probably come chiefly as return seepage of water lost from the Central Utah and McIntyre Canals.

INTRODUCTION

This report gives the results of river and canal seepage studies made in the Leamington area, in Juab and Millard Counties, Utah. The study (fifth of a series) is part of the statewide water-resources program conducted by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources and Energy, Division of Water Rights. Information on canal and river gains or losses is needed by water managers, particularly the Division of Water Rights, for allocating water along irrigation systems. Detailed investigation of irrigation systems can aid in locating the loss or gain sections of the system.

GENERAL DESCRIPTION OF THE RIVER AND CANAL SYSTEMS

This report describes 30.6 miles (49.2 km) of the Sevier River near Leamington, Utah (fig. 1), which has an average annual regulated discharge of 223 cubic feet per second ($6.32 \text{ m}^3/\text{s}$) from 1911 to 1979 (U.S. Geological Survey, 1980, p. 508) and is the main aqueduct into the Sevier Desert area; 13 miles (21 km) of Central Utah Canal (fig. 2), which has a capacity of about 250 cubic feet per second ($7.1 \text{ m}^3/\text{s}$); 7.7 miles (12 km) of McIntyre Canal (fig. 3), which has a capacity of about 25 cubic feet per second ($0.7 \text{ m}^3/\text{s}$); and 5.3 miles (8.5 km) of Leamington Canal (fig. 4), which has a capacity of about 35 cubic feet per second ($1.0 \text{ m}^3/\text{s}$). Water is diverted to the canals from the Sevier River for irrigation on local benchlands and in the Sevier Desert.

1

Unconsolidated deposits ranging in age from Pleistocene to Holocene and consisting of fine sand to coarse gravel underlie most measured reaches of the above-mentioned system. Local exceptions are at the mouth of Leamington Canyon where sections of the Sevier River and Central Utah and McIntyre Canals are underlain by consolidated rocks mostly of Paleozoic and Mesozoic age (Mower and Feltis, 1968, p. 12).

Ground water in the area generally moves westward with local components of movement toward the Sevier River (Mower and Feltis, 1968, pl. 4). During this study numerous small seeps and springs were observed along the banks of the Sevier River. These springs probably are discharges of unconsumed irrigation water applied to crops on higher benches and terraces. The water apparently seeps to a poorly permeable zone and moves laterally along the zone to where it discharges. This indicates that the Sevier River and some sections of the canals downstream from irrigated lands may gain water from the seeps and springs during the irrigation season and possibly the entire year.

METHODS OF INVESTIGATION

A reconnaissance of the area was made in the fall of 1979. The sections of the river and canals selected for the study were examined for: (1) The location of controls, turnouts, or other diversion structures and for bridges; (2) the general condition of the river and canals (for example, whether the canals had been recently cleaned or other maintenance had been performed); and (3) the location of areas of natural and irrigation-return flow to the river and canals.

Using the information from the reconnaissance, the selected sections of the river and canals were divided into reaches, and measuring sites were selected within each reach. Water-stage recorders were operated at selected sites, mainly at the start and end of each reach. Because of the depth of the Central Utah Canal, it was necessary to locate measuring sites at existing bridges or to construct measuring bridges. Measurements of the river were made during low flow when it was possible to wade across the channel.

Seven sets of seepage measurements were made along Central Utah Canal during 1980--on September 11, 23, and 24, October 8 and 9, and November 20 and 21. The study section of the river had 13 selected measurement sites.

Four sets of seepage measurements were made along Central Utah Canal during 1980--on May 21, June 25, August 7, and September 10. The study section of the canal had 12 selected measuring sites.

Three sets of seepage measurements were made along McIntyre and Leamington Canals during 1980--on June 12 and 24, and August 6. Each set contained seven selected measurement sites for each canal.

Measurements of discharges in selected sections were made with a current meter, using methods adopted by the U.S. Geological Survey. Each person was assigned a reach for each day in which the required number of measurements could be completed. In each reach, measurements were made at all selected measuring sites, including both ends of the reach, all turnouts, and all inflow points. Sites where a measurement (or estimate) was made during at least one set of seepage measurements are shown in figures 1-4. For each measurement, the date, time, discharge, temperature, and specific conductance of the water are shown in tables 1-4. The numbers used for the turnouts in figures 1-4 (for example, T2) were assigned in a downstream order to only those turnouts used on respective canals. Continuous water-stage records were obtained for each reach and are shown in figures 5-8.

PROCEDURES USED IN COMPUTING GAINS AND LOSSES

The results of the seepage measurements for reaches of the river and canals are given in table 5. The procedures used to obtain these results are described in the following pages.

A computation was made of the flow that would be expected at each main channel measuring site, assuming no loss or gain. Beginning with the flow at the head of each reach and proceeding in a downstream sequence, all turnout flows were subtracted. The computed value at each site was then adjusted for fluctuations in canal flow that originated upstream from the reach being analyzed. Information required to make this adjustment is the change in flow with time at the head of the reach, the time of measurements at the head of the reach and the downstream measuring site, and the time required for passage of water from the head of the reach to the downstream site.

The change in flow with time at the head of the reach was determined from the recorded gage height and the discharge measurement at the head of each reach. The times of the two measurements are available from tables 1-4, and the time of travel between the two points was determined from the stage recorders at or near the ends of each reach.

As an example, assume that the measurement at the head of the reach was 200 cubic feet per second $(5.66 \text{ m}^3/\text{s})$ at 0800 hours, the measurement at the downstream measuring site was made at 1000 hours, the time required for flow to travel between the two sites is 1 hour, and the discharge at the head of the reach was decreasing at the rate of 5 cubic feet per second $(0.1 \text{ m}^3/\text{s})$ per hour. To make the adjustment, the travel time is subtracted from the time of the downstream flow at the head of the reach. From the gage-height records and the measurements available for the head of the reach, the flow at 0900 hours was calculated at 195 cubic feet per second $(5.5 \text{ m}^3/\text{s})$, or an adjustment of -5 cubic feet per second $(-0.1 \text{ m}^3/\text{s})$. This adjustment was then applied to the computed value of the downstream measuring site.

The computed value was then subtracted from the measured value to determine the amount of gain or loss between the head of the reach and the downstream measuring site. The amount of gain or loss was then plotted as a function of distance downstream from the head of the reach. This was done for each main channel measuring site for each set of measurements.

In some instances, depending on the rate of gain or loss or the scatter of plotted points, the canals were segmented into shorter reaches. The data for each of the newly defined reaches were then plotted in figures 9-11 with the gain or loss at each main canal measuring site plotted as a function of distance from the head of the reach. A straight line was fitted through the plotted points for each reach, and the amount and rate of gain or loss from the reach were determined from this line. The amount and rate of gain or loss by reach are shown in table 5. Within a given reach, the amount of gain or loss varied in each set of seepage measurements and among the several sets of measurements. This variation is shown by the scatter of the plotted points in figures 9-11. The scatter is attributed to one or more of the following: (1) Poor measuring conditions, (2) changes in the rate of seepage loss from the canal, (3) changes in the rate of seepage return to the canal of ground water and unconsumed irrigation water, (4) the inability to adjust completely for fluctuations in the amount of flow within a given reach, and (5) the possibility that a water user changed the flow in his turnouts during the time of the measurements.

EVALUATION OF THE RIVER AND CANAL SYSTEMS

Sevier River

Seven seepage runs were made on the Sevier River (fig. 1) and except for the first run the flow was about 50 cubic feet per second $(1.4 \text{ m}^3/\text{s})$ downstream from the Central Utah Canal diversion. Most reaches that were studied had small gains or losses, although the reaches in the downstream section of the river were relatively stable. The net gain was about 9 cubic feet per second $(0.25 \text{ m}^3/\text{s})$ with reaches of maximum gains of about 8 cubic feet per second $(0.23 \text{ m}^3/\text{s})$ and maximum losses of about 4 cubic feet per second $(0.11 \text{ m}^3/\text{s})$. The following is a brief description of each reach studied and the calculated change. (See also fig. 9.)

<u>Reach SR1-SR2</u>.--Site SR1 is about 300 feet (90 m) upstream from the State Highway 132 bridge over the Sevier River. The site is located where consolidated rocks crop out in the river bottom. A water-stage recorder was operated at this site to monitor changes of flow during the study. Site SR2 is about 200 feet (60 m) upstream from the Leamington Canal diversion. The river at this point is underlain by unconsolidated deposits of coarse gravel. Both the Central Utah and McIntyre Canals divert water in this reach. The measurements at site SR2 showed some scatter and indicated a loss of about 4 cubic feet per second (0.11 m³/s) or 1.0 cubic feet per second per mile [0.02 (m³/s)/km]. A possible explanation for the loss could be underflow passing site SR2 through the coarse gravel deposits.

Reach SR2-SR7.--Site SR7 is located about 100 feet (30 m) upstream from the bridge over the river at the southeast corner sec. 5, T. 15 S., R. 4 W., about 2 miles (3 km) northwest from Leamington. A water-stage recorder operated at this site was used to monitor changes in flow. This reach, which is underlain mainly by gravel and includes the Leamington Canal diversion, had a net gain of about 8 cubic feet per second $(0.2 \text{ m}^3/\text{s})$ or 0.7 cubic foot per second per mile $[0.01 \text{ (m}^3/\text{s})/\text{km}]$. Some inflow from a swampy area was observed 400 feet (120 m) downstream from site SR2. The largest measured gains made in this reach were during the seepage run of September 23, and the smallest during the seepage run of November 20 (fig. 9). Gains in this reach of the river correspond to losses in the Central Utah Canal from its head to site CU6 (table 5). This indicates that seepage from this section of the canal probably eventually returns to the river.

<u>Reach SR7-SR9.</u>--Site SR9 is upstream from the bridge on the county road about 2 miles (3 km) east of Lynndyl. The measurements showed a net gain of about 5 cubic feet per second (0.1 m³/s) or 1.4 cubic feet per second per mile $[0.025 (m^3/s)/km]$ for this reach, which is the largest gain measured per unit length of river. The specific conductance increased an average of about 300 micromhos per centimeter at 25° Celsius in this reach (table 1), which indicates the specific conductance of the inflow was about 4,700 micromhos per centimeter at 25° Celsius. A possible explanation for this gain is unconsumed irrigation water moving from irrigated upland areas to the river through permeable unconsolidated deposits. (See Mower and Feltis, 1968, p. 27.)

Reach SR9-SR13.--Site SR13 is a long-term gaging station on the Sevier River about 3 miles (4.8 km) southwest of Lynndyl and was used to help monitor changes of flow during the study. The measurements in this reach had some scatter, but the net change indicated no detectable gain or loss. A pond on the right bank of the river between sites SR9 and SR10 does contribute inflow to this reach at times.

Central Utah Canal

Twelve measurement sites were selected throughout the 13 miles (21 km) of Central Utah Canal and four sets of measurements were made (fig. 2). Individual reaches that were studied had small gains or losses. The net loss was about 7 cubic feet per second $(0.2 \text{ m}^3/\text{s})$ with reaches of maximum gains of about 2 cubic feet per second $(0.06 \text{ m}^3/\text{s})$ and maximum losses of about 4 cubic feet per second $(0.11 \text{ m}^3/\text{s})$. The range of flows during the study was from about 100 to 240 cubic feet per second (2.8 to 6.8 m³/s) with an average of 180 cubic feet per second $(5.1 \text{ m}^3/\text{s})$. The following is a brief description of each reach studied and the calculated changes (fig. 10).

Reach CU1-CU3.--Site CU1 is at a foot bridge constructed for measuring the canal about 500 feet (150 m) downstream from the head of the canal. Site CU3 is at a foot bridge constructed for measuring and is located about 600 feet (180 m) east of the head of the Leamington Canal (fig. 2). At site CU2 a water-stage recorder was used to monitor the change of water stages in the canal during the study. The measurements show considerable scatter. The net change was a loss of about 1 cubic foot per second (0.03 m^3/s) or 0.6 cubic foot per second per mile $[0.01 \text{ (m}^3/\text{s})/\text{km}]$, which is less than 1 percent of the average measured discharge. The canal in this reach is cut into unconsolidated deposits underlain by fractured consolidated rocks with near vertical dips. Water probably moves through the unconsolidated deposits into the fractured consolidated rocks. The water then moves along these fractures to discharge points in the canyon bottom where it discharges to unconsolidated deposits, moves upward through these deposits, and eventually returns to the Sevier River.

Reach CU3-CU6.--Site CU6 is at a county road bridge near the south edge of sec. 11, T. 15 S., R. 4 W. A water-stage recorder was installed at this site to monitor conditions during the study. The measurements showed considerable scatter for this reach and indicated a net loss of about 4 cubic feet per second $(0.1 \text{ m}^3/\text{s})$ or 1.0 cubic foot per second per mile $[0.2 (\text{m}^3/\text{s})/\text{km}]$, which is about 2 percent of the average measured discharge. The canal in this reach is cut through fractured consolidated rocks with near vertical dips. Water probably moves through these fractures and, like the previous reach, is eventually discharged to the river or to the Leamington Canal.

Reach CU6-CU9.--Site CU9 is at a county road bridge about 2 miles (3 km) southwest of Leamington. The measurements showed considerable scatter for this reach. The June 25 and August 7, 1980, measurements at site CU9 were not used because of poor measuring conditions on those days. The net change in

this reach was a loss of about 4 cubic feet per second $(0.11 \text{ m}^3/\text{s})$ or 1 cubic foot per second per mile $[0.02 \text{ (m}^3/\text{s})/\text{km}]$, which is about 2 percent of the average measured discharge. This reach of the canal is in unconsolidated deposits. Gravel pits located about 1,000 feet (300 m) northwest of site CU6 indicate that in this reach the canal could be underlain by permeable gravel. Water moving from the canal through the gravel would probably discharge into the Leamington Canal or the Sevier River. Phreatophytes are abundant along the banks of the canal in this reach and may account for a small percentage of the calculated loss.

<u>Reach CU9-CU12</u>.--Site CU12 is at a county road bridge about 300 feet (90 m) upstream from the Fool Creek Reservoir diversion and was the end of the study section. A water-stage recorder was installed at site CU12 to monitor changes during the study. The measurements showed considerable scatter for this reach and indicated a gain of about 2.0 cubic feet per second $(0.06 \text{ m}^3/\text{s})$ or 0.6 cubic foot per second per mile $[0.01 \text{ (m}^3/\text{s})/\text{km}]$, which is about 1 percent of the average measured discharge. The measurement at site CU11 on September 10, 1980, was not used in this analysis because of nonideal measuring conditions. A possible explanation for the gain is unconsumed water moving through shallow unconsolidated deposits into the canal from irrigated fields upgradient and adjacent to the canal in this reach.

McIntyre Canal

Seven measurement sites were selected throughout the 7.7 miles (12 km) of the McIntyre Canal to be studied (fig. 3). Three sets of measurements were made to determine the mean loss or gain in the canal. The two reaches that were studied had small losses. The net loss for both reaches was about 0.8 cubic foot per second $(0.02 \text{ m}^3/\text{s})$ with a maximum loss of about 0.4 cubic foot per second $(0.01 \text{ m}^3/\text{s})$. The average flow in the canal for the study was 16.3 cubic feet per second $(0.46 \text{ m}^3/\text{s})$. The following is a brief description of each reach studied and the calculated change (fig. 11).

<u>Reach M1-M6.</u>--Site M1 is at the gage where the canal diverts water from the Sevier River. The water-stage recorder was used during the study to determine changes of flow during seepage runs down the canal. Site M6 was a measuring section just downstream from the east edge of sec. 4, T. 15 S., R. 4 W. The measurements showed some scatter for this reach and indicated a net loss of about 0.4 cubic foot per second (0.01 m³/s) or 0.1 cubic foot per second per mile [0.002 (m³/s)/km], which is about 2.5 percent of the average measured discharge. This reach of the canal is cut through unconsolidated and some consolidated deposits. These deposits probably transmit the small amount of water lost from the canal to discharge points in the Sevier River.

<u>Reach M6-M7</u>.--Site M7 is the end of the study section of the canal located in the northeast corner sec. 5, T. 15 S., R. 4 W., and upstream from the main diversion. A recorder was operated at this site to monitor changes in the flow of the canal. The measurements indicated a net loss of about 0.4 cubic foot per second $(0.01 \text{ m}^3/\text{s})$ or 0.3 cubic foot per second per mile $[0.005 \text{ (m}^3/\text{s})/\text{km}]$, which is about 2.5 percent of the average measured discharge. A gravel pit is located several hundred feet southwest of site M6 and indicates that parts of the canal in this reach are underlain by permeable gravel. Water moving from the canal through the gravel would probably discharge into the Sevier River.

Leamington Canal

Seven measurement sites were selected throughout the 5.3 miles (8.5 km) of the Leamington Canal to be studied (fig. 4). Three sets of measurements were made to determine the mean loss or gain in the canal. Most reaches that were studied had small gains or losses. The net gain was about 1.3 cubic feet per second $(0.04 \text{ m}^3/\text{s})$ with reaches of maximum gains of about 1.5 cubic feet per second $(0.04 \text{ m}^3/\text{s})$ and maximum losses of about 1.8 cubic feet per second $(0.05 \text{ m}^3/\text{s})$. The average flow in the canal for the study was 23.5 cubic feet per second $(0.67 \text{ m}^3/\text{s})$. The following is a brief description of each reach studied and the calculated change. (See fig. 11.)

<u>Reach L1-L2.--Site L1</u> is the gage where the canal diverts water from the Sevier River. The water-stage recorder at the gage was used during the study to determine change in flow while the seepage runs were being made. Site L2 was a measuring section just downstream from the west edge of sec. 5, T. 15 S., R. 3 W. The measurements showed some scatter and indicated a net gain of about 1.5 cubic feet per second $(0.04 \text{ m}^3/\text{s})$ or 1.7 cubic feet per second per mile $[0.03 \text{ (m}^3/\text{s})/\text{km}]$ for this reach, which is about 6 percent of the average measured discharge. The gain in this reach is probably the result of water seeping from the Central Utah Canal and discharging into the Leamington Canal.

Reach L2-L4.--Site L4 is downstream from a bridge on State Highway 132, 1.7 miles (2.7 km) east of Leamington. The measurements showed considerable scatter and indicated a net gain of about 0.8 cubic foot per second (0.02 m^3/s) or 0.4 cubic foot per second per mile [0.007 (m^3/s)/km], which is about 3.5 percent of the average measured discharge. The gain in this reach of the canal, as in the L1-L2 reach, probably comes from seepage out of the Central Utah Canal.

<u>Reach L4-L6.</u>--Site L6 is on the downstream side of a bridge 0.5 mile (0.8 km) south of Leamington and 0.4 mile (0.6 km) east of State Highway 125. Measurements showed some scatter and a net loss of about 1.8 cubic feet per second $(0.051 \text{ m}^3/\text{s})$ or 1.0 cubic foot per second per mile $[0.02 \text{ (m}^3/\text{s})/\text{km}]$, which is about 7.5 percent of the average measured discharge. It is probable that some sections of the canal in this reach are underlain by permeable gravel as indicated by a gravel pit near site L6. Water seeping into the gravel from the canal probably eventually discharges to the Sevier River.

<u>Reach L6-L7.--Site L7</u> is upstream from the State Highway 125 bridge across the canal 0.7 mile (1.1 km) south of Leamington. This was the end of the study section. A water-stage recorder was operated at site L7, and the record obtained there was used to help analyze changing flows during seepage runs. The measurements had little scatter and showed a net gain of about 0.8 cubic foot per second (0.02 m³/s) or 1.1 cubic feet per second per mile [0.019 $(m^3/s)/km$], or about 3.5 percent of the average measured discharge. The gain in this reach probably is water seeping from the Central Utah Canal.

SUMMARY

The seepage study of the Sevier River and the Central Utah, McIntyre, and Leamington Canals showed a net gain of about 9 cubic feet per second (0.25 m^3/s) in the Sevier River, a net loss of about 7 cubic feet per second (0.2 m^3/s) in the Central Utah Canal, a net loss of about 0.8 cubic foot per second (0.02 m^3/s) in the McIntyre Canal, and a net gain of about 1.3 cubic feet per second (0.04 m^3/s) in the Leamington Canal.

7

Losses from the McIntyre Canal probably contribute to the gains in the Sevier River. Losses from the Central Utah Canal probably contribute to the gains in the Sevier River and the Leamington Canal. Additional gains in the Sevier River are probably the result of unconsumed irrigation water seeping into permeable unconsolidated deposits through which it moves to the river.

REFERENCES CITED

- Mower, R. W., and Feltis, R. D., 1968, Ground-water hydrology of the Sevier Desert, Utah: U.S. Geological Survey Water-Supply Paper 1854.
- U.S. Geological Survey, 1980, Water resources data for Utah water year 1979: U.S. Geological Survey Water-Data Report UT-80-1.

Figure 1.-Measuring sites along the Sevier River

EXPLANATION

CU6 ■ CANAL MEASURING SITE WITH RECORDER

CU3• CANAL MEASURING SITE WITHOUT RECORDER T5 DIVERSION TURNOUT FROM CANAL WITH FLOW DURING AT LEAST ONE SEEPAGE TURN

Figure 2.-Measuring sites along the Central Utah Canal.

EXPLANATION

MI CANAL MEASURING SITE WITH RECORDER

 M^2 CANAL MEASURING SITE WITHOUT RECORDER T1 DIVERSION TURNOUT FROM CANAL WITH FLOW DURING AT LEAST DNE SEEPAGE RUN

Figure 3.-Measuring sites along the McIntyre Canal.

EXPLANATION ^{L1} CANAL MEASURING SITE WITH RECORDER ^{L2} CANAL MEASURING SITE WITHOUT RECORDER

TI DIVERSION TURNOUT FROM CANAL WITH FLOW DURING AT LEAST ONE SEEPAGE RUN

Figure 4.-Measuring sites along the Learnington Canal.

Figure 5.-Gage heights at recorder sites during seepage runs along the Sevier River.

Figure 5.—Continued.

Figure 6.--Gage heights at recorder sites during seepage runs along the Central Utah Canal.

Figure 6.—Continued.

Figure 6.—Continued.

Figure 7.-Gage heights at recorder sites during seepage runs along the McIntyre Canal.

Figure 8.-Gage heights at recorder sites during seepage runs along the Learnington Canal.

-0.2

Figure 9.-Gain or loss for reaches of the Sevier River.

~10L

Figure 10.-Gain or loss for reaches of the Central Utah Canal.

Figure 11.-Gain or loss for reaches of the McIntyre and Learnington Canals.

Site	Date	Time	Discharge (ft³/s)	Specific conductance (micromhos per cm at 25 ⁰ C)	Water temperature (^o C)
SR1	Sept. 11, 1980	0705	290.5	1,470	17.0
CU2		0815	147.0		
M1		0910	8.4	_	_
SR2		0830	136.4	1,500	16.5
L1		0820	3.8		-
SR3		0930	137.9	1,510	16.5
SR4		1030	135.2	1,550	16.5
SR5		1120	137.2	1,510	17.0
SR6		1215	140.8	1,510	17.0
SR7		1250	141.0	1,490	19.0
		0715	144.7	1,500	16.0
SR8		0835	136.0	1,560	16.0
SR9		0930	147.3	1,640	16.5
SR10		1045	151.8	1,700	17.0
SR11		1220	144.8	1,690	19.0
SR12		1320	147.9	1,770	18.5
SR13		1410	148.2	1,680	19.5
SR1	Sept. 23, 1980	0910	175.8	1,450	11.0
CU2		1015	133.0	-	_
M1		1105	1.70	-	-
SR2		1025	38.61	1,460	12.0
L1		1020	11.10		
SR3		1120	29.28	1,460	12.5
SR4		1215	30.80	1,510	12.5
SR5		1305	37.91	1,520	13.0
SR6		1340	43.18	1,550	14.0
SR7		1420	46.28	1,490	16.5
		0950	48.38	1,670	11.5
SR8		1045	49.94	1,700	12.5
SR9		1130	53.98	1,930	13.0
SR10		1245	54.58	2,140	14.0
SR11		1400	54.34	2,220	15.5
SR12		1530	53.76	2,250	16.5
SR13		1630	52.86	2,250	19.0
SR1	Sept. 24, 1980	0710	179.1	1,450	12.5
CU2		0810	133.0		_
M1		0910	1.70	_	

 Table 1.—Measurements made along the Sevier River

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Site	Date	Time	Discharge (ft³/s)	Specific conductance (micromhos per cm at 25 ⁰ C)	Water temperature (^O C)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SR2	Sept. 24, 1980	0825	36.60	1,460	11.5
SR3 0925 28.37 1,500 10.5 SR4 1010 29.26 1,530 11.0 SR5 1100 32.01 1,540 12.5 SR6 1140 31.53 1,590 13.0 SR7 1220 33.73 1,640 13.5 SR8 0805 36.87 1,760 11.0 SR8 0805 36.87 1,760 11.0 SR9 0840 38.27 2,060 10.0 SR11 1020 38.97 2,390 12.0 SR12 1100 39.37 2,290 13.5 SR13 1145 41.81 - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - SR2 1210 45.50 1,500 16.5 SR4 1415 37.69 1,570 16.5 SR6 1540	L1		0815	11.10		
SR4 1010 29.26 1,530 11.0 SR5 1100 32.01 1,540 12.5 SR6 1140 31.53 1,590 13.0 SR7 1220 33.73 1,640 13.5 SR8 0805 36.87 1,760 11.0 SR9 0840 38.27 2,060 10.0 SR10 0930 39.68 2,390 11.5 SR11 1020 38.97 2,390 12.0 SR12 1100 39.37 2,290 13.5 SR13 1145 41.81 - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - SR3 1320 38.04 1,530 16.0	SR3		0925	28.37	1,500	10.5
SR5 1100 32.01 1,540 12.5 SR6 1140 31.53 1,590 13.0 SR7 1220 33.73 1,640 13.5 SR8 0805 36.87 1,760 11.0 SR9 0840 38.27 2,060 10.0 SR10 0930 39.68 2,390 11.5 SR11 1020 38.97 2,390 12.0 SR12 1100 39.37 2,290 13.5 SR13 1145 41.81 - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - SR2 1210 45.50 1,500 16.0 L1 1150 11.70 - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,570 16.5 SR5 1500 40.67 <td>SR4</td> <td></td> <td>1010</td> <td>29.26</td> <td>1,530</td> <td>11.0</td>	SR4		1010	29.26	1,530	11.0
SR6 1140 31.53 1,590 13.0 SR7 1220 33.73 1,640 13.5 SR8 0805 36.87 1,760 11.0 SR9 0840 38.27 2,060 10.0 SR10 0930 39.68 2,390 11.5 SR11 1000 39.37 2,290 13.5 SR13 1145 41.81 - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - M1 1250 2.84 - - - SR2 1210 45.50 1,500 15.0 15.0 L1 1150 11.70 - - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,720 16.5 SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 </td <td>SR5</td> <td></td> <td>1100</td> <td>32.01</td> <td>1,540</td> <td>12.5</td>	SR5		1100	32.01	1,540	12.5
SR7 1220 33.73 1,640 13.5 O710 33.88 1,640 11.0 SR8 0805 36.87 1,760 11.0 SR9 0840 38.27 2,060 10.0 SR10 0930 39.68 2,390 11.5 SR11 10020 38.97 2,290 13.5 SR12 1100 39.37 2,290 13.5 SR13 1145 41.81 - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - M1 1250 2.84 - - - SR2 1210 45.50 1,500 15.0 15.0 L1 1150 11.70 - - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,720 16.5 SR7 1620 42.40 1,750 18.0 SR8 1135 43.	SR6		1140	31.53	1,590	13.0
0710 33.88 1,640 11.0 SR8 0805 36.87 1,760 11.0 SR9 0840 38.27 2,060 10.0 SR10 0930 39.68 2,390 11.5 SR11 1020 38.97 2,390 12.0 SR12 1100 39.37 2,290 13.5 SR13 1145 41.81 - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - SR2 1210 45.50 1,500 15.0 L1 1150 11.70 - - SR3 1320 38.04 1,530 16.5 SR4 1415 37.69 1,570 16.5 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 SR8 1135 43.00 <t< td=""><td>SR7</td><td></td><td>1220</td><td>33.73</td><td>1,640</td><td>13.5</td></t<>	SR7		1220	33.73	1,640	13.5
SR8 0805 36.87 1,760 11.0 SR9 0840 38.27 2,060 10.0 SR10 0930 39.68 2,390 11.5 SR11 1020 38.97 2,390 12.0 SR12 1100 39.37 2,290 13.5 SR13 1145 41.81 - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - M1 1250 2.84 - - - SR2 1210 45.50 1,500 15.0 15.0 L1 1150 11.70 - - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,570 16.5 SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 SR9 1220<			0710	33.88	1,640	11.0
SR9 0840 38.27 2,060 10.0 SR10 0930 39.68 2,390 11.5 SR11 1020 38.97 2,390 12.0 SR12 1100 39.37 2,290 13.5 SR13 1145 41.81 - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - M1 1250 2.84 - - - SR2 1210 45.50 1,500 15.0 L1 1150 11.70 - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,720 16.5 SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 SR9 1220	SR8		0805	36.87	1,760	11.0
SR10 0930 39.68 2,390 11.5 SR11 1020 38.97 2,390 12.0 SR12 1100 39.37 2,290 13.5 SR13 1145 41.81 - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - M1 1250 2.84 - - - SR2 1210 45.50 1,500 15.0 L1 1150 11.70 - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,570 16.5 SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 SR8 1135 43.00 1,900 13.5 SR9 1220	SR9		0840	38.27	2,060	10.0
SR11 1020 38.97 2,390 12.0 SR12 1100 39.37 2,290 13.5 SR13 1145 41.81 - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - M1 1250 2.84 - - - SR2 1210 45.50 1,500 15.0 1 L1 1150 11.70 - - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,570 16.5 SR7 1620 42.40 1,750 18.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR11 Oct. 9, 1980	SR10		0930	39.68	2,390	11.5
SR12 1100 39.37 2,290 13.5 SR13 1145 41.81 - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - M1 1250 2.84 - - - SR2 1210 45.50 1,500 15.0 L1 1150 11.70 - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,570 16.5 SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 1045 41.59 1,860 13.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 </td <td>SR11</td> <td></td> <td>1020</td> <td>38.97</td> <td>2,390</td> <td>12.0</td>	SR11		1020	38.97	2,390	12.0
SR13 1145 41.81 - - SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - - M1 1250 2.84 - - - SR2 1210 45.50 1,500 15.0 L1 1150 11.70 - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,570 16.5 SR5 1500 40.67 1,690 16.0 SR4 1415 37.69 1,720 16.5 SR7 1620 42.40 1,750 18.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR11 1415 47.53 - - SR12 1455 48.10 2,300 <td>SR12</td> <td></td> <td>1100</td> <td>39.37</td> <td>2,290</td> <td>13.5</td>	SR12		1100	39.37	2,290	13.5
SR1 Oct. 8, 1980 0845 59.59 1,330 12.5 CU2 1130 6.07 - - M1 1250 2.84 - - SR2 1210 45.50 1,500 15.0 L1 1150 11.70 - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,570 16.5 SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 1045 41.59 1,860 13.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR13 0ct. 9, 1980 0725 57.20 1,260 12.5<	SR13		1145	41.81	_	_
CU2 1130 6.07 - - M1 1250 2.84 - - SR2 1210 45.50 1,500 15.0 L1 1150 11.70 - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,570 16.5 SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR13 0ct. 9, 1980 0725 57.20 1,260 12.5 CU2 0820 6.10 - - -	SR1	Oct. 8, 1980	0845	59.59	1.330	12.5
M1 1250 2.84 - - SR2 1210 45.50 1,500 15.0 L1 1150 11.70 - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,570 16.5 SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR10 1315 46.76 2,290 15.0 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR1 Oct. 9, 1980 0725 57.20 1,260 12.5 CU2 0820 6.10 - - -	CU2		1130	6.07		_
SR2 1210 45.50 1,500 15.0 L1 1150 11.70 - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,570 16.5 SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR10 1315 46.76 2,290 15.0 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR1 Oct. 9, 1980 0725 57.20 1,260 12.5 CU2 0820 6.10 - - -	M1		1250	2.84		
L1 1150 11.70 - - SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,570 16.5 SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 N045 41.59 1,860 13.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR13 0ct. 9, 1980 0725 57.20 1,260 12.5 CU2 0820 6.10 - - -	SR2		1210	45.50	1.500	15.0
SR3 1320 38.04 1,530 16.0 SR4 1415 37.69 1,570 16.5 SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR10 1315 46.76 2,290 15.0 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR13 0ct. 9, 1980 0725 57.20 1,260 12.5 CU2 0820 6.10 - - -	L1		1150	11.70	-	_
SR4 1415 37.69 1,570 16.5 SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 1045 41.59 1,860 13.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR10 1315 46.76 2,290 15.0 SR11 1415 47.53	SR3		1320	38.04	1 530	16.0
SR5 1500 40.67 1,690 16.0 SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 1045 41.59 1,860 13.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR10 1315 46.76 2,290 15.0 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR1 Oct. 9, 1980 0725 57.20 1,260 12.5	SR4		1415	37.69	1,570	16.5
SR6 1540 39.99 1,720 16.5 SR7 1620 42.40 1,750 18.0 1045 41.59 1,860 13.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR10 1315 46.76 2,290 15.0 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR1 Oct. 9, 1980 0725 57.20 1,260 12.5	SR5		1500	40.67	1 690	16.0
SR7 1620 42.40 1,750 18.0 SR8 1045 41.59 1,860 13.0 SR9 1220 49.39 2,040 14.5 SR10 1315 46.76 2,290 15.0 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR1 Oct. 9, 1980 0725 57.20 1,260 12.5	SR6		1540	30.00	1,000	16.5
1020 42.40 1,750 18.0 1045 41.59 1,860 13.0 SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR10 1315 46.76 2,290 15.0 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR1 Oct. 9, 1980 0725 57.20 1,260 12.5 CU2 0820 6.10 - - -	SR7		1620	42.40	1,720	19.0
SR8 1135 43.00 1,900 13.5 SR9 1220 49.39 2,040 14.5 SR10 1315 46.76 2,290 15.0 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR1 Oct. 9, 1980 0725 57.20 1,260 12.5	0117		1045	41 59	1,750	13.0
SR9 1220 49.39 2,040 14.5 SR10 1315 46.76 2,290 15.0 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR1 Oct. 9, 1980 0725 57.20 1,260 12.5 CU2 0820 6.10 - - -	SR8		1135	43.00	1,000	13.5
SR10 1315 46.76 2,290 15.0 SR11 1415 47.53 - - SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR1 Oct. 9, 1980 0725 57.20 1,260 12.5 CU2 0820 6.10 - - -	SR9		1220	49.39	2,040	14.5
SR11 1415 47.53	SR10		1315	46.76	2.290	15.0
SR12 1455 48.10 2,300 18.0 SR13 1545 44.73 2,320 19.0 SR1 Oct. 9, 1980 0725 57.20 1,260 12.5 CU2 0820 6.10 - -	SR11		1415	47.53	_,	_
SR13 1545 44.73 2,320 19.0 SR1 Oct. 9, 1980 0725 57.20 1,260 12.5 CU2 0820 6.10 - -	SR12		1455	48.10	2 300	18.0
SR1 Oct. 9, 1980 0725 57.20 1,260 12.5 CU2 0820 6.10 - -	SR13		1545	44.73	2,320	19.0
CU2 0820 6.10	SR1	Oct. 9, 1980	0725	57.20	1,260	12.5
	CU2		0820	6.10		_
M1 0910 2.80	M1		0910	2.80		
SR2 0830 44.62 1.310 11.5	SR2		0830	44.62	1.310	11.5
L1 0825 11.70	L1		0825	11.70		_
SR3 0930 37.63 1.370 10.5	SR3		0930	37.63	1.370	10.5

Table	1Measurements	made along	the Sevier	River –	Continued
-------	---------------	------------	------------	---------	-----------

Site	Date	Time	Discharge (ft³/s)	Specific conductance (micromhos per cm at 25 ⁰ C)	Water temperature (^O C)
SR4	Oct. 9, 1980	1020	37.71	1,380	10.5
SR5		1110	38.29	1,430	11.5
SR6		1150	38.47	1,560	13.5
SR7		1225	40.46	1,580	15.5
		0720	41.86	1,660	13.0
SR8		0800	41.56	· _	
SR9		0835	46.91	2,080	10.0
SR10		0925	45.88	2,420	11.0
SR11		1015	44.31	· _	_
SR12		1115	43.36	2,280	14.0
SR13		1155	42.98	2,400	14.0
SR1	Nov. 20, 1980	1050	48.35	1,290	1.0
CU2		1140	4.36	_	
M1		1250	.0	—	_
SR2		1215	46.21	1,380	4.0
L1		1205	.10	_	_
SR3		1310	48.41	1,400	3.5
SR4		1400	45.59	1,410	4.0
SR5		1450	52.52	1,430	3.5
SR6		1535	49.13	1,430	3.0
SR7		1615	48.14	1,500	3.0
		1000	48.33	1,400	2.0
SR8	-	1120	48.71	1,550	2.0
SR9		1225	51.65	1,700	3.0
SR10		1350	49.80	2,000	4.0
SR11		1505	52.32	2,100	4.5
SR12		1555	52.01	1,800	4.5
SR13		1700	51.95	2,000	4.5
SR1	Nov. 21, 1980	0940	51.79	1,310	.5
CU2		1025	5.16		_
M1		1130	.0		_
SR2		1050	44.65	1,370	3.0
L1		1045	.10	_	_
SR3		1145	48.70	1,390	2.5
SR4		1235	47.50	1,360	3.5
SR5		1320	50.91	1,380	3.0
SR6		1410	53.18	1,420	3.0

 Table 1.--Measurements made along the Sevier River-Continued

Site	Date	Time	Discharge (ft³/s)	Specific conductance (micromhos per cm at 25 ⁰ C)	Water temperature (^o C)
SR7	Nov. 21, 1980	1455	52.64	1,460	4.0
		0930	46.28	1,450	2.0
SR8		1035	45.25	1,500	2.0
SR9		1120	51.52	1,700	3.0
SR10		1230	49.06	2,000	3.5
SR11		1350	52.25	2,000	4.0
SR12		1435	54.79	2,000	4.5
SR13		1530	54.96	2,000	5.0

£

Table 1.--Measurements made along the Sevier River-Continued

Site	Date	Time	Discharge (ft³/s)	Specific conductance (micromhos per cm at 25 ⁰ C)	Water temperature (^O C)
CU1	May 21, 1980	0725	98.20	1,660	17.5
CU2	, , , , , , , , , , , , , , , , , , , ,	0835	98.11	1,660	17.5
CU3		0935	96.72	1.640	18.0
CU4		1045	94.26	1,640	18.0
CU5		1150	95.45	1,660	18.5
T1		0800	.06		
T2		0820	4.24	_	-
CU6	`	1245	93.61	1,640	20.0
		0720	91.29	1,660	17.5
CU7		0830	91.18	1,670	17.5
T7		0930	6.36		—
CU8		0930	83.55	1,660	17.5
Т8		0950	7.50	-	
T10		1300	.32	-	
CU9		1030	74.72	1,680	18.0
Т13		1345	12.50	_	
T14		1100	31.56	_	
CU10		1130	31.49	1,650	19.0
CU11		1215	31.85	1,650	20.0
CU12		1255	32.91	1,660	21.5
CU1	June 25, 1980	0650	239.5	1,550	16.5
CU2		0815	238.1	1,550	16.5
CU3		0930	238.2	1,570	17.0
CU4		1115	239.0	1,560	18.0
CU5		1220	235.8	1,560	18.0
Т3		1720	3.83		-
CU6		1335	229.5	_	
		0630	227.0	—	
CU7		0830	215.1	1,610	16.5
CU8		0940	217.2	1,610	16.5
CU9		1045	195.2	1,640	17.0
T11		1545	5.76		_
T12		1515	4.40	_	-
T14		1430	66.65	_	-
T15			3.38	_	
CU10		1140	136.8	1,580	18.0
T 16		-	3.15	_	_

 Table 2.—Measurements made along the Central Utah Canal

Site	Date	Time	Discharge (ft³/s)	Specific conductance (micromhos per cm at 25 ⁰ C)	Water temperature (^O C)
 CU11	June 25, 1980	1255	125.0	1,600	18.5
T18	·	1645	5.24		
Т19		1700	9.02	_	
Т20		1720	2.81		
CU12		1345	111.6	1,540	19.0
CU1	Aug. 7, 1980	0730	219.3	1,460	19.0
CU2	0,	0900	225.9	1,470	18.5
CU3		1025	228.7	1,450	20.0
CU4		1145	226.6	1,460	20.0
CU5		1300	228.1	1,450	21.5
тз	,	0735	3.97	_	_
CU6		1415	217.2	1,510	20.0
		0730	216.4	1,490	19.0
CU7		0845	211.6	1,450	20.0
T4		0914	5.45	—	—
Т5		0935	6.73	_	
т6		1010	6.67	_	
CU8		0955	196.7	1,450	20.0
CU9		1055	180.6	1,450	20.0
T14		1155	47.18		
CU10		1145	150.4	1,450	20.0
T17		1150	1.57	_	
CU11		1245	149.2	1,380	21.5
CU12		1335	149.2	1,450	21.0
CU1	Sept. 10, 1980	0910	165.9	1,440	16.5
CU2		1010	156.8	1,450	16.5
CU3		1110	165.2	1,470	16.0
CU4		1200	154.0	1,450	16.5
CU5		1330	158.6	1,440	17.0
т3		0930	3.97	_	—
CU6		1430	154.7	1,430	17.5
		0900	162.7	1,410	17.0
CU7		1020	151.0	1,400	17.5
CU8		1155	155.8	1,430	17.0
Т9			.04	_	
CU9		1305	157.9	1,420	18.0 ·
T14		1230	9.07		_

Table 2.--Measurements made along the Central Utah Canal-Continued

Site	Date	Time	Discharge (ft ³ /s)	Specific conductance (micromhos per cm at 25 ⁰ C)	Water temperature (^O C)
CU10 CU11	Sept. 10,1980	1450	138.0 122 1	1,420 1 420	18.5 18.0
CU12		1640	141.9	1,390	18.5

Table 2.—Measurements made along the Central Utah Canal—Continued

Site	Date	Time	Discharge (ft³/s)	Specific conductance (micromhos per cm at 25 ⁰ C)	Water temperature (^O C)
M1	June 12, 1980	0630	15.18	1,610	15.0
M2		0740	15.44	1,610	15.0
M3		0820	15.48	1,610	15.0
M4		0855	15.59	1,610	15.0
M5		0935	15.40	1,610	15.0
M6		1030	15.02	1,610	16.0
T1		1110	6.30	-	
M7		1140	8.34	-	_
M1	June 24, 1980	1125	18.10	1,580	19.0
M2		1150	18.33	_	—
МЗ		1235	17.88	1,610	20.0
M4		1305	17.21	1,610	21.0
M5		1345	17.22	1,610	21.5
M6		1430	17.65	1,590	22.0
Τ1		1455	2.81	_	—
Т2		1520	2.82	_	_
M7		1540	11.08	1,590	22.0
M1	Aug. 6, 1980	1230	15.70	1,410	21.0
M2	•	1255	15.20	1,460	22.0
M3		1325	16.29	1,450	24.0
M4		1400	15.05	1.490	24.0
M5		1430	15.00	1.500	25.0
M6		1515	15.36	1,480	25.0
T1		1515	2.72	_	_
Т2		1550	3.74	_	—
M7		1600	8.62	1,420	25.0

Table 3.-Measurements made along McIntyre Canal

. .

Site	Date	Time	Discharge (ft³/s)	Specific conductance (micromhos per cm at 25 ⁰ C)	Water temperature (^O C)
L1	June 12, 1980	0630	22.78	1,600	15.0
L2		0730	24.24	1,600	15.0
L3		0810	23.72	1,600	15.0
L4		0850	25.14	1,600	15.0
L5		0935	24.79	1,600	15.5
Т2		1010	6.14	_	
T4		1040	5.27	-	
L6		1055	11.62	1,600	16.0
L7		1130	12.10	1,600	17.5
L1	June 24, 1980	0820	19.65	1,570	16.5
L2		0915	20.76	1,570	16.5
L3		0945	22.08	1,580	16.5
L4		1030	23.75	1,570	17.5
L5		1110	22.29	1,580	18.0
Т2		1145	3.98	_	
тз		1210	6.52	_	_
L6		1240	11.76	1,580	18.5
Т6		1315	6.47	-	
L7		1335	5.40	_	
L1	Aug. 6, 1980	0800	28.15	1,460	19.0
L2		0850	31.36	1.460	19.0
L3		0935	31.45	1.500	18.0
T1		1025	5.52	_	
Լ4		1050	26.23	1,480	19.5
L5		1125	25.35	1,460	20.0
Т2		1200	5.88		_
L6		1215	19.51	1,510	19.5
T5		1250	6.44		_
L7		1320	13.48	1,450	22.5

 Table 4.—Measurements made along Learnington Canal

Reach	Length (ft)	Graphic average (from figs. 9-11) Gain (+) or loss (—) (ft ³ /s) [(ft ³ /s)/mi]
	Sevier River	·····
SR1-SR2 SR2-SR7 SR7-SR9 SR9-SR13	21,200 60,600 18,400 61,200	$\begin{array}{ccc} -4 & -1.0 \\ +8 & +.7 \\ +5 & +1.4 \\ 0 & 0 \end{array}$
Total	161,400	+9
	Central Utah Canal	
CU1-CU3 CU3-CU6 CU6-CU9 CU9-CU12	9,100 21,600 19,000 19,200	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Total	68,900	7
	McIntyre Canal	
M1-M6 M6-M7	33,200 7,300	-0.41 43
Total	40,500	8
	Leamington Canal	
L1-L2 L2-L4 L4-L6 L6-L7	4,700 9,400 10,000 <u>3,900</u>	$\begin{array}{rrrr} +1.5 & +1.7 \\ +.8 & +.4 \\ -1.8 & -1.0 \\ \underline{+.8} & +1.1 \end{array}$
Total	28,000	+1.3

Table 5.—Gains or losses determined from seepage measurements for reaches of the river and canals

PUBLICATIONS OF THE UTAH DEPARTMENT OF NATURAL RESOURCES AND ENERGY, DIVISION OF WATER RIGHTS

(*)-Out of Print

TECHNICAL PUBLICATIONS

- *No. 1. Underground leakage from artesian wells in the Flowell area, near Fillmore, Utah, by Penn Livingston and G. B. Maxey, U.S. Geological Survey, 1944.
- No. 2. The Ogden Valley artesian reservoir, Weber County, Utah, by H. E. Thomas, U.S. Geological Survey, 1945.
- *No. 3. Ground water in Pavant Valley, Millard County, Utah, by P. E. Dennis, G. B. Maxey and H. E. Thomas, U.S. Geological Survey, 1946.
- *No. 4. Ground water in Tooele Valley, Tooele County, Utah, by H. E. Thomas, U.S. Geological Survey, in Utah State Engineer 25th Biennial Report, p. 91-238, pls. 1-6, 1946.
- *No. 5. Ground water in the East Shore area, Utah: Part I, Bountiful District, Davis County, Utah, by H. E. Thomas and W. B. Nelson, U.S. Geological Survey, in Utah State Engineer 26th Biennial Report, p. 53-206, pls. 1-2, 1948.
- *No. 6. Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah, by P. F. Fix, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S. Geological Survey, in Utah State Engineer 27th Biennial Report, p. 107-210, pls. 1-10, 1950.
- No. 7. Status of development of selected ground-water basins in Utah, by H. E. Thomas, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S. Geological Survey, 1952.
- *No. 8. Consumptive use of water and irrigation requirements of crops in Utah, by C. O. Roskelly and W. D. Criddle, Utah State Engineer's Office, 1952.
- No. 8. (Revised) Consumptive use and water requirements for Utah, by W. D. Criddle, Karl Harris, and L. S. Willardson, Utah State Engineer's Office, 1962.
- No. 9. Progress report on selected ground water basins in Utah, by H. A. Waite, W. B. Nelson, and others, U.S. Geological Survey, 1954.
- *No. 10. A compilation of chemical quality data for ground and surface waters in Utah, by J. G. Connor, C. G. Mitchell, and others, U.S. Geological Survey, 1958.

34

- *No. 11. Ground water in northern Utah Valley, Utah: A progress report for the period 1948-63, by R. M. Cordova and Seymour Subitzky, U.S. Geological Survey, 1965.
- *No. 12. Reevaluation of the ground-water resources of Tooele Valley, Utah, by J. S. Gates, U.S. Geological Survey, 1965.
- *No. 13. Ground-water resources of selected basins in southwestern Utah, by G. W. Sandberg, U.S. Geological Survey, 1966.
- *No. 14. Water-resources appraisal of the Snake Valley area, Utah and Nevada, by J. W. Hood and F. E. Rush, U.S. Geological Survey, 1966.
- *No. 15. Water from bedrock in the Colorado Plateau of Utah, by R. D. Feltis, U.S. Geological Survey, 1966.
- *No. 16. Ground-water conditions in Cedar Valley, Utah County, Utah, by R. D. Feltis, U.S. Geological Survey, 1967.
- *No. 17. Ground-water resources of northern Juab Valley, Utah, by L. J. Bjorklund, U.S. Geological Survey, 1968.
- No. 18. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah, by J. W. Hood and K. M. Waddell, U.S. Geological Survey, 1968.
- No. 19. An appraisal of the quality of surface water in the Sevier Lake basin, Utah, by D. C. Hahl and J. C. Mundorff, U.S. Geological Survey, 1968.
- No. 20. Extensions of streamflow records in Utah, by J. K. Reid, L. E. Carroon, and G. E. Pyper, U.S. Geological Survey, 1969.
- No. 21. Summary of maximum discharges in Utah streams, by G. L. Whitaker, U.S. Geological Survey, 1969.
- No. 22. Reconnaissance of the ground-water resources of the upper Fremont River valley, Wayne County, Utah, by L. J. Bjorklund, U.S. Geological Survey, 1969.
- No. 23. Hydrologic reconnaissance of Rush Valley, Tooele County, Utah, by J. W. Hood, Don Price, and K. M. Waddell, U.S. Geological Survey, 1969.
- No. 24. Hydrologic reconnaissance of Deep Creek valley, Tooele and Juab Counties, Utah, and Elko and White Pine Counties, Nevada, by J. W. Hood and K. M. Waddell, U.S. Geological Survey, 1969.
- No. 25. Hydrologic reconnaissance of Curlew Valley, Utah and Idaho, by E. L. Bolke and Don Price, U.S. Geological Survey, 1969.

35

- No. 26. Hydrologic reconnaissance of the Sink Valley area, Tooele and Box Elder Counties, Utah, by Don Price and E. L. Bolke, U.S. Geological Survey, 1969.
- No. 27. Water resources of the Heber-Kamas-Park City area, north-central Utah, by C. H. Baker, Jr., U.S. Geological Survey, 1970.
- No. 28. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah, by R. M. Cordova, U.S. Geological Survey, 1970.
- No. 29. Hydrologic reconnaissance of Grouse Creek valley, Box Elder County, Utah, by J. W. Hood and Don Price, U.S. Geological Survey, 1970.
- No. 30. Hydrologic reconnaissance of the Park Valley area, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1971.
- No. 31. Water resources of Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Harr, U.S. Geological Survey, 1971.
- No. 32. Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah, by C. T. Sumsion, U.S. Geological Survey, 1971.
- No. 33. Hydrologic reconnaissance of Hansel Valley and northern Rozel Flat, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1971.
- No. 34. Summary of water resources of Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Harr, U.S. Geological Survey, 1971.
- No. 35. Ground-water conditions in the East Shore area, Box Elder, Davis, and Weber Counties, Utah, 1960-69, by E. L. Bolke and K. M. Waddell, U.S. Geological Survey, 1972.
- No. 36. Ground-water resources of Cache Valley, Utah and Idaho, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1971.
- No. 37. Hydrologic reconnaissance of the Blue Creek Valley area, Box Elder County, Utah, by E. L. Bolke and Don Price, U.S. Geological Survey, 1972.
- No. 38. Hydrologic reconnaissance of the Promontory Mountains area, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1972.
- No. 39. Reconnaissance of chemical quality of surface water and fluvial sediment in the Price River Basin, Utah, by J. C. Mundorff, U.S. Geological Survey, 1972.
- No. 40. Ground-water conditions in the central Virgin River basin, Utah, by R. M. Cordova, G. W. Sandberg, and Wilson McConkie, U.S. Geological Survey, 1972.

- No. 41. Hydrologic reconnaissance of Pilot Valley, Utah and Nevada, by J. C. Stephens and J. W. Hood, U.S. Geological Survey, 1973.
- No. 42. Hydrologic reconnaissance of the northern Great Salt Lake Desert and summary hydrologic reconnaissance of northwestern Utah, by J. C. Stephens, U.S. Geological Survey, 1973.
- No. 43. Water resources of the Milford area, Utah, with emphasis on ground water, by R. W. Mower and R. M. Cordova, U.S. Geological Survey, 1974.
- No. 44. Ground-water resources of the lower Bear River drainage basin, Box Elder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1974.
- No. 45. Water resources of the Curlew Valley drainage basin, Utah and Idaho, by C. H. Baker, Jr., U.S. Geological Survey, 1974.
- No. 46. Water-quality reconnaissance of surface inflow to Utah Lake, by J. C. Mundorff, U.S. Geological Survey, 1974.
- No. 47. Hydrologic reconnaissance of the Wah Wah Valley drainage basin, Millard and Beaver Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1974.
- No. 48. Estimating mean streamflow in the Duchesne River basin, Utah, by R. W. Cruff, U.S. Geological Survey, 1974.
- No. 49. Hydrologic reconnaissance of the southern Uinta Basin, Utah and Colorado, by Don Price and L. L. Miller, U.S. Geological Survey, 1975.
- No. 50. Seepage study of the Rocky Point Canal and the Grey Mountain-Pleasant Valley Canal systems, Duchesne County, Utah, by R. W. Cruff and J. W. Hood, U.S. Geological Survey, 1976.
- No. 51. Hydrologic reconnaissance of the Pine Valley drainage basin, Millard, Beaver, and Iron Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1976.
- No. 52. Seepage study of canals in Beaver Valley, Beaver County, Utah, by R. W. Cruff and R. W. Mower, U.S. Geological Survey, 1976.
- No. 53. Characteristics of aquifers in the northern Uinta Basin area, Utah and Colorado, by J. W. Hood, U.S. Geological Survey, 1976.
- No. 54. Hydrologic evaluation of Ashley Valley, northern Uinta Basin area, Utah, by J. W. Hood, U.S. Geological Survey, 1977.
- No. 55. Reconnaissance of water quality in the Duchesne River basin and some adjacent drainage areas, Utah, by J. C. Mundorff, U.S. Geological Survey, 1977.

- No. 56. Hydrologic reconnaissance of the Tule Valley drainage basin, Juab and Millard Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1977.
- No. 57. Hydrologic evaluation of the upper Duchesne River valley, northern Uinta Basin area, Utah, by J. W. Hood, U.S. Geological Survey, 1977.
- No. 58. Seepage study of the Sevier Valley-Piute Canal, Sevier County, Utah, by R. W. Cruff, U.S. Geological Survey, 1977.
- No. 59. Hydrologic reconnaissance of the Dugway Valley-Government Creek area, west-central Utah, by J. C. Stephens and C. T. Sumsion, U.S. Geological Survey, 1978.
- No. 60. Ground-water resources of the Parowan-Cedar City drainage basin, Iron County, Utah, by L. J. Bjorklund, C. T. Sumsion, and G. W. Sandberg, U.S. Geological Survey, 1978.
- No. 61. Ground-water conditions in the Navajo Sandstone in the central Virgin River basin, Utah, by R. M. Cordova, U.S. Geological Survey, 1978.
- No. 62. Water resources of the northern Uinta Basin area, Utah and Colorado, with special emphasis on ground-water supply, by J. W. Hood and F. K. Fields, U.S. Geological Survey, 1978.
- No. 63. Hydrology of the Beaver Valley area, Beaver County, Utah with emphasis on ground water, by R. W. Mower, U.S. Geological Survey, 1978.
- No. 64. Hydrologic reconnaissance of the Fish Springs Flat area, Tooele, Juab, and Millard Counties, Utah, by E. L. Bolke and C. T. Sumsion, U.S. Geological Survey, 1978.
- No. 65. Reconnaissance of chemical quality of surface water and fluvial sediment in the Dirty Devil River basin, Utah, by J. C. Mundorff, U.S. Geological Survey, 1978.
- No. 66. Aquifer tests of the Navajo Sandstone near Caineville, Wayne County, Utah, by J. W. Hood and T. W. Danielson, U.S. Geological Survey, 1979.
- No. 67. Seepage study of the West Side and West Canals, Box Elder County, by R. W. Cruff, U.S. Geological Survey, 1980.
- No. 68. Bedrock aquifers in the lower Dirty Devil River basin area, Utah, with special emphasis on the Navajo Sandstone, by J. W. Hood and T. W. Danielson, U.S. Geological Survey, 1980.
- No. 69. Ground-water conditions in Tooele Valley, Utah, 1976-78, by A. C. Razem and J. I. Steiger, U.S. Geological Survey, 1980.

- No. 70. Ground-water conditions in the Upper Virgin River and Kanab Creek basins area, Utah, with emphasis on the Navajo Sandstone, by R. M. Cordova, U.S. Geological Survey, 1981.
- No. 71. Hydrologic reconnaissance of the Southern Great Salt Lake Desert and summary of the hydrology of West-Central Utah, by Joseph S. Gates and Stacie A. Kruer, U.S. Geological Survey, 1980.
- No. 72. Reconnaissance of the quality of surface water in the San Rafael River basin, Utah, by J. C. Mundorff and Kendall R. Thompson, U.S. Geological Survey, 1982.
- No. 73. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water, by R. W. Mower, U.S. Geological Survey, 1982.

WATER CIRCULARS

- No. 1. Ground water in the Jordan Valley, Salt Lake County, Utah, by Ted Arnow, U.S. Geological Survey, 1965.
- No. 2. Ground water in Tooele Valley, Utah, by J. S. Gates and O. A. Keller, U.S. Geological Survey, 1970.

BASIC-DATA REPORTS

- *No. 1. Records and water-level measurements of selected wells and chemical analyses of ground water, East Shore area, Davis, Weber, and Box Elder Counties, Utah, by R. E. Smith, U.S. Geological Survey, 1961.
- No. 2. Records of selected wells and springs, selected drillers' logs of wells, and chemical analyses of ground and surface waters, northern Utah Valley, Utah County, Utah, by Seymour Subitzky, U.S. Geological Survey, 1962.
- No. 3. Ground-water data, central Sevier Valley, parts of Sanpete, Sevier, and Piute Counties, Utah, by C. H. Carpenter and R. A. Young, U.S. Geological Survey, 1963.
- *No. 4. Selected hydrologic data, Jordan Valley, Salt Lake County, Utah, by I. W. Marine and Don Price, U.S. Geological Survey, 1963.
- *No. 5. Selected hydrologic data, Pavant Valley, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
- *No. 6. Ground-water data, parts of Washington, Iron, Beaver, and Millard Counties, Utah, by G. W. Sandberg, U.S. Geological Survey, 1963.
- No. 7. Selected hydrologic data, Tooele Valley, Tooele County, Utah, by J. S. Gates, U.S. Geological Survey, 1963.

- No. 8. Selected hydrologic data, upper Sevier River basin, Utah, by C. H. Carpenter, G. B. Robinson, Jr., and L. J. Bjorklund, U.S. Geological Survey, 1964.
- *No. 9. Ground-water data, Sevier Desert, Utah, by R. W. Mower and R. D. Feltis, U.S. Geological Survey, 1964.
- No. 10. Quality of surface water in the Sevier Lake basin, Utah, by D. C. Hahl and R. E. Cabell, U.S. Geological Survey, 1965.
- *No. 11. Hydrologic and climatologic data, collected through 1964, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.
- No. 12. Hydrologic and climatologic data, 1965, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.
- No. 13. Hydrologic and climatologic data, 1966, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1967.
- No. 14. Selected hydrologic data, San Pitch River drainage basin, Utah, by G. B. Robinson, Jr., U.S. Geological Survey, 1968.
- No. 15. Hydrologic and climatologic data, 1967, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1968.
- No. 16. Selected hydrologic data, southern Utah and Goshen Valleys, Utah, by R. M. Cordova, U.S. Geological Survey, 1969.
- No. 17. Hydrologic and climatologic data, 1968, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1969.
- No. 18. Quality of surface water in the Bear River basin, Utah, Wyoming, and Idaho, by K. M. Waddell, U.S. Geological Survey, 1970.
- No. 19. Daily water-temperature records for Utah streams, 1944-68, by G. L. Whitaker, U.S. Geological Survey, 1970.
- No. 20. Water-quality data for the Flaming Gorge area, Utah and Wyoming, by R. J. Madison, U.S. Geological Survey, 1970.
- No. 21. Selected hydrologic data, Cache Valley, Utah and Idaho, by L. J. McGreevy and L. J. Bjorklund, U.S. Geological Survey, 1970.
- No. 22. Periodic water- and air-temperature records for Utah streams, 1966-70, by G. L. Whitaker, U.S. Geological Survey, 1971.

- No. 23. Selected hydrologic data, lower Bear River drainage basin, Box Elder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1973.
- No. 24. Water-quality data for the Flaming Gorge Reservoir area, Utah and Wyoming, 1969-72, by E. L. Bolke and K. M. Waddell, U.S. Geological Survey, 1972.
- No. 25. Streamflow characteristics in northeastern Utah and adjacent areas, by F. K. Fields, U.S. Geological Survey, 1975.
- No. 26. Selected hydrologic data, Uinta Basin area, Utah and Colorado, by J. W. Hood, J. C. Mundorff, and Don Price, U.S. Geological Survey, 1976.
- No. 27. Chemical and physical data for the Flaming Gorge Reservoir area, Utah and Wyoming, by E. L. Bolke, U.S. Geological Survey, 1976.
- No. 28. Selected hydrologic data, Parowan Valley and Cedar City Valley drainage basins, Iron County, Utah, by L. J. Bjorklund, C. T. Sumsion, and G. W. Sandberg, U.S. Geological Survey, 1977.
- No. 29. Climatologic and hydrologic data, southeastern Uinta Basin, Utah and Colorado, water years 1975 and 1976, by L. S. Conroy and F. K. Fields, U.S. Geological Survey, 1977.
- No. 30. Selected ground-water data, Bonneville Salt Flats and Pilot Valley, western Utah, by G. C. Lines, U.S. Geological Survey, 1977.
- No. 31. Selected hydrologic data, Wasatch Plateau-Book Cliffs coal-fields area, Utah, by K. M. Waddell and others, U.S. Geological Survey, 1978.
- No. 32. Selected coal-related ground-water data, Wasatch Plateau-Book Cliffs area, Utah, by C. T. Sumsion, U.S. Geological Survey, 1979.
- No. 33. Hydrologic and climatologic data, southeastern Uinta Basin, Utah and Colorado, water year 1977, by L. S. Conroy, U.S. Geological Survey, 1979.
- No. 34. Hydrologic and climatologic data, southeastern Uinta Basin, Utah and Colorado, water year 1978, by L. S. Conroy, U.S. Geological Survey, 1980.
- No. 35. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah, by R. W. Mower, U.S. Geological Survey, 1981.
- No. 36. Surface-water and climatologic data, Salt Lake County, Utah, Water Year 1980, G. E. Pyper, R. C. Christensen, D. W. Stephens, H. F. McCormack, and L. S. Conroy, U.S. Geological Survey, 1981.

INFORMATION BULLETINS

- *No. 1. Plan of work for the Sevier River Basin (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1960.
- *No. 2. Water production from oil wells in Utah, by Jerry Tuttle, Utah State Engineer's Office, 1960.
- *No. 3. Ground-water areas and well logs, central Sevier Valley, Utah, by R. A. Young, U.S. Geological Survey, 1960.
- *No. 4. Ground-water investigations in Utah in 1960 and reports published by the U.S. Geological Survey or the Utah State Engineer prior to 1960, by H. D. Goode, U.S. Geological Survey, 1960.
- *No. 5. Developing ground water in the central Sevier Valley, Utah, by R. A. Young and C. H. Carpenter, U.S. Geological Survey, 1961.
- *No. 6. Work outline and report outline for Sevier River basin survey, (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1961.
- *No. 7. Relation of the deep and shallow artesian aquifers near Lynndyl, Utah, by R. W. Mower, U.S. Geological Survey, 1961.
- *No. 8. Projected 1975 municipal water-use requirements, Davis County, Utah, by Utah State Engineer's Office, 1962.
- No. 9. Projected 1975 municipal water-use requirements, Weber County, Utah, by Utah State Engineer's Office, 1962.
- *No. 10. Effects on the shallow artesian aquifer of withdrawing water from the deep artesian aquifer near Sugarville, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
- *No. 11. Amendments to plan of work and work outline for the Sevier River basin (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1964.
- *No. 12. Test drilling in the upper Sevier River drainage basin, Garfield and Piute Counties, Utah, by R. D. Feltis and G. B. Robinson, Jr., U.S. Geological Survey, 1963.
- *No. 13. Water requirements of lower Jordan River, Utah, by Karl Harris, Irrigation Engineer, Agricultural Research Service, Phoenix, Arizona, prepared under informal cooperation approved by Mr. W. W. Donnan, Chief, Southwest Branch (Riverside, California) Soil and Water Conservation Research Division, Agricultural Research Service, U.S.D.A., and by W. D. Criddle, State Engineer, State of Utah, Salt Lake City, Utah, 1964.
- *No. 14. Consumptive use of water by native vegetation and irrigated crops in the Virgin River area of Utah, by W. D. Criddle, J. M. Bagley, R. K. Higginson, and D. W. Hendricks, through cooperation of Utah Agricultural Experiment Station, Agricultural Research Service, Soil and Water Conservation Branch, Western Soil and Water Management Section, Utah Water and Power Board, and Utah State Engineer, Salt Lake City, Utah, 1964.

- *No. 15. Ground-water conditions and related water-administration problems in Cedar City Valley, Iron County, Utah, February, 1966, by J. A. Barnett and F. T. Mayo, Utah State Engineer's Office.
- *No. 16. Summary of water well drilling activities in Utah, 1960 through 1965, compiled by Utah State Engineer's Office, 1966.
- *No. 17. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by O. A. Keller, U.S. Geological Survey, 1966.
- *No. 18. The effect of pumping large-discharge wells on the ground-water reservoir in southern Utah Valley, Utah County, Utah, by R. M. Cordova and R. W. Mower, U.S. Geological Survey, 1967.
- No. 19. Ground-water hydrology of southern Cache Valley, Utah, by L. P. Beer, Utah State Engineer's Office, 1967.
- *No. 20. Fluvial sediment in Utah, 1905-65, A data compilation by J. C. Mundorff, U.S. Geological Survey, 1968.
- *No. 21. Hydrogeology of the eastern portion of the south slopes of the Uinta Mountains, Utah, by L. G. Moore and D. A. Barker, U.S. Bureau of Reclamation, and J. D. Maxwell and B. L. Bridges, Soil Conservation Service, 1971.
- *No. 22. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by B. A. LaPray, U.S. Geological Survey, 1972.
- *No. 23. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by B. A. LaPray, U.S. Geological Survey, 1975.
- No. 24. A water-land use management model for the Sevier River Basin, Phase I and II, by V. A. Narasimham and Eugene K. Israelsen, Utah Water Research Laboratory, College of Engineering, Utah State University, 1975.
- No. 25. A water-land use management model for the Sevier River Basin, Phase III, by Eugene K. Israelsen, Utah Water Research Laboratory, College of Engineering, Utah State University, 1976.
- No. 26. Test drilling for fresh water in Tooele Valley, Utah, by K. H. Ryan, B. W. Nance, and A. C. Razem, Utah Department of Natural Resources, 1981.
- No. 27. Bibliography of U.S. Geological Survey Water-Resources Reports for Utah, compiled by Barbara A. LaPray and Linda S. Hamblin, U.S. Geological Survey, 1980.

43