by
Joseph S. Gates, Judy I. Steiger, and Ronald T. Green U.S. Geological Survey

Prepared by
the United States Geological Survey in cooperation with
The Utah Department of Natural Resources
Division of Water Rights

Page

Abstract 1
Introduction 2
Purpose and scope of the study 2
Previous and related studies, and acknowledgments 5
Systems for numbering data sites 5
Physical and cultural characteristics 7
Physiography 7
Climate 7
Geology 8
Economy and population 10
Surface-water hydrology 11
Drainage, diversions, and impoundments 11
Discharge of the Weber River at Gateway 12
Seepage runs and base flow 12
Quality of surface water 15
Ground-water hydrology 17
General conditions of occurrence and development 17
Morgan Valley-Round Valley subarea 18
General availability 18
Recharge 18
Movement 19
Discharge 20
Storage and hydraulic characteristics of the aquifers 21
Quality of ground water 25
Henefer Valley subarea 25
General availability 25
Recharge 26
Movement 26
Discharge 26
Storage and hydraulic characteristics of the aquifers 27
Quality of ground water 27
Coalville subarea 27
General availability 27
Recharge 28
Movement 28
Discharge 28
Storage and hydraulic characteristics of the aquifers 29
Quality of ground water 29
Summary of quantitative estimates 30
Ground water-surface water relationships 31
Effects of additional ground-water development 32
Simplified digital-computer model of the alluvium of Morgan Valley and lower East Canyon Creek 34
Design and assumptions 34
Calibration 37
Simulated effects of future ground-water development 37
Summary and conclusions 39
References cited 41
Publications of the Utah Department of Natural Resources, Division of Water Rights 60

ILLUSTRATIONS

[Plates are in pocket]
Plate l. Map showing selected hydrologic-data sites and normal annual precipitation for 1931-60 in the central Weber River area, Morgan and Summit Counties, Utah.
2. Geologic map of the central Weber River area, Morgan and Summit Counties, Utah.
3. Map showing the location of inventoried wells and springs and water-level contours, fall 1980, in the Morgan Valley-Round Valley subarea, Morgan County, Utah.
4. Map showing the location of inventoried wells and springs and water-level contours, 1979-80, in the Henefer Valley and Coalville subareas, Morgan and Summit Counties, Utah.
5. Map showing the grid used for the digital-computer model of the Morgan Valley-East Canyon Creek area, Morgan County, Utah.
Page
Figure l. Map showing the location of the central Weber River area 3
2. Diagram showing the well- and spring-numbering system used in Utah 6
3. Graph showing annual discharge of the Weber River at Gateway (gaging station 10136500) during the 1921-80 water years 13
4. Graph showing average weekly discharge of the Weber River at Gateway (gaging station 10136500) during the 1944 water year 13
5. Hydrographs of water levels in observation wells, 1936-80 22
TABLES
Table l. General description and water-bearing characteristics of hydrogeologic units 9
2. Seepage runs on the Weber River and its major tributaries, September 11 and October 26, 1979 14
Page
Table 3. Average of the daily mean discharge of the Weber River and its major tributaries at selected streamflow-gaging stations and changes in storage at Echo Reservoir for October 25-31, 1931 through 1960 16
4. Reported discharge of water from and specific capacity of wells by formation 19
5. Records of selected wells and springs 44
6. Drillers' logs of selected wells 50
7. Water levels in observation wells, 1936-80 53
8. Chemical analyses of ground water 56

Most values in this report are given in inch-pound units followed by metric units. The conversion factors are shown to four significant figures. In the text, however, the metric equivalents are shown only to the number of significant figures consistent with the accuracy of the value in inch-pound units.

Inch-pound

$\frac{\text { Unit }}{\text { (Multiply) }}$	Abbreviation	(by)	$\text { (to } \frac{\text { Unit }}{\text { Obtain) }}$	Abbreviation
Acre		0.4047	Square hectometer	hm^{2}
Acre-foot	acre-ft	0.001233	Cubic hectometer	hm^{3}
		1233	Cubic meter	m^{3}
Cubic foot per second	$\mathrm{ft}^{3} / \mathrm{s}$	0.02832	Cubic meter per second	$\mathrm{m}^{3} / \mathrm{s}$
Foot	ft	0.3048	Meter	m
Foot per day	ft / d	0.3048	Meter per day	m / d
Foot per mile	$\mathrm{ft} / \mathrm{mi}$	0.1894	Meter per kilometer	m / km
Foot per second	ft / s	0.3048	Meter per second	m / s
Foot squared per day	ft / d	0.0929	Meter squared per day	$\mathrm{m}^{2} / \mathrm{d}$
Gallon per minute	gal/min	0.06309	Liter per second	L/s
Gallon per minute per foot	$(\mathrm{gal} / \mathrm{min}) / \mathrm{ft}$	0.2070	Liter per second per meter	(L/S)/m
Inch	in.	2.540	Centimeter	Cm
		25.4	Millimeter	mm
Mile	mi	1.609	Kilometer	km
Square mile	mi^{2}	2.590	Square kilometer	km^{2}

Chemical concentration and water temperature are given only in metric units. Chemical concentration is given in milligrams per liter (mg / L) or micrograms per liter ($\mu \mathrm{g} / \mathrm{L}$). Milligrams per liter is a unit expressing the concentration of chemical constituents in solution as weight (milligrams) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. For concentrations less than $7,000 \mathrm{mg} / \mathrm{L}$, the numerical value is about the same as for concentrations in parts per million. Water temperature is given in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$, which can be converted to degrees Fahrenheit (${ }^{\circ} \mathrm{F}$) by the following equation: ${ }^{\mathrm{O}} \mathrm{F}=1.8\left({ }^{\circ} \mathrm{C}\right)+32$.

GROUND-WATER RECONNAISSANCE OF THE CENTRAL
 WEBER RIVER AREA, MORGAN AND

SUMMIT COUNTIES, UTAH
by Joseph S. Gates, Judy I. Steiger, and Ronald T. Green

ABSTRACT

A reconnaissance of ground water in the central Weber River area obtained data to help State administrators devise a policy for acting on applications to appropriate ground water resulting from recent and future influxes of residents.

Ground water occurs in unconsolidated alluvium and older semiconsolidated to consolidated rocks; it has been developed to a limited extent for public, industrial, and domestic use. Alluvium of Quaternary age probably is the most important aquifer, although most wells also are completed in older rocks. Alluvium is as much as 200 feet (60 meters) thick in Morgan Valley, whereas other valleys along the Weber River probably have slightly lesser thicknesses of alluvium.

In the Morgan Valley-Round Valley subarea, recharge and discharge are at least 40,000 acre-feet (49 cubic hectometers) per year. Ground water mostly moves toward the Weber River and the downstream reach of East Canyon Creek. About 170,000 acre-feet (210 cubic hectometers) of ground water, almost all of which is fresh, is stored in the alluvium of Morgan Valley and the northern valley of East Canyon Creek. Water levels in observation wells did not indicate any major changes or long-term trends in ground-water storage during 1936-80.

In the Henefer Valley subarea, recharge and discharge are at least 23,000 acre-feet (28 cubic hectometers) per year. All ground water sampled in the subarea was fresh.

In the Coalville subarea, recharge and discharge are at least 21,000 acre-feet (26 cubic hectometers) per year. Ground water sampled in the subarea was fresh, with the exception of water from one well completed in the Frontier Formation.

Surface-water resources of the study area include the Weber River and its main tributaries-Chalk, Lost, and East Canyon Creeks. Mean annual flow of the Weber River at Coalville for the 1931--60 water years was 140,000 acrefeet (170 cubic hectometers), and at Gateway (including diversions through the Gateway Tunnel during 1957-60) was 373,700 acre-feet (461 cubic hectometers). Average gain in base flow through the area for October 25-31, 1931-60, including base flow of tributaries wholly within the study area, was 109 cubic feet per second (3.1 cubic meters per second), most of which is ground-water seepage to streams. A seepage run on October 26,1979 , indicated the gain was 131 cubic feet per second (3.7 cubic meters per second).

Surface water in the area is of calcium bicarbonate or calcium magnesium bicarbonate type. In the reach of the weber River between the Stoddard Diversion to the Gateway Canal and Gateway, where flow almost tripled during the seepage run due to ground-water inflow, analyses of samples indicated little change in dissolved-solids concentration.

Gains in long-term average base flows, seepage measurements, and waterlevel contours indicate that ground water seeps into the Weber River along most reaches between Coalville and Gateway and into the downstream reaches of East Canyon Creek and Lost Creek.

Present discharge from wells (average of about 2,800 acre-feet or 3.5 cubic hectometers per year during 1978-80) probably has been balanced by increases in recharge or decreases in other forms of discharge. Withdrawals from additional wells in the future ultimately will be balanced by increases in recharge or decreases in seepage to streams or evapotranspiration. Most of the changes probably will decrease streamflow; however, withdrawals from wells that are balanced by decreases in transpiration from nonirrigated phreatophytes will not affect surface-water flow.

A simplified digital-computer model of the Morgan Valley-lower East Canyon Creek area was constructed to study effects on the hydrologic system of additional ground-water withdrawals. Withdrawals from simulated wells were balanced mostly by decreases in seepage to the Weber River and the downstream reach of East Canyon Creek and by some decreases in evapotranspiration.

INTRODUCTION

Purpose and Scope of the Study

During July 1978 to June 1980, the U.S. Geological Survey conducted a reconnaissance of ground-water conditions and ground- and surface-water relationships in the central Weber River area. This reconnaissance was done in cooperation with the Utah Department of Natural Resources; Division of Water Rights.

The study area is a series of mountain valleys along the Weber River in the wasatch Range and between the Wasatch Range and the Uinta Mountains in north-central Utah (fig. l). As defined for this study, the area includes the Weber River drainage from Hoytsville, just south of Coalville, to the western boundary of Morgan County at the western front of the Wasatch Range (pl. l). The East Canyon Creek tributary drainage is included from the Weber River to the Morgan County-Surmit County line. The study focused on the major valleys along and tributary to the Weber River with less emphasis on the upland tributary areas.

The Division of Water Rights needs information on the ground-water system and on ground- and surface-water relationships to help determine a policy for acting on applications to appropriate ground water. Water in the Weber River and its tributaries and ground water in the Weber River drainage are considered to be fully appropriated (1981). Individuals or entities desiring ground water for domestic, public-supply, or industrial uses are permitted to lease rights to water in 1 acre-foot $\left(1,233 \mathrm{~m}^{3}\right.$) per year units or

Figure 1.-Location of the central Weber River area.
in larger quantities from the Weber Basin Water Conservancy District. The District virtually has rights to all surface water in excess of primary flows (rights decreed in 1934) and holds this water in reservoirs-East Canyon, Lost Creek, and Echo Reservoirs in the study area and Rockport Lake 10 miles (16 km) south of Coalville. The District releases water annually from the reservoirs to balance use of ground water under these rights.

A major assumption in this policy of leasing surface-water rights to balance ground-water withdrawals is that the river and the ground-water reservoir have significant hydraulic connection. It is further assumed that water pumped from wells is replaced by infiltration of the released surface water. However, it is not known definitely whether or how quickly the released surface water replaces the withdrawn ground water, or whether the withdrawn ground water is taken from storage and eventually balanced by increases in recharge or decreases in another form of discharge.

The purpose of this study was to obtain information on and describe recharge, movement, and discharge of ground water, hydraulic properties of aquifers, volumes of ground water in storage, the chemical quality of ground water, and the interrelations between ground and surface water. This information can be used by the Division of Water Rights to devise a policy on ground-water appropriations that is based on actual characteristics of the physical stream-aquifer system. The main emphasis of the study was on the saturated alluvium along the Weber River and in the downstream parts of tributary drainages. Less emphasis was placed on alluvium in upstream parts of the drainages and on water in consolidated rocks.

The study consisted of an inventory (table 5, at back of report) of 6 springs and of 148 of the approximately 360 wells in the area for which ground-water claims have been made or drillers' reports filed. Springs in the study area were not inventoried unless they were in the valleys, along valley margins, or were a source of municipal supply. Drillers' logs were available for most inventoried wells and were used to estimate the base of alluvium and identify the main water-yielding unit at each well. Samples of water for chemical analysis were collected from 3 springs and 79 wells. One 8-hour aquifer test was made, and areas of ground-water discharge by evapotranspiration were located in Morgan Valley.

Base flow of the Weber River and several of its tributaries (predominantly ground-water inflow to the river system) was measured at selected sites between Coalville and the western edge of Morgan County on September 11 (17 sites) and October 26,1979 (21 sites). These values were compared to the average of the gaged daily mean October 25-31 base flows for 1931-60. Average mean annual 1931-60 surface-water flow and 1931-60 precipitation were compiled for several subbasins to determine the variation in runoff-precipitation ratios. However, these data were not included in the report because results did not indicate anything relevant to the objectives of the study.

A simplified digital-computer model of the alluvium of Morgan Valley and lower East Canyon Creek was constructed to study ground- and surface-water relations and the effects of pumping ground water at various hypothetical levels of development.

A ground-water study of the Morgan Valley area was made by Saxon (1972). His report includes tables of data on wells and chemical quality of ground water, a summary of geology, and a water-resources budget for the Morgan Valley area.

Haws, Jeppson, and Huber (1970) prepared a hydrologic inventory of the entire Weber River basin, which focuses on climate, streamflow, and a water budget of the basin. This report contains tables of consumptive use of water by crops and phreatophytes and by evaporation from water bodies for subbasins of the Weber River drainage. A companion report by Haws (1970) consists of tabulated, water-related, land-use data for the Weber River drainage.

Thompson (1982) made a reconnaissance of surface-water quality in the Weber River basin. The reconnaissance focused on the chemical quality of streamflow but also touched on fluvial sediment and biological quality of the water.

We gratefully acknowledge the cooperation of individual well owners, municipalities, and industries in supplying information on wells and springs and allowing the collection of water samples for chemical analysis. E. B. Johnson, Weber River Commissioner, provided information on the Weber River, water use in the area, and ground-water inflow to the river.

Systems for Numbering Data Sites

The system of numbering wells and springs in Utah is based on the cadastral land-survey system of the U.S. Government. The number, in addition to designating the well or spring, describes its position in the land net. By the land-survey system, the State is divided into four quadrants by the Salt Lake Base Line and Meridian, and these quadrants are designated by the uppercase letters A, B, C, and D, indicating the northeast, northwest, southwest, and southeast quadrants, respectively. Numbers designating the township and range (in that order) follow the quadrant letter, and all three are enclosed in parentheses. The number after the parentheses indicates the section, and is followed by three letters indicating the quarter section, the quarter-quarter section, and the quarter-quarter-quarter section-generally 10 acres $\left(4 \mathrm{hm}^{2}\right) ;{ }^{+}$the letters a, b, c, and d indicate, respectively, the northeast, northwest, southwest, and southeast quarters of each subdivision. The number after the letters is the serial number of the well or spring within the 10 -acre $\left(4-\mathrm{hm}^{2}\right)$ tract; the letter "S" preceding the serial number denotes a spring. Thus (A-4-2) $36 \mathrm{bca-1}$ designates the first well constructed or visited in the $\mathrm{NE}^{\frac{1}{4}} \mathrm{SWW}^{\frac{1}{4}} \mathrm{NW}^{\frac{1}{4}} \mathrm{sec} .36$, T $4 \mathrm{~N} ., \mathrm{R} .2$ E., and (A-2-5) 9dac-Sl designates a spring in the $\mathrm{SW}^{\frac{1}{4}} \mathrm{NE}_{4}^{\frac{1}{4}} \mathrm{SE}_{4}^{\frac{1}{4}} \mathrm{sec} .9, \mathrm{~T} .2 \mathrm{~N} ., \mathrm{R}$. 5. E. The numbering system is illustrated in figure 2.
$1_{\text {Although }}$ the basic land unit, the section, is theoretically 1 square mile ($2.6 \mathrm{~km}^{2}$), many sections are irregular. Such sections are subdivided into $10-$ acre $\left(4-\mathrm{hm}^{2}\right)$ tracts, generally beginning at the southeast corner, and the surplus or shortage is taken up in the tracts along the north and west sides of the section.

Figure 2.-Well- and spring-numbering system used in Utah.

Gaging stations, where continuous streamflow records are collected, are numbered in downstream order. For descriptions of this system, see U.S. Geological Survey (1980, p. 140). Thus, the station on the Weber River near Coalville is designated 10130500.

Physical and Cultural Characteristics
Physiography
The central Weber River area (fig. 1 and pl. l) consists of the valleys of the Weber River and its tributaries and the Weber River drainage area between Hoytsville and the western edge of Morgan County at Gateway. Altitudes along the river range from about 4,770 feet ($1,450 \mathrm{~m}$) above NGVD of 1929^{1} near Gateway to 5,650 feet ($1,722 \mathrm{~m}$) at Hoytsville. Maximum altitudes in the drainage area include Francis Peak at 9,547 feet ($2,910 \mathrm{~m}$) on the western edge of Morgan County to Humpy Peak at 10,870 feet ($3,313 \mathrm{~m}$) on the southern edge of the Chalk Creek drainage, southeast of Coalville.

Valley areas in Morgan County include: (1) Morgan Valley, bounded by Weber Canyon on the west and Upper Weber Canyon on the east; (2) the Cottonwood Creek area tributary to Morgan Valley; (3) the East Canyon Creek area tributary to Morgan Valley and extending south to East Canyon; (4) Round Valley, a small valley in Upper Weber Canyon east of Morgan; and (5) the Lost Creek area at Croydon (pl. l). Valley areas in Summit County include: (1) Henefer Valley; (2) the Coalville area from Echo to Hoytsville, including Echo Reservoir; and (3) the Chalk Creek area just east of Coalville (pl. l).

Climate
Normal annual precipitation on the study area for 1931-60 (pl. 1) ranged from less than 16 inches (406 mm) in the Coalville, Lost Creek, and eastern Echo Canyon areas to more than 30 inches (762 mm) in parts of the cottonwood, Lost, and Chalk Creek drainage areas. It exceeded 40 inches ($1,016 \mathrm{~mm}$) along the divide in the Wasatch Range west of Morgan Valley and locally in the headwaters area of East Canyon Creek (U.S. Weather Bureau, 1963). The normal annual volume of precipitation on the entire study area for 1931-60 was estimated to be $1,330,000$ acre-feet ($1,640 \mathrm{hm}^{3}$).

Normal annual precipitation for 1941-70 at Morgan was 17.08 inches (434 mm) and at Coalville it was 14.78 inches (375 mm) (National Oceanic and Atmospheric Administration, Environmental Data Service, 1979). At Morgan, 68 percent of the precipitation falls from October through April.

Mean annual temperatures range from more than $48^{\circ} \mathrm{F}\left(8.9^{\circ} \mathrm{C}\right)$ in Morgan Valley to less than $34^{\circ} \mathrm{F}\left(1.1^{\circ} \mathrm{C}\right)$ in the southeastern corner of the Chalk Creek drainage area (Haws and others, 1970, fig. 11). Normal annual temperature for $1941-70$ at Morgan was $45.4^{\circ} \mathrm{F}$ ($7.44^{\circ} \mathrm{C}$) (National Oceanic and Atmospheric Administration, Environmental Data Service, 1979).
$1_{\text {National Geodetic Vertical Datum of } 1929 \text { (NGVD of 1929) is a geodetic }}$ datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "mean sea level."

The central Weber River area is underlain by rocks ranging in age from Precambrian to Quaternary. The exposed rocks have been subdivided into hydrogeologic units on the basis on water-bearing characteristics, lithology, and age (table 1).

Three units of continental, primarily alluvial, origin were defined on the basis of age and degree of consolidation, with the older units conmonly more consolidated and probably less permeable. These units include alluvium and consolidated to semiconsolidated conglomerates of Cretaceous to Quaternary age. Older consolidated-rock units are defined on the basis of being either predominately clastic or carbonate and on age.

Most of the study area is underlain at the surface by conglomerates and clastic rocks of Cretaceous and Tertiary age (pl. 2). Those rocks are represented chiefly by the Wasatch Formation of Tertiary age; they also include the Echo Canyon Conglomerate of Cretaceous age, the Evanston(?) Formation of Cretaceous and Tertiary age, and the Norwood Tuff of Tertiary age (Stokes, 1964; Mullens, 1971, pl. 1; Mullens and Laraway, 1964, 1973). Clastic rocks of Cretaceous age crop out around Coalville, in the Chalk Creek drainage basin, and around Henefer Valley. Rocks older than Cretaceous age mainly crop out around and north of Upper Weber Canyon, along stream channels in the northeastern Lost Creek drainage basin, and along the drainage divide in the Wasatch Range west of Morgan Valley.

The Morgan Valley area is a structural low, in which as much as 8,000 feet ($2,000 \mathrm{~m}$) of Tertiary rocks--mainly volcanic-clastic rocks and con-glomerates-have been preserved (Mullens and Laraway, 1973; Saxon, 1972, p. 17). Round Valley is a small anticlinal valley incised in easily erodible rocks of Paleozoic age; and the Coalville area and Henefer Valley were incised in easily erodible Tertiary sediments deposited in an ancestral drainage of the Weber River (Threet, 1959, p. 32).

Alluvial deposits of Quaternary age with thicknesses greater than about 10 feet (3 m) are confined mostly to the Weber River valley and its major tributaries-East Canyon, Lost, Chalk, and Cottonwood Creeks. Although alluvium is not widespread, it is the most important hydrogeologic unit in the area, probably containing the largest volume of water that is both fresh and can be readily developed by wells. The lithology of the alluvium is variable, consisting of interbedded clay, silt, sand, gravel, and boulders.

Data on the thickness and lithology of the alluvium are limited because few wells have been drilled through its entire thickness along the axes of the valleys. Most wells in the study area have been drilled for domestic use, and most farmhouses and wells are located along the margins of the valleys, either to minimize the danger of flooding, to avoid the shallow water table, or to avoid using valley bottom land for nonagricultural purposes. As a result,
[Information used to compile this table from Williams and Maosen (19,9),
Stokes (1964), Mullens and Laraway (1964, 1973), and Mullers (1971)]

Age		Hydrogeologie unit and symbol on plate ?	Lithology and acourronce	Water-bearing characteristios
Era	Period			
$\begin{aligned} & 0 \\ & \stackrel{1}{N} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		Alluvial, lake, and elacial deposits, undivided Qu	Clay, silt, sand, and gravel under present flood plains. Alluvium in Morgan Valley is as much as 200 feet thick; alluvium in other areas probably thinner.	Very permeable and yields 2,000 gallons per minute or more to wells where coarse grained and well sorted. Less permeable with smaller yields to wells where finer erained. liost permeable material known is in the eastern end of Morkan valley. Water in alluvium commonly is fresh (205709 thilligrams per later of dissolved solids).
		OLuer coarte-brained deposjts, some of volcanic origin QT	Partly cemented gravels and conglomerate with sonie tuffaceous sandstone. Dccurs over lower mountaln slopes on northeast side of Morgan Valley and is 0-1,000 feet thick.	Unknown, probably permeable locally and would yieldwater to wells if saturated.
		```Conglomerates and other rocks, mostly coarse-grained clastics, some of volcanic origin TKcE```	Eoulder, cobble, and volcanic-rock conelomerate with some conglomeratic sandstone, tuffaceous sandstone, siltstone, mudstone, and limestone. Commonly reddish, brown, or gray. Includes Echo Canyon Conglomerate, Evanston(?) and Wasatch Formations and Norwood Tuff. The Echo Canyon Conglomerate is $0-3,100$ feet thick and the Evanston(?) Formation is 0-1,400 feet thick in the study area. The Wasatch Formation is as much as 5,000 feet thick in the study area, and the Norwood Tuff is about 5,000 feet thick in the Morgan area. Occurs widely in the upland parts of the study area and has the largest area of outcrop of any of the hydrogeologite unftis.	Yields small to moderate amounts (3-560 gallons per minute) of fresh water ( $127-754$ milligrami per liter of dissolved solids) to wells along the marbins of Norgan Valley, along the downstrean reach of East Canyon Creek and the upstream reach of Lost Creek, and on the edges of the Neber fiver flood plain near Hoytsville. Yields water to sprines in upland areas and in canyons tributary to Echo Canyon.
$\begin{aligned} & \text { O } \\ & \text { ". } \\ & \tilde{N} \\ & 0 \\ & \text { d } \\ & \hline \end{aligned}$		Clastic rocks Ku	Marine and nonmarine sandstone, marine shale, and continental conglomerate. Includes Kelvin Formation, Bear River Formation, Aspen shale, and Frontier and Wanship Formations. Frontier Formation is about 2,100 feet thick and the Wanship Formation is about 5,000 feet thick in the Coalville area. Crops out on lower mountain slopes adjacent to Henefer Valley, around Coalville and in the Chalk Creek draineige basin, and in the southern East Canyon Creek drainage.	Yields $7-300$ gallons per minute of fresh to slightly saline water (235-3,000 milligrams per liter of dissolved solids) to wells around Coalville. Water is under artesian pressure locally.
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Older elastice rocks Jhss	Sandstone, siltston, elaystone, and shale. Includes pinwoody and Woodside Formations, Ankareh Formation, and Nugget Sandstone and equivalent units. Occurs in Upper Weber Canyon and in the northeastert part of the Lost Crcek drainage.	Unknown, probably has minimal permeability except where fractured.
		Principally limestone   JF/s	Limestone, sandstone, and siltstone. Includes Thaynes and Twin Creek Limestones. Occurs in Upper Weter Canyon and in the Lost Creek dralnage.	Unknown, locally may have large permeability where saturated and where fractures have been enlarged by solution.
H		Principally limestone and dolomite   PEIs	Limestone, dolomite, sandstone, siltstone, with minor conglomerate and shale. Includes all Paleozoic units except the Tintic and Weber Quartzites. Oceurs in and north of Upper Weber Canyon and in southern Hardserabble Creek drainage basin.	Do.
先		Quartzite and sandstone $\mathbb{P} \mathbb{E}_{\mathrm{ss}}$	Quartzite, conglomeratic quartzite, quartzitic sandstone, and conglomerate with some siltstone, dolomite, and limestione. Includes Tintic and Weber Quartzites. Occurs in and north of southern Hardscrabble Creek drainage basin.	Unknown, probably has minimal permeability except where fractured.
		Farmington Canyon Complex $\mathrm{p} \in \mathrm{f}$	Gneiss with some pegmatites. Forms much of the Wasatch Range west of Morgan Valley and also occurs east of Morgan Valley and in the Cottonwood Creek drainage basin.	Do.

${ }^{1}$ Or local usage (Stokes, 1964), not adopted by the U.S. Geological Survey. May be included in the frontier formation(Hint $Z \mathrm{~A}$, 1980 ).
domestic wells commonly penetrate and derive water from a thin section of alluvium and older underlying conglomerate and other clastic units of Cretaceous, Tertiary, and Quaternary age. Only in Morgan Valley and in the northern East Canyon Creek area have wells been drilled near the center of the valley, and these generally are far apart. In addition, in most parts of the study area the base of the alluvium is difficult to define from drillers' logs because the underlying units commonly are similar in lithology to the alluvium. Selected drillers' logs for which we have estimated the base of alluvium and the underlying rock unit are listed in table 6 (at back of report).

In Morgan Valley, it is estimated that the alluvium has a maximum thickness of about 200 feet ( 60 m ) between Peterson and Morgan, 150 to 175 feet ( $46-53 \mathrm{~m}$ ) around Mountain Green and southeast to Peterson, and about 125 feet ( 38 m ) along northern East Canyon Creek.

Eardley (1944, p. 889) noted that Morgan Valley, in contrast to Ogden Valley 10 to 15 miles ( $16-24 \mathrm{~km}$ ) to the north, was not a trap for deposition of large thicknesses of alluvium, but was an area where the alluvium was eroded by the Weber River because of uplifting by faulting.

In other parts of the study area, wells and data on the thickness of alluvium are few. The wells from which thickness of the alluvium can be estimated from drillers' logs are listed below:

Well   (See also table 6)	Location	Approximate thickness   of alluvium (feet)
(A-4-3) 32abc-1	edge of Round Valley	85
(A-3-4) 4ddd-1	near Weber River at Henefer	76
Located in sec.25,	abandoned well at Fcho	69
T. 3 N. R.4 E.	east side of Echo Reservoir	126
(A-3-5) 29cdd-1	Hoytsville	130
(A-2-5) 28dcb-1		

Economy and Population
The first settlement (1854) in the central Weber River area was Echo and agricultural settlements followed in most of the area through the 1860's (Haws, Jeppsen, and Huber, 1970, fig. 9). Agriculture, primarily confined to the valley areas, has been mostly limited to small grains and forage crops, along with livestock raising and dairying. During recent years a number of mink farms have been established.

The Union Pacific Railroad was constructed down Echo Canyon from Wyoming through Morgan Valley to Ogden during the late 1860's. The railroad has long been an important part of the economy of communities such as Echo.

Industry in the study area is limited to Browning Arms Co. at Mountain Green, Ideal Cement Co. at Croydon, and several small firms at Morgan. Coal
has been mined northeast of Coalville since 1859, but the mines are now inactive (1980). In 1975, a large oil and gas field was discovered in the Chalk Creek drainage area at Pineview. Exploration is continuing in the eastern part of the study area.

During recent years, Morgan Valley, and to a lesser extent the Coalville area, has had an influx of residents who work in the Ogden-Salt Lake City urban area, but prefer to live in the rural environment of the study area. Summer-home development also has occurred in several of the upland areas. Because water is considered fully appropriated, new residents or developments in areas not served by public-water supplies or water companies have had to lease surface-water rights from the Weber Basin Water Conservancy District to be able to drill domestic or public-supply wells.

Population of the study area was about 7,580 in 1980 (U.S. Bureau of the Census, 1980). Morgan County had a population of 4,914 , and the part of Summit County in the study area had an estimated population of 2,700 . Of the incorporated towns, Morgan had a population of 1,895; Coalville, 1,037; and Henefer, 549. Estimated 1980 population for Hoytsville was 200; Peterson, 130; Croydon, 75; Echo, 70; and Mountain Green, 600.

## SURFACE-WATER HYDROLOGY

Although ground water is a locally important source of water for domestic, livestock, and public supplies, surface water is much more important in the central Weber River area in terms of investments for development (impoundment, diversion, and regulation) and annual supply. A brief discussion of the surface-water resources in the area follows.

## Drainage, Diversions, and Impoundments

The Weber River enters the study area at Hoytsville and flows northwestward to Gateway where it leaves Morgan Valley through Weber Canyon. Major tributaries to the Weber River (in downstream order) are Chalk, Lost, and Fast Canyon Creeks. Other significant tributaries (in downstream order) are Echo Creek; streams on the southwestern side of Morgan Valley, such as Line Creek; Cottonwood Creek; and Hardscrabble Creek, which is a tributary to East Canyon Creek.

A major diversion from the Weber River is the Weber-Provo Canal near Oakley, about 12 miles ( 19 km ) southeast of Hoytsville, where part of the river's flow is diverted to the Provo River. Another major diversion is the Gateway Canal near Stoddard in Morgan Valley (pl. 3). Part of the Weber River flow is diverted into the canal along the southwestern side of the valley to the Gateway Tunnel, which conveys water to the Wasatch Front west of Morgan Valley. That portion of water not needed for use in the Wasatch Eront area is returned to the Weber River through a hydroelectric plant at the western end of Morgan Valley. Major impoundments within the study area are Echo, Lost Croek, and East Canyon Rescrvoirs.

## Discharge of the Weber River at Gateway

The long-term flow of the Weber River is quite variable. Flow at the U.S. Geological Survey gaging station at Gateway (station 10136500) illustrates the variation in flow representative of the study area. During the 1921-80 water years, the annual flow of the Weber River at Gateway (fig. 3) ranged from minimums of 126,800 acre-feet ( $156 \mathrm{hm}^{3}$ ) during the 1961 water year and 133,900 acre-feet $\left(165 \mathrm{hm}^{3}\right.$ ) during the 1934 water year to maximums of 827,100 acre-feet ( $1,020 \mathrm{hm}^{3}$ ) during the 1952 water year and 864,900 acre-feet ( $1,066 \mathrm{hm}$ ) during the 1921 water year.

The 1931-60 average annual flow of the Weber River at Gateway, including estimated diversions through the Gateway Tunnel during 1957-60, is about 373,700 acre-feet ( $461 \mathrm{hm}^{3}$ ). As a comparison, the average annual 1931-60 flow of the Weber River at Coalville, at the southern end of the study area, was 140,000 acre-feet ( $170 \mathrm{hm}^{3}$ ).

Discharge varies greatly during the year, with peak flows coinciding with periods of maximum snowmelt. Average weekly discharge of the Weber River at Gateway for the 1944 water year, a year in which the total discharge of 371,800 acre-feet ( $458 \mathrm{hm}^{3}$ ) was close to the 1931-60 average, is shown in figure 4. Discharge during the 1944 water year ranged from minimums of 160 to 191 cubic feet per second (4.5-5.4 $\mathrm{m}^{3} / \mathrm{s}$ ) from January 7 to February 3, 1944, to maximums of 1,110 to 2,220 cubic feet per second ( $31.4-62.9 \mathrm{~m}^{3} / \mathrm{s}$ ) from May 5 to June 15, 1944. The peak daily discharge was 3,080 cubic feet per second $\left(87.2 \mathrm{~m}^{3} / \mathrm{s}\right)$ on June 3. During the late summer to early spring low-flow period, much of the discharge of the river consists of ground-water inflow.

## Seepage Runs and Base Flow

To help estimate ground-water inflow to the Weber River, seepage runs were made between Coalville and Gateway on September 11 and October 26, 1979. The flow of the river on September 11 generally was too high to obtain definitive results at many places, but the October 26 data indicated several areas where ground-water inflow to the river was significant. Because the discharge of most major sources of surface inflow to the river and its major tributaries was measured during these seepage runs, the gains or losses represent mostly ground-water inflow to or outflow from the streams.

The data in table 2 show that most stream reaches in the valley areas along the Weber River and southwestern Lost and northern East Canyon Creeks were receiving ground-water inflow on October 26, 1979. However, the reach of the Weber River from south of Coalville to Echo lost 21 cubic feet per second $\left(0.59 \mathrm{~m}^{3} / \mathrm{s}\right)$. Some of this loss may be water going into bank storage, evaporation, or both from Echo Reservoir rather than ground-water outflow from the area. On September ll, this reach apparently gained water, which may have been caused by release of water from bank storage. It is possible that estimating changes in storage in Echo Reservoir introduces errors in the baseflow determinations.

The reach between Echo and Devils Slide received about 11 cubic feet per second ( $0.31 \mathrm{~m}^{3} / \mathrm{s}$ ), and a $1.25-\mathrm{mile}(2.0-\mathrm{km})$ reach of Lost Creek just upstream


Figure 3.-Annual discharge of the Weber River at Gateway (gaging station 10136500) during the 1921-80 water years.


Figure 4.-Average weekly discharge of the Weber River at Gateway (gaging station 10136500 ) during the 1944 water year.

Site no. (See pl. 1)	Stream and location	Cubic feet per second			
		Discharge Sept. 11, 1979	```Gain (+) or loss (-), or difference not significant (NS) between sites indicated```	Discharge Oct. 26, 1979	```Gain (+) or loss (-), or difference not significant (NS) between sites indicated```
1	Weber River above Gateway and hydroelectric plant return flow	57.7		61.1	
2	Weber River at Peterson	40.2	$\begin{aligned} \text { From } & \text { site } 2 \text { to } 1 \\ & +17.5 \end{aligned}$	40.6	$\begin{gathered} \text { From site } 2 \text { to } 1 \\ +20.5 \end{gathered}$
3	Stoddard Slough near mouth at Weber River	1.65		1.58	
4	Weber River below Stoddard diversion to Gateway Canal	${ }^{20.0}$	$\begin{aligned} \text { From } & \text { site } 4 \text { to } 2 \\ & +19 \text { est. } \end{aligned}$	21.4	$\begin{aligned} \text { From } & \text { site } 4 \text { to } 2 \\ & +17.6 \end{aligned}$
5	Weber River near Milton	572.0		116.0	
6	Deep Creek at edge of Morgan Valley	--		1.93	
7	East Cany on Creek near mouth	112.0		24.4	
8	East Canyon Creek near Morgan and edge of Norgan Valley	86.8	$\begin{gathered} \text { From site } 8 \text { to } 7 \\ +25 \end{gathered}$	16.9	$\begin{gathered} \text { From site } 8 \text { to } 7 \\ +7.5 \end{gathered}$
9	Hardscrabble Creek near mouth at East Canyon Creek	--		3.86	
10	East Canyon Creek above Porterville	115.0		16.0	$\begin{aligned} & \text { From site } 10 \text { to } 6 \\ & -3 \end{aligned}$
19	Weber River near Como Springs and below Como diversion	2480.0	From site 11 to 5	59.7	$\begin{aligned} & \text { From site } 11 \text { to } 5 \\ & +30 \end{aligned}$
12	Como diversion from the Weber River	5.64		1.74	
13	Weber River in upper Weber Canyon below Devils Slide	--		57.5	$\begin{aligned} & \text { From site } 13 \text { to } 11 \\ & \text { NS } \end{aligned}$
14	Weber River at Devils Slide	508.0	$\begin{aligned} & \text { From site } 14 \text { to } 11 \\ & \text { NS } \end{aligned}$	48.9	$\begin{gathered} \text { From site } 14 \text { to } 13 \\ +8.6 \end{gathered}$
15	Lost Creek near mouth at Weber River	38.8		24.6	
16	Lost Creek near Croyden	24.5	$\begin{aligned} & \text { From site } 16 \text { to } 15 \\ &+14.3 \end{aligned}$	13.0	$\begin{aligned} \text { From site } 16 \text { to } 15 \\ \\ +11.6 \end{aligned}$
17	Ditch in lower Henefer Valley near mouth at Weber River	--		1.64	
18	Weber River at Echo	$3_{504.0}$	$\begin{gathered} \text { From site } 18 \text { to } 14 \\ -34.8 \end{gathered}$	${ }^{4} 6.01$	$\begin{aligned} \text { From site } 98 \text { to } 14 \\ +11.3 \end{aligned}$
19	Echo Creek near mouth at Weber River	3.84		5.36	
--	Echo Reservoir (change in storage)	$5-333.0$		$6+126.0$	
20	Chalk Creek near mouth at Weber River	9.22		16.0	
21	Weber River below Coalville	138.0	From $7_{\text {N.S }} 21$ to 18	137.0	$\begin{gathered} \text { From }{ }_{8}^{\text {site }} 21.0 \end{gathered}$

Estimated from measurement of flow in Gateway Canal and flow in Weber River at Milton.
About 0.5 mile downstream from the October 26,1979 measurement site.
Measurement site downstream from mouth of Echo Creek, 1.6 miles downstream from October 26 , 1973 measurement site. Measurement site upstream from mouth of Echo Creek.
Flowing out of reservoir storage, average for September 6-16.
Flowing into reservoir storage, average for October 21-31.
Small gain indicated.
Not including Echo Creek.
from the Weber River received about 12 cubic feet per second ( $0.34 \mathrm{~m}^{3} / \mathrm{s}$ ) during the October seepage run. Even a reach largely in bedrock in Upper Weber Canyon downstream from Devils Slide received 8.6 cubic feet per second $\left(0.24 \mathrm{~m}^{3} / \mathrm{s}\right)$ of inflow, although some of this could have been in unmeasured tributaries. The Weber River and East Canyon Creȩk in Morgan Valley received a total of about 76 cubic feet per second $(2.2 \mathrm{~m} / \mathrm{s})$, of which less than 10 percent is estimated to have come from unmeasured tributary inflow.

Another estimate of ground-water inflow to the Weber River was obtained from records of changes in long-term base flow between various gages on the river. October $25-31$ was selected because stream discharge would be fairly representative of base-flow conditions. Most diversions for irrigation end in September (Johnson, 1980). Also, during October 25-31, transpiration from phreatophytes along the river is zero or minimal (Haws, Jeppson, and Huber, 1970, table 19), and effects of freezing and thawing are not large.

The data on mean discharge for October 25-31, 1931-60 (table 3) are similar to results of the October 26,1979 seepage run (table 2).

	Cubic feet per second	
Stream reach	Mean gain in flow,   October 25-31, 1931-60	Gain in flow,   October 26, 1979
Weber River and East   Canyon Creek from   Devils Slide and East   Canyon Reservoir to   Gateway		
Weber River and Lost   Creek from Echo and   Lost Creek Reservoir   to Devils Slide	53.4	85.2
Weber River from   Coalville to Echo	18.9	11.3

Even though all minor tributary inflow was not accounted for in the October 25-31 mean-discharge data, most of the gains in flow of the streams probably represent ground-water inflow. These data indicate, as did the seepage-run data, that most reaches of the Weber River and the downstream reaches of East Canyon and Lost Creeks are gaining reaches.

## Quality of Surface Water

Evaluation of the chemical quality of surface water was not included in this study, but was the subject of a concurrent study by Thompson (1982). The following statements summarize data from his report and refer to sampling conducted July 1979 through August 1980.

Table 3.--Average of the daily mean discharge of the Veber River and its major tributaries at selected streamflow-gaging stations and changes in storage of Echo Reservoir for October 25-31, 1931 through 1960

Station name and number
Average daily mean discharge and
change in reservoir storage
(cubic feet per second)
Gain ( + ) or loss ( - )
between stations indicated (cubic feet per second)

Weber River at Gateway $10136500(\mathrm{~A})^{1}$	206.0	From A to C
East Canyon Creek near Morgan	19.6	+53.4
(just below dam) $10134500(\mathrm{~B})$		
Weber River at Devils Slide $10133500(\mathrm{C})^{\mathbf{2}}$	133.0	From C to E
Lost Creek near Croyden $10132500(\mathrm{D})^{3}$	104.4	$+18.9\left(^{4}+\mathbf{2 8 . 6}\right)$
Weber River at Echo $10132000(\mathrm{E})^{5}$	$6+21.8$	
Echo Reservoir at Echo $10131500(\mathrm{~F})$	$\mathbf{1 7 . 1}$	From E to H
Chalk Creek at Coalville $10131000(\mathrm{G})$	99.0	$+10.1\left({ }^{7}+27.2\right)$
Weber River near Coalville $10130500(\mathrm{H})$		

${ }^{1}$ Diversions through Gateway tunnel estimated and added to total for 1957-60.
${ }^{2}$ Estimated from 1931-54 data and from 1931-54 and 1931-60 discharge data for Weber River at Coalville, Weber River at Gateway, and Chalk Creek.
${ }^{3}$ Estimated from 1941-66 data and from 1941-66 and 1931-60 discharge data for Chalk Creek.
${ }^{4}$ Includes all of the base flow of Lost Creek.
${ }^{5} 1958-60$ data collected by Weber River Water Commissioner.
${ }^{6}$ Volume going into storage at reservoir, not including evaporation losses of 0 to 3.5 cubic feet per second and unknown bank-storage losses.
${ }^{7}$ Includes all of the base flow of Chalk Creek.

The principal factors that affect the quality of water in the weber River are tributary inflow, ground-water inflow and irrigation-return flow (which cannot be differentiated readily), and reservoir storage. Snowmelt runoff has small dissolved-solids concentrations, whereas water stored in reservoirs, ground-water inflow, and irrigation-return flow have larger dissolved-solids concentrations. The surface water in the central Weber River area is mostly of the calcium bicarbonate or calcium magnesium bicarbonate type.

The Weber River at Coalville, at the southern end of the study area, had dissolved-solids concentrations ranging from 163 to $256 \mathrm{mg} / \mathrm{L}$ (milligrams per liter); while just downstream, Chalk Creek at its mouth had dissolved-solids concentrations ranging from 237 to $446 \mathrm{mg} / \mathrm{L}$. Echo Creek had larger dissolvedsolids concentrations (273-509 $\mathrm{mg} / \mathrm{L}$ ) than the Weber River just upstream from Echo Creek (192-296 mg/L). Lost Creek generally had smaller dissolved-solids concentrations ( $169-315 \mathrm{mg} / \mathrm{L}$ ) than the Weber River upstream from Lost Creek (203-396 mg/L). A 31-percent increase in dissolved solids was found in irrigation-return flow at the northern end of Henefer Valley on May 13, 1980. The return flow was sampled in a ditch tributary to the Weber River and the increase was in relation to dissolved solids in the Weber River at the northern end of Henefer Valley. East Canyon Creek had dissolved-solids concentrations ranging from 206 to $334 \mathrm{mg} / \mathrm{L}$ near its junction with the Weber River in Morgan Valley.

During the October 26 seepage run, samples of the Weber River were collected upstream from the Stoddard Diversion to the Gateway Canal and at Gateway upstream from the hydroelectric plant. The river increased in flow from 21.4 to 61.1 cubic feet per second ( $0.61-1.73 \mathrm{~m}^{3} / \mathrm{s}$ ) in this reach, most of which represented ground-water inflow. The dissolved solids in the river decreased from 353 to $347 \mathrm{mg} / \mathrm{L}$ in the same reach, indicating that the groundwater inflow has a dissolved-solids concentration about equal to that of the river. Dissolved solids in the Weber River at Gateway, at the western end of the study area, ranged from 173 to $367 \mathrm{mg} / \mathrm{L}$, only a little larger than the 163 to $256 \mathrm{mg} / \mathrm{L}$ range at the southern end of the study area at Coalville.

## GROUND-WATER HYDROLOGY

## General Conditions of Occurrence and Development

Ground water occurs in unconsolidated alluvium and in older semiconsolidated and consolidated rocks in the central Weber River area. Ground water in the alluvium commonly is under water-table conditions. Shallow water in older units also is commonly under water-table conditions; locally (as in the Coalville subarea), water in older units is under artesian conditions. Alluvium is believed to be the most important hydrogeologic unit in the area because it is the most permeable and commmonly contains fresh water.

The principal source of recharge to the ground-water system is precipitation that falls within the area. A small quantity of water enters the area as underflow in the channel of the Weber River near Hoytsville; this is virtually balanced by subsurface outflow in the channel of the Weber River and Weber Canyon at the western end of Morgan Valley. Available data do not indicate that there is significant subsurface flow of ground water into or out of the study area through the semiconsolidated and consolidated rocks that underlie the area. The few available water-level data indicate that the ground water moves toward the Weber River and streams tributary to the river within the study area.

Ground water is less used in the area than is surface water and volumes of ground water in storage and annual recharge are not known accurately because few data are available and no detailed studies have been made. Ground water has been developed by means of small-capacity wells for domestic use at farms and individual residences and by larger capacity wells for public supply, for the Ideal Cement Co., and for the Browning Arms Co. Water from some springs is used locally for public supply.

Most wells derive water from alluvial deposits of Quaternary age, from conglomerate and other clastic rocks of Cretaceous and Tertiary age (including the Echo Canyon Conglomerate, the Evanston(?) and Wasatch Formations, and the Norwood Tuff), from clastic rocks of Cretaceous age (including the Frontier Formation and Wanship Formation [of local usage, not adopted by the U.S. Geological Survey]), and possibly from older coarser-grained deposits of Quaternary and Tertiary age.

The water-bearing characteristics of older units of Mesozoic, Paleozoic, and Precambrian age are relatively unknown. The carbonate units probably are more permeable than the clastic units and gneiss because they may include joints and fractures that have been enlarged by solution. However, clastic units that are extensively fractured may be very permeable locally. Fractures in the Weber Quartzite are the principal source of water draining into the mines of the Park City district, 20 miles ( 32 km ) southwest of Coalville (Baker, 1970, table 1). The Weber is included in the unit in the study area defined as quartzite and sandstone of Cambrian and Pennsylvanian age, but its water-bearing characteristics in the study area are largely unknown.

## Morgan Valley-Round Valley Subarea

## General Availability

The Morgan Valley-Round Valley subarea includes Morgan Valley, the valley along East Canyon Creek to East Canyon, and Round Valley to a point 2 miles ( 3 km ) west of Devils Slide (pl. 3). Ground water is known to occur in the subarea in alluvium and in older semiconsolidated to consolidated rock units, including the Norwood Tuff in northwestern Morgan Valley and in the Wasatch Formation along East Canyon Creek south of Porterville.

Wells inventoried that derive water from alluvium had an average yield of 149 gallons per minute ( $9.4 \mathrm{~L} / \mathrm{s}$ ), and those that derive water from the Norwood Tuff and Wasatch Formation had average yields of 23 and 27 gallons per minute ( 1.5 and $1.7 \mathrm{~L} / \mathrm{s}$ ) (table 4). Well (A-4-2) $36 \mathrm{bca}-1$, completed in alluvium for the city of Morgan in 1979, reportedly yields about 2,500 gallons per minute ( $160 \mathrm{~L} / \mathrm{s}$ ). Although the alluvium at Morgan may be more permeable than average, this well illustrates that alluvium can support large withdrawals at least locally.

## Recharge

In and near the lower valley areas, recharge is from precipitation, seepage from and underflow of tributary perennial and ephemeral streams (probably occurring at the valley margins), direct seepage to alluvium from older rock units at the valley margins, from irrigation and seepage from irrigation canals located along the valley margins, and underflow into the area in alluvium of the Weber River valley. The major sources of recharge probably are seepage from and underflow of tributary streams and irrigation and canal losses. Recharge in the higher elevations of the subarea is from precipitation, and occurs mostly by infiltration of snowmelt and streamflow.

Because recharge in the study area is complex and greatly affected by the use of surface water for agriculture, and the study was a reconnaissance, detailed estimates of recharge were not made. Minimum recharge to the subarea and its tributary drainage (not including the part upstream from East Canyon Reservoir) is estimated to equal the average ground-water discharge. The estimated average discharge, discussed in a following section, is about 40,000 acre-feet ( $49 \mathrm{hm}^{3}$ ) per year. This is about 10 percent of the 401,400 acre-feet ( $495 \mathrm{hm}^{3}$ ) of normal annual precipitation on the subarea watershed-that is, the drainage area of the weber River between gaging stations 10136500, Weber River at Gateway; 10133500, Weber River at Devils Slide; and 10134500, East Canyon Creek near Morgan.

Table 4.--Reported discharge of water from and specific capacity of wells by formation ${ }^{1}$

Formation	No. of wells	Range or single value of discharge (gallons per minute)	Average discharge, (gallons per minute)	No. of wells	Range or single value of specific capacity (gallons per minute per foot)	Average specific capacity (gallons per minute per foot)
Morgan Valley-Round Valley subarea						
Alluvium	35	5-2,550	149	24	0.5-225	25
Norwood Tuff	43	1-149	23	35	0.02-50	3.0
Wasatch Formation	10	3-100	27	5	0.02-24	5.7
Henefer Valley subarea						
Alluvium	7	3-60	32	7	.3-7.5	3.6
Wasatch Formation	4	8.60	33	2	2.7-4	3
Evanston(?) Formation	1	25	-	1	25	-
Echo Canyon Conglomerate	4	5-560	160	2	.8-28	14
Wanship Formation ${ }^{2}$	2	14.25	20	2	.1-1.7	. 9
Coalville subarea						
Alluvium	2	40-340	190	-	-	-
Wasatch Formation	2	15-30	23	-	-	-
Wanship Formation ${ }^{2}$	3	2-100	36	1	. 7	-
Frontier Formation	8	7-300	80	6	.1-8	2.3

${ }^{1}$ Specific capacities were not computed for wells with zero drawdown reported.
${ }^{2}$ Of local usage.
This is a minimum estimate of recharge because: (l) Some evapotranspiration from ground water may occur during the fall base-flow period, and (2) the volume of ground water seeping to the Weber River probably is greater during the spring and early summer snowmelt-runoff period, and the summer irrigation period than it is during the fall base-flow period. The minimum estimate of recharge is estimated to be about two-thirds or more of the actual recharge.

## Movement

The map of water levels in the Morgan Valley-Round Valley subarea (pl. 3) shows that ground-water movement generally is from the valley margins toward the Weber River and East Canyon Creek, and downstream. The Cottonwood Creek area is an exception in that the creek is not a ground-water drain locally; movement here is not toward the creek but down its valley toward the Weber River. In addition, the Weber River at and east of Morgan and possibly East Canyon Creek at Porterville are above the water table and may be recharging the alluvium locally.

The data on plate 3 indicate that the Weber River and East Canyon Creek are gaining streams in most of the subarea, which supports the conclusions from the seepage runs and the estimates of long-term gains in base flow between Devils Slide, East Canyon Reservoir, and Gateway.

## Discharge

In the lower valley areas, ground-water discharge consists of seepage to the Weber River and East Canyon Creek, transpiration by phreatophytes and probably some from crops and pasture, discharge from wells and springs, and underflow out of the area in the alluvium of the Weber River valley. Discharge in the upland part of the subarea is largely unknown, but likely consists chiefly of local discharge by phreatophytes (probably along streams and at springs), discharge by springs (much of which probably contributes to streamflow), and local seepage to streams.

A minimum estimate of ground-water discharge from the entire subarea and its tributary drainage (not including the part upstream from East Canyon Reservoir) was made by summing the long-term gain in base flow of the weber River and East Canyon Creek between Devils Slide, East Canyon Reservoir, and Gateway; discharge from wells; discharge from springs used for public supply; and underflow out of the basin. The sum is about 40,000 acre-feet ( $49 \mathrm{hm}^{3}$ ) per year, and is estimated to be at least two-thirds of the actual total annual discharge.

Discharge by transpiration from phreatophytes was not included in the minimum estimate of ground-water discharge. During the period for which average base flow was computed (October 25-31), transpiration is negligible (Haws, Jeppson, and Huber, 1970, table 19), and presumably the water that was discharged in that way during the growing season instead seeps to streams and is included in base flow. The Morgan Valley-Round Valley subarea, however, includes about 1,600 acres ( $650 \mathrm{hm}^{2}$ ) of phreatophytes which discharge about 3.1 feet ( 0.94 m ) of water per year (Haws, Jeppson, and Huber, 1970, tąbles 19 and 26), for a total annual use of about 5,000 acre-feet ( $6.2 \mathrm{hm}^{3}$ ). In addition, pasture and crops discharge some ground water locally by transpiration.

The average long-term gain in base flow through the subarea is about 53 cubic feet per second ( $1.5 \mathrm{~m}^{3} / \mathrm{s}$ ) (table 3), or about 38,000 acre-feet ( $47 \mathrm{hm}^{3}$ ) per year. Use of water from wells and springs for public supply and from wells for industry was about 990 acre-feet ( $1.2 \mathrm{hm}^{3}$ ) during 1979. About 250 domestic wells are in the subarea and probably discharge about 250 acre-feet $\left(0.031 \mathrm{hm}^{3}\right.$ ) (estimated domestic use per well is about 1 acre-foot or $1,200 \mathrm{~m}^{3}$ per year). Total ground water used from wells and springs for public supply, wells for industry, and wells for domestic supply is, therefore, about 1,200 acre-feet ( $1.5 \mathrm{hm}^{3}$ ) per year.

Underflow of the Weber River as it leaves the subarea in Weber Canyon probably is about 1,000 acre-feet $\left(1.2 \mathrm{hm}^{3}\right)$ per year. This was computed by assuming the cross-sectional area of saturated alluvium is about 500 feet ( 150 m ) wide and 75 feet ( 23 m ) deep, the hydraulic gradient is about 25 feet per
mile $(4.7 \mathrm{~m} / \mathrm{km})$, and the permeability is about 450 feet squared per day ( 42 $\mathrm{m}^{2} /$ ( ) (see p. 24). Using the equation $Q$, flow in acre-feet per year $=1.6 \mathrm{x}$ $10^{-6} \mathrm{~K}$ (permeability) $x \mathrm{I}$ (hydraulic gradient) x A (cross-sectional area) gives a value of 700 acre-feet ( $0.9 \mathrm{hm}^{3}$ ) per year. An estimate of the underflow enter ing Morgan Valley in Upper Weber Canyon east of Morgan was made similarly and was about 2,000 acre-feet ( $2.5 \mathrm{hm}^{3}$ ) per year. An estimate of 1,000 acre-feet ( $1.2 \mathrm{hm}^{3}$ ) per year probably is reasonable for underflow of the Weber River throughout the central Weber River area.

Storage and Hydraulic Characteristics
of the Aquifers

The volume of water stored in alluvium in most of the subarea was computed using data compiled for the digital-computer model (pl. 5). This was done by computing the volume of saturated alluvium in each model node and assuming a specific yield of 0.10. Average alluvium thickness in each node was estimated from well logs and ranged from about 100 feet ( 30 m ) along the valley margins to about 200 feet ( 60 m ) in the area from Morgan to Peterson. Thickness of saturated alluvium averaged 150 feet ( 46 m ). The volume of saturated alluvium totaled about $1,700,000$ acre-feet ( $2,100 \mathrm{hm}^{3}$ ), and the volume of theoretically recoverable ground water in storage is about 170,000 acre-feet ( $210 \mathrm{hm}^{3}$ ), about 50 percent of the annual flow of the Weber River at Gateway. As far as is known all this water is fresh (contains less than 1,000 $\mathrm{mg} / \mathrm{L}$ of dissolved solids), as discussed in a subsequent section.

Measurements of water levels in observation wells indicate changes in storage with time. Changes in water levels in eight wells in the study area, seven of which are in the Morgan Valley-Round Valley subarea, are shown in figure 5. Actual water-level measurements are given in table 7 (at back of report). None of the hydrographs of the wells show any long-term changes which would indicate progressive decreases or increases in the volume of ground water in storage. Apparently during the past 40 to 50 years average ground-water recharge and discharge have been in equilibrium.

The hydrographs, however, show seasonal and year-to-year fluctuations which indicate short-term imbalance in recharge and discharge. Many of the hydrographs show higher levels during the late summer and fall than during the spring, indicating effects of recharge from irrigation. However, well (A-5l) $25 a d d-1$ at Mountain Green commonly has higher water levels during the spring than during the late summer and fall, indicating effects of recharge from snownelt-runoff. Several wells (for example (A-4-3) 3lbcc-l and (A-4-2) 26 ccd -1 near Morgan and (A-3-2) $24 \mathrm{cba}-1$ at Porterville) show lower average water levels during the early 1960's and higher levels during the early 1970's corresponding to periods of low and high runoff, respectively (fig. 3). This indicates that ground-water levels fluctuate with runoff, probably because both are related to changes in precipitation and snowmelt-runoff, and groundwater levels are affected by changes in volumes of surface water applied for irrigation (which likely were lower during the early l960's).


Figure 5.-Hydrographs of water levels in observation wells, 1936-80.


The water-bearing rock units in the Morgan Valley-Round Valley subarea penetrated by wells include alluvium, the Norwood Tuff, and the wasatch Formation. Little is known of the hydraulic characteristics of these units, other than what can be inferred from specific capacities of wells.

An 8-hour aquifer test was made using Morgan city well (A-4-2) 36bca-1, about 125 feet ( 38 m ) from the Weber River, in November 1979, but the pumping apparently induced flow from the river so quickly that analysis of the data did not give an accurate estimate of transmissivity. The water level in the well stabilized within 10 minutes after pumping began and recovered within 10 minutes after the pumping stopped. Water-level measurements in these periods probably are not accurate enough and the pumpage rate is not stable enough to compute transmissivity.

According to the driller's report, the specific capacity of this well when it was completed was 196 gallons per minute per foot [ $41(\mathrm{~L} / \mathrm{s}) / \mathrm{m}]$. Using this value, transmissivity at the well was estimated to be about 40,000 to 50,000 feet squared per day ( $4,000-5,000 \mathrm{~m}^{2} / \mathrm{d}$ ) based on a method of Hurr (1966). The method assumed the well to be 100 -percent efficient. The well probably is much less than 100 -percent efficient because it is not completely open to the aquifer (it includes a steel casing perforated in place with a hydraulic knife). Therefore, the estimated transmissivity probably is conservative, and the actual transmissivjty at the well could be as large as 90,000 feet squared per day $\left(8,000 \mathrm{~m}^{2} / \mathrm{d}\right)$, in which case the hydraulic conductivity of the 200 -foot ( $61-\mathrm{m}$ ) section would be 450 feet per day ( 140 $\mathrm{m} / \mathrm{d}$ )

Average specific capacities computed from data reported for wells in the subareas of the study area, subdivided by formation from which the wells derived most of their water, are listed in table 4. Wells completed in alluvium in the Morgan Valley-Round Valley subarea had an average specific capacity of 25 gallons per minute per foot [5.2 (L/s)/m], about 12 percent of the value reported for Morgan city well (A-4-2) 36bca-1 ${ }^{2}$ indicating a transmissivity of about 11,000 feet squared per day ( $1,000 \mathrm{~m}^{2} / \mathrm{d}$ ). The Morgan city well probably penetrated alluvium that is more permeable than average. However, average specific capacity may be too small because it includes data from wells that are poorly constructed or penetrate thin sections of alluvium.

The average specific capacity of well.s completed in the Norwood Tuff is 3.0 gallons per minute per foot $[0.62(\mathrm{~L} / \mathrm{s}) / \mathrm{m}]$ and for those completed in the Wasatch Formation it is 5.7 gallons per minute per foot $[0.2(\mathrm{~L} / \mathrm{s}) / \mathrm{m}]$. These values are less than those for wells completed in the alluvium and indicate less transmissivity, probably because these units are partly cemented and because the Norwood contains much fine-grained tuffaceous material.

The specific yield of the alluvium is estimated to average 0.10 , although locally it may be as much as 0.20. The specific yields of the Norwood Tuff and Wasatch Formation are not known, but probably average less than 0.10.

The ground water in the Morgan Valley-Round Valley subarea is almost all fresh. Dissolved solids in the 57 samples collected for this study and 1 sample collected previously in the subarea ranged from 127 to $754 \mathrm{mg} / \mathrm{L}$ (table 8 at back of report) and averaged $387 \mathrm{mg} / \mathrm{L}$. Samples also were collected for analysis by Saxon (1972, table 5) from 21 wells and 5 springs. Those samples had dissolved-solids concentrations ranging from 26 to $2,568 \mathrm{mg} / \mathrm{L}$, but values from all but four of them were within the range of values for samples collected during this study.

The overall quality of water does not show much relation to the formation from which it was withdrawn, although no attempt was made to determine the relation between specific ions and formations. Average dissolved-solids concentrations in water from the alluvium was $361 \mathrm{mg} / \mathrm{L}$, from the Norwood Tuff $375 \mathrm{mg} / \mathrm{L}$, and from the Wasatch Formation $478 \mathrm{mg} / \mathrm{L}$. Apparently ground water in and near the valley areas is almost all fresh and would be suitable for most uses.

## Henefer Valley Subarea

General Availability
The Henefer Valley subarea includes Henefer Valley southeast to Echo, the southwestern part of Echo Canyon, and the southwestern 7 to 8 miles (11-13 km ) along Lost Creek (pl. 4). Ground water is known to occur in the subarea in alluvium and in older semiconsolidated to consolidated rock units, including the Evanston(?) and Wasatch Formations along Lost Creek, the Echo Canyon Conglomerate at Echo and Echo Canyon, and the Wanship Formation (of local usage) near Henefer.

Seven wells that derive water from alluvium had an average yield of 32 gallons per minute ( $2.0 \mathrm{~L} / \mathrm{s}$ ) and four wells deriving water from the wasatch Formation had an average yield of 33 gallons per minute ( $2.1 \mathrm{~L} / \mathrm{s}$ ) . Four wells deriving water from the Echo Canyon Formation had an average yield of 160 gallons per minute ( $10 \mathrm{~L} / \mathrm{s}$ ) (table 4).

The alluvium and possibly the underlying rocks may have small permeability in some parts of Henefer Valley. Three wells drilled in the valley did not yield enough water for domestic supply. A well drilled about 1.5 miles ( 2.4 km ) northwest of Henefer on the edge of the valley (in the $\mathrm{NE}_{4}^{1} \mathrm{SW}^{\frac{1}{4}} \mathrm{SW}^{\frac{1}{4}} \mathrm{sec} .32, \mathrm{~T} .4 \mathrm{~N} ., \mathrm{R} .4 \mathrm{E}$.) to a depth of 319 feet ( 97.2 m ) was abandoned when it reportedly did not yield any water, and salt was observed in drilling cuttings from a depth of 250 feet ( 76 m ). A 225-foot ( $68.6-\mathrm{km}$ ) well east of Henefer and the Weber River (in the $S^{\frac{1}{4}} \mathrm{SW}^{\frac{1}{4}} \mathrm{SW}^{\frac{1}{4}} \mathrm{sec} .3$, T. 3 N., R. 4 E.) was reported as yielding no water; and a well drilled about 1 mile ( 1.6 km ) northwest of Henefer on the edge of the valley (in the $\mathrm{NW}^{\frac{1}{4}} \mathrm{NW}^{1} \frac{1}{4} \mathrm{SE}_{4}^{1} \mathrm{sec} .5$, T. 3 N., R. 4 E.) to a depth of 135 feet ( 41.1 m ) was abandoned reportedly because "salt was found." These reports indicate that the alluvium and underlying Wanship Formation (of local usage) have small permeability and that the Wanship yields saline water locally.

The various sources of recharge to the subarea and the sources that probably contribute the most recharge are the same as those for the Morgan Valley-Round Valley subarea. A minimum estimate of recharge to the entire Henefer Valley subarea and its tributary drainage was made by assuming it equals the ąverage ground-water discharge. This total is about 23,000 acrefeet ( $28 \mathrm{hm}^{3}$ ) per year, or about 5 percent of the 485,000 acre-feet ( $598 \mathrm{hm}^{3}$ ) of annual precipitation on the subarea watershed--that is, the drainage area of the Weber River between gaging stations 10133500 and 10132000. This is about 50 percent of the volume recharged to the Morgan Valley-Round Valley subarea, probably because there is less irrigation, and the ground-water reservoir is smaller. This is a minimum estimate of recharge for the same reasons as given for the Morgan Valley-Round Valley subarea, and is estimated to be about two-thirds or more of the actual recharge.

## Movement

The map showing water levels in the Henefer Valley subarea (pl. 4) is incomplete because of a lack of data, but indicates that ground-water movement is toward the Weber River and downstream.

The data on plate 4 indicate that the Weber River (with the exception of the reach at Echo) and Lost Creek near its mouth are gaining streams, which supports the conclusions from the seepage runs and the estimates of long-term gains in flow between Echo Reservoir and Devils Slide. At Echo, the Weber River apparently is above the water table and may recharge the alluvium locally.

## Discharge

Ground-water discharge in the lower valley areas and in the uplands of the subarea is from the same types of sources as in the Morgan Valley-Round Valley subarea. In the lower valley parts of the Henefer Valley subarea, discharge consists of seepage to the Weber River and the downstream reach of Lost Creek, transpiration by phreatophytes and probably some from crops and pasture, discharge from wells and springs, and underflow of the weber River valley.

A minimum estimate of ground-water discharge from the entire subarea and its tributary drainage was made by summing the long-term gain in base flow of the Weber River between Echo Reservoir and Devils Slide, discharge from wells, discharge from springs used for public sjupply, and underflow of the Weber River. The sum is 23,000 acre-feet ( $28 \mathrm{hm}^{3}$ ) per year.

The average long-term gain in base flow through the subarea is about 29 cubic feet per second ( $0.82 \mathrm{~m}^{3} / \mathrm{s}$ ) (table 3), or about 21,000 acre-feet ( 26 $\mathrm{hm}^{3}$ ) per year. Use of water from wells and springs for public supply was about 170 acre-feet ( $0.21 \mathrm{hm}^{3}$ ) during 1979, and from wells for the cement plant was about 810 acre-feet $\left(1.0 \mathrm{hm}^{3}\right)$ during 1980. About 18 domestic wells are in the subarea (including wells at the highway rest stop and maintenance station in Echo Canyon) and probably discharge about 20 acre-feet ( $0.02 \mathrm{hm}^{3}$ ) per year. Total ground water used from wells and springs for public supply, wells for industry, and wells for domestic supply is, therefore, about 1,000 acre-feet ( $1.2 \mathrm{hm}^{3}$ ) per year. Discharge as underflow in the alluvium of the Weber River valley is about 1,000 acre-feet ( $1.2 \mathrm{hm}^{3}$ ) per year.

Although transpiration from phreatophytes is not included in the minimum estimate of ground-water discharge because it probably is accounted for in base flow during the nongrowing season, it is about 2,200 acre-feet ( $2.7 \mathrm{hm}^{3}$ ) per year. About 820 acres ( $330 \mathrm{hm}^{2}$ ) of phreatophytes are in the subarea, which discharge about 2.7 feet ( 0.82 m ) of water per year (Haws, Jeppson, and Huber, 1970, tables 19 and 26; and Haws, 1970, tables 35,36 , and 37). In addition, irrigated pasture and crops probably discharge some ground water locally by transpiration.

## Storage and Hydraulic Characteristics of the Aquifers

The volume of recoverable ground water in the Henefer Valley subarea was not estimated because of insufficient data about the specific yield and volume of the saturated rocks. The volume stored in the alluvium is less than that estimated for the Morgan Valley-Round Valley subarea.

Measurements at well (A-3-4)4ddb-1 in Henefer Valley show that water levels in the well during the late summer and fall, especially since 1968, tended to be higher than levels during the spring, indicating recharge from irrigation. Levels during the early 1960's were lower than those during the early 1970's, indicating effects of periods of less-than-average precipitation and streamflow.

Specific capacities of wells give some indication of the permeability of the rock units from which water is withdrawn. In the Henefer Valley subarea, reported specific capacities are available for only a few wells (table 4). Seven wells completed in the alluvium had an average specific capacity of 3.6 gallons per minute per foot $[0.75(\mathrm{~L} / \mathrm{s}) / \mathrm{m}]$, and two wells completed in the Echo Canyon Conglomerate had an average specific capacity of 14 gallons per minute per foot [2.9 (L/s)/m]. Wells in the Wasatch Formation and Wanship Formation (of local usage) had smaller specific capacities. These data indicate that all these units have less transmissivity than the alluvium in Morgan Valley. One well in the Evanston(?) Formation had a specific capacity of 25 gallons per minute per foot [5.2 (L/s)/m].

Quality of Ground Water
The ground water sampled in the Henefer Valley subarea is all fresh. The dissolved-solids concentration in the 10 samples collected for this study (table 8) ranged from 160 to $635 \mathrm{mg} / \mathrm{L}$ and averaged $380 \mathrm{mg} / \mathrm{L}$. The dissolvedsolids concentration in samples from the alluvium ranged from 304 to $415 \mathrm{mg} / \mathrm{L}$; from the Wasatch Formation, 160 to $348 \mathrm{mg} / \mathrm{L}$; and from the Echo Canyon Conglomerate, 342 to $635 \mathrm{mg} / \mathrm{L}$.

Coalville Subarea
General Availability
The Coalville subarea includes the reach of the Weber River from the downstream end of Echo Reservoir to Hoytsville and the western Chalk Creek drainage basin (pl. 4). Ground water occurs in the subarea in alluvium and in older semiconsolidated to consolidated rock units, including the wasatch Formation east of Hoytsville, the Wanship Formation (of local usage) west and north of Coalville, and the Frontier Formation at Coalville and eastward along
the downstream reach of Chalk Creek. Water in the alluvium and at shallow depths in older rock units is under water-table conditions. However, three wells, two completed in the Wanship Formation (of local usage) and one completed in the Frontier Formation, encountered water under artesian conditions. Perforated intervals in the casings of these wells range from 55 to 465 feet ( $17-142 \mathrm{~m}$ ) in depth. Much of the water in rock units older than the alluvium may be under artesian conditions in the Coalville subarea.

Of the wells inventoried, two derive water from alluvium and reportedly had yields of 40 and 340 gallons per minute ( 2.5 and $21 \mathrm{~L} / \mathrm{s}$ ), and two derive water from the Wasatch Formation and had yields of 15 and 30 gallons per minute ( 0.95 and $1.9 \mathrm{~L} / \mathrm{s}$ ). Wells deriving water from the Wanship Formation (of local usage) and Frontier Formation had yields ranging from 2 to 300 gallons per minute ( $0.1-19 \mathrm{~L} / \mathrm{s}$ ) (table 4).

## Recharge

The various sources of recharge to the Coalville subarea and the sources that probably contribute the most recharge are the same as those for the previously described subareas. Recharge to the entire Coalville subarea and its tributary drainage is estimated to be equal to the average annual groundwater discharge as given below--that is, about 2l,000 acre-feet ( $26 \mathrm{hm}^{3}$ ) per year. This (a minimum estimate) is about 6 percent of the 331,500 acre-feet (409 $\mathrm{hm}^{3}$ ) of normal annual precipitation on the subarea watershed (the drainage area of the Weber River between gaging stations 10132000 and 10130500).

The estimate of recharge, in addition to being a minimum (for the same reasons as given for the other two subareas), may be less accurate than the estimates for the other subareas because of the difficulties in accurately computing the changes in storage in Echo Reservoir.

## Movement

The map showing water levels in the Coalville subarea (pl. 4) is incomplete because of a lack of data, but indicates that ground-water movement is toward the Weber River and downstream. The data on plate 4 indicate that the Weber River south of Coalville and Chalk Creek near its mouth are gaining streams; this supports the estimates of long-term gains in flow between the gaging station south of Coalville and the downstream end of Echo Reservoir. At one location, however, about 3 miles ( 4 km ) east of Coalville, Chalk Creek apparently is above the water table. At this location the creek may be recharging the alluvium.

## Discharge

Ground-water discharge in the lower valley parts of the Coalville subarea consists of seepage to the Weber River and probably to the downstream reach of Chalk Creek, some transpiration by crops and pasture, discharge from wells and springs, and underflow in the alluvium of the Weber River valley.

A minimum estimate of ground-water discharge from the entire subarea and its tributary drainage was made by summing the long-term gain in base flow of the Weber River between the gaging station 10130500 south of Coalville and the
downstream end of Echo Reservoir, discharge from springs and wells, and underflow of the weber River. The total is about 21,000 acre-feet ( $26 \mathrm{hm}^{3}$ ) per year.

The average long-term gain in base flow through the subarea is about 27 cubic feet per second ( $0.76 \mathrm{~m}^{3} / \mathrm{s}$ ) (table 3) or about 19,500 acre-feet ( 24 $\mathrm{hm}^{3}$ ). This figure is only approximate, because of the difficulty in computing the changes in storage in Echo Reservoir.

Use of water from wells and springs for public supply was estimated to be about 560 acre-feet ( $0.69 \mathrm{hm}^{3}$ ) during 1979 . About 40 to 45 domestic wells discharge about 40 acre-feet ( $0.05 \mathrm{hm}^{3}$ ) per year. A spring along the downstream reach of Chalk Creek probably provides another 10 acre-feet ( 0.01 $\mathrm{hm}^{3}$ ) per year for domestic use. Total ground-water use from wells and springs for public supply and domestic use is, therefore, about 610 acre-feet ( 0.75 $\mathrm{hm}^{3}$ ) per year. Underflow out of the subarea in the alluvium of the weber River valley is about 1,000 acre-feet ( $1.2 \mathrm{hm}^{3}$ ) per year.

Although transpiration from phreatophytes in the subarea is not included in the minimum estimate of ground-water discharge because it probably is accounted for in base flow in the nongrowing season, it is about 600 acre-feet $\left(0.74 \mathrm{hm}^{3}\right)$ per year. About 250 acres ( $100 \mathrm{hm}^{2}$ ) of phreatophytes are in the tributary drainage to the subarea (all along Chalk Creek) and their annual use of water is 2.5 feet ( 0.76 m ) (Haws, Jeppson, and Huber, 1970, tables 19 and 26).

Storage and Hydraulic Characteristics of the Aquifers

Well data in the Coalville subarea are insufficient to estimate the volume of ground water stored in alluvium or the hydraulic characteristics of the aquifers. However, some specific-capacity data are available which give some indication of the permeability of the Frontier Formation (table 4). From reported data from six wells, an average specific capacity of 2.3 gallons per minute per foot $[0.48(\mathrm{~L} / \mathrm{s}) / \mathrm{m}]$ was computed-much less than that for the alluvium in Morgan Valley.

## Quality of Ground Water

The ground water sampled in the Coalville subarea is fresh, with the exception of water from one unused flowing well, (A-2-5) l0bcb-2, that is completed in the Frontier Formation and yields water with $3,000 \mathrm{mg} / \mathrm{L}$ of dissolved solids (table 8). The dissolved--solids concentration in the 15 samples collected for this study ranged from 235 to $3,000 \mathrm{mg} / \mathrm{L}$ ( $235-871 \mathrm{mg} / \mathrm{L}$ without the $3,000-\mathrm{mg} / \mathrm{L}$ sample) and averaged $636 \mathrm{mg} / \mathrm{L}$ ( $467 \mathrm{mg} / \mathrm{L}$ without the $3,000-\mathrm{mg} / \mathrm{L}$ sample).

The dissolved solids in four water samples from alluvium ranged from 327 to $709 \mathrm{mg} / \mathrm{L}$ and averaged $407 \mathrm{mg} / \mathrm{L}$, and in five samples from the Wanship Formation (of local usage) ranged from 235 to $871 \mathrm{mg} / \mathrm{L}$ and averaged $431 \mathrm{mg} / \mathrm{L}$. Dissolved solids in six samples from the Frontier Formation ranged from 441 to $3,000 \mathrm{mg} / \mathrm{L}$ ( 441 to $551 \mathrm{mg} / \mathrm{L}$ without the $3,000-\mathrm{mg} / \mathrm{L}$ sample), and averaged 917 $\mathrm{mg} / \mathrm{L}(500 \mathrm{mg} / \mathrm{L}$ without the $3,000-\mathrm{mg} / \mathrm{L}$ sample) .

Several residents of Coalville, primarily in areas where wells are completed in the Frontier Formation, complained that the ground water was not ideally suitable for domestic use. The dissolved-solids concentration of the Frontier water does not indicate particularly mineralized water, but the dissolved-iron concentration in four of the six samples from the Frontier and three of the five samples from the Wanship Formation (of local usage) was large. The large iron concentration likely is the major cause of the complaints about the quality of ground water. The dissolved-boron concentration of one of the Frontier samples and one of the Wanship samples also was large.

## Summary of Quantitative Estimates

The estimates of annual recharge and discharge for the central Weber River area are given below. These are minimum estimates but probably represent about two-thirds of the actual volumes.

Subarea	Acre-feet per year
Recharge	
Morgan Valley-Round Valley	40,000
Henefer Valley	23,000
Coalville	21,000
Total	84,000
Discharge	
Morgan Valley-Round Valley	
Seepage to streams (includes equivalent of transpiration by phreatophytes)	38,000
Discharge from wells and springs for public supply, wells for industry, and wells for domestic and stock use	1,200
Underflow in alluvium of the Weber River valley	1,000
Subtotal (rounded)	40,000
Henefer Valley	
Seepage to streams (includes equivalent of transpiration by phreatophytes)	21,000
Discharge from wells and springs for public supply, wells for industry, and wells for domestic and stock use	1,000
Underflow in alluvium of the Weber River valley	1,000
Subtotal	23,000
Coalville	
Seepage to streams (includes equivalent of transpiration by phreatophytes)	19,500
Discharge from wells and springs for public supply and wells for domestic and stock use	610
Under flow in alluvium of the Weber River Valley	1,000
Subtotal (rounded)	21,000
Total	84,000

Data collected during this study indicate that most reaches of the Weber River from Coalville to Gateway drain the ground-water system; that is, ground water is tributary to the river system and the alluvial aquifer has significant hydraulic connection with the river. Evidence of ground-water flow to the river system primarily includes data on gains in the long-term average base flow from Coalville to Gateway, data on seepage runs made in 1979, and gradients inferred from water-table contours.

The base flow of streams largely is maintained by ground-water inflow. Any stream reach where a gain in base flow consistently occurs is where ground water is moving into the stream. The long-term average base flow (1931-60) for October 25-31 (table 3) shows a progressive increase throughout the area; this is especially true in the Morgan Valley-Round Valley subarea, where it gains about 53 cubic feet per second ( $1.5 \mathrm{~m}^{3} / \mathrm{s}$ ). The total gain in flow through the entire area is about 82 cubic feet per second ( $2.3 \mathrm{~m}^{3} / \mathrm{s}$ ), which does not include gains in flow of Chalk and Lost Creeks from their source to the gaging stations at the mouth of Chalk Creek and downstream from Lost Creek Reservoir. If these segments are included, the average gain in base flow through the area is about 109 cubic feet per second ( $3.1 \mathrm{~m}^{3} / \mathrm{s}$ ).

Some of this gain in base flow is irrigation-return flow, but it is doubtful that return flow represents all the gain. About 18,200 acres (7,370 $\mathrm{hm}^{2}$ ) of land are irrigated in the area from Coalville and East Canyon Reservoir to Gateway (Haws, Jeppson, and Huber, 1970, table 26). Irriģation applications are about 3.7 feet ( 1.1 m ) or about 70,000 acre-feet ( $86 \mathrm{hm}^{3}$ ) per year. Consumptive use is about 1.8 feet ( 0.55 m ), so excess application is about 1.9 feet ( 0.58 m ) per year (see p. 33). Even if irrigation applications exceed crop use by 2 feet ( 0.6 m ), and all this water returns to the major streams at a fonstant rate, this would only account for 50 cubic feet per second ( $1.4 \mathrm{~m}^{3} / \mathrm{s}$ ) of the 109 cubic feet per second $\left(3.1 \mathrm{~m}^{3} / \mathrm{s}\right)$ total gain. This indicates that at least 50 percent of the gain is inflow from the groundwater system.

The 1979 seepage runs (table 2) also showed gains for most reaches of the Weber River. On October 26, 1979, the total gain from Coalville and East Canyon Reservoir to Gateway, including base flow of Lost, Chalk, and Echo Creeks, was about 131 cubic feet per second ( $3.7 \mathrm{~m}^{3} / \mathrm{s}$ ). This was computed by subtracting tôtal inflows from total outflows-inflows were 137 cubic feet per second $\left(3.9 \mathrm{~m}^{3} / \mathrm{s}\right)$ in the Weber River at Coalville and 16 cubic feet per second $\left(0.45 \mathrm{~m}^{3} / \mathrm{s}\right)$ in East Canyon Creek downstream from Porterville. Outflows included 126 cubic feet per second $\left(3.6 \mathrm{~m}^{3} / \mathrm{s}\right)$ into storage in Echo Reservoir, 1.7 cubic feet per second $\left(0.05 \mathrm{~m}^{3} / \mathrm{s}\right)$ at the Como diversion from the Weber River, about 95 cubic feet per second ( $2.7 \mathrm{~m}^{3} / \mathrm{s}$ ) to the Gateway Canal, and 61 cubic feet per second ( $1.7 \mathrm{~m}^{3} / \mathrm{s}$ ) at Gateway. If base flow in tributary creeks and ditches (Chalk, Echo, northeastern Lost, Hardscrabble, and Deep Creeks, a ditch in Henefer Valley, and Stoddard Slough ditch) are not included, the gain in flow through the study area (which represents mostly direct seepage to the Weber River, East Canyon Creek, and southeastern Lost Creek) is still 87 cubic feet per second $\left(2.5 \mathrm{~m}^{3} / \mathrm{s}\right)$.

The only reach of the Weber River that showed a loss during the October 26, 1979 seepage run was from Coalville to the downstream end of Echo Reservoir. Much of the loss of $2 l$ cubic feet per second $\left(0.59 \mathrm{~m}^{3} / \mathrm{s}\right)$ may have resulted from water going into bank storage as the reservoir was being filled, possibly some evaporation, and to inaccuracies in estimating the rate going into reservoir storage by using reservoir levels.

At most locations along the Weber River and the downstream reaches of its major tributaries of Chalk Creek, Lost Creek, and East Canyon Creek, contours of the water table (pls. 3 and 4) indicate gradients and ground-water movement toward the river from the valley sides. Water levels in wells at the sides of the Weber River valley generally are higher than the altitude of the river at its nearest location.

At a few locations, the river or stream altitude is higher than water levels in nearby wells--such as along Chalk Creek about 3 miles ( 5 km ) east of Coalville, near Echo, between Morgan and Como Springs, and possibly along East Canyon Creek at Porterville. At these locations the river may be a source of recharge to the alluvium at least during parts of the year.

The data from the aquifer test at Morgan in well (A-4-2) 36bca-l indicate that the river is in hydraulic connection wtih the alluvium, although the water level in the well was below the river altitude in the fall of 1979.

## EFFFCTS OF ADDITIONAL GROUND-WATER DEVELOPMENT

During 1979-80, ground-water withdrawals from springs for public supply and from wells in the fentral Weber River area were relatively small--about 2,800 açre-feet ( $3.5 \mathrm{hm}^{3}$ ) per year. Of this quantity, about 1,500 acre-feet ( $1.8 \mathrm{hm}^{3}$ ) per year is from wells. The two wells at the cement plant near Devils Slide withdraw about 800 acre-feet ( $1.0 \mathrm{hm}^{3}$ ) per year; all other wells withdraw about 700 acre-feet ( $0.9 \mathrm{hm}^{3}$ ) per year.

Well withdrawals (1979-80) probably were not taking water progressively from ground-water storage, as water levels in observation wells show no longterm declines. Long-term ground-water recharge and discharge probably are in equilibrium. Withdrawals from existing wells have been balanced by increases in recharge or decreases in other forms of discharge.

If additional wells are drilled and pumped in the area, they will cause the following effects. First, a cone of depression will develop in the water table or potentiometric surface around each well. This cone induces flow toward the well to balance withdrawals, and most of the withdrawn water comes from storage within the cone. The cone will continue to deepen and expand until it intercepts sufficient water from a source of recharge or some other source of discharge to balance the rate of discharge from the well. The cone of depression will then cease growing, no more water will be taken from storage, and a new equilibrium between recharge and discharge will be established.

Possible sources of induced flow to a discharging well include streamflow in the weber River or its tributaries, and ground water discharged naturally by seepage to the Weber River and other streams, evapotranspiration, and isolated seeps.

The current (1980) management practices along the Weber River assume that any withdrawals from wells are balanced by depletion in surface-water flow, and, therefore, that any new well must obtain water under an existing surface-water right. If withdrawal from a well is balanced by increased recharge from or decreased discharge to streams, then new wells will cause depletions in streamflow. However, if withdrawal from a well is balanced by decreases in transpiration or discharge from isolated seeps, the effects on surface water are not as easy to det.ermine.

If withdrawal is balanced by decrease in transpiration from nonbeneficial phreatophytes, then streamflow will not be depleted to any extent and the major effects will be on the phreatophytes. If withdrawal is balanced by a decrease in transpiration from crops and pasture, the plants could obtain the balance of water they need from surplus irrigation water. In the Morgan Valley-Round Valley subarea (excluding land irrigated along tributary streams above the flood plains of the Weber River, East Canyon Creek, and Hardscrabble Creek), for example, about 10,700 acres $\left(4,330 \mathrm{hm}^{2}\right)$ of land is irrigated (Haws, Jeppson, and Huber, 1970, table 26; and Haws, 1970); and the average consumptive use was computed to be about 1.8 feet ( 0.55 m ) using data compiled by Haws, Jeppson, and Huber (1970, table 16) and Haws (1970, p. 2). The average quantity of water diverted from the Weber River and East Canyon and Hardscrabble Creeks during 1967, 1970, and 1979 was about 36,800 acre-feet ( $45.4 \mathrm{hm}^{3}$ ) (Johnson, 1968, 1971, and 1980).

In addition, Utah Division of Water Rights records indicate that about 2,000 acre-feet ( $2.5 \mathrm{hm}^{3}$ ) of water is diverted from Cottonwood Creek and two other creeks to the east to irrigate land around Mountain Green; and 1,000 acre-feet ( $1.2 \mathrm{hm}^{3}$ ) is diverted from Dalton, Peterson, and Deep Creeks during the peak-flow period to irrigate land in Morgan Valley. The total appljed to 10,700 acres $\left(4,330 \mathrm{hm}^{2}\right)$ is therefore about 39,800 acre-feet ( $49.1 \mathrm{hm}^{3}$ ) per year, or about 3.7 feet ( 1.1 m ). Therefore, about 1.9 feet ( 0.58 m ) of water in excess of consumptive use is applied to irrigated lands. This water moves to the water table and then to the Weber River, where it provides part of the base flow in Morgan Valley. If part of the water consumed by crops and pasture comes directly from ground water, and some of this transpiration was diverted to balance water withdrawn from a well, it is probable the plants would then use more of the excess irrigation water. The excess irrigation water flowing to the river then would be decreased, and streamflow would be depleted.

If discharge from a well affected discharge from other wells, presumably owners of these wells would take steps to restore their discharge to its original rate. Ultimately the withdrawal from the new well would be balanced by diverting water from one of the other sources of recharge or discharge.

The present (1980) management policy involves releasing water from reservoirs each year to replace water withdrawn from wells. Streamflow does not move directly to a well and physically replace well pumpage unless the cone of depression created by the well actually intersects the stream. It is more likely that the well, if it affects streamflow, would decrease groundwater or surface-water flow tributary to the Weber River, and that extra surface-water releases would make up for this decreased inflow.

The decrease in streamflow caused by pumping an established well nearly constantly all year also would be nearly constant all year. Such depletion would not be balanced by a short-term release of an equivalent volume of reservoir water, except on the basis of an annual water budget. The current practice is to release some surface water from reservoirs all year to balance well withdrawals (although most of it is released during May through September) in an attempt to replace well withdrawals as realistically as possible (E. B. Johnson, oral commun., February 1981).

Another problem is that a new well obtains its water from storage until it creates a cone of depression large enough to reach a source of recharge or another source of discharge. If the well is far from sources of recharge or discharge, it might be as much as several years before its discharge affected the Weber River or evapotranspiration from phreatophytes.

The present management policy also assumes that all water discharged from wells is removed from the area's hydrologic system. Actually, part of the water withdrawn returns to the ground-water reservoir as seepage from septic tanks and irrigation in excess of consumptive use of lawns and gardens.

The limited analyses made in this study indicates that development by wells in some locations may decrease transpiration by phreatophytes, but not necessarily decrease streamflow. Haws (1970) mapped phreatophytes in the Weber River basin, although he made no determination of which were nonbeneficial as opposed to beneficial--nor is such a determination easy to make because the definition of nonbeneficial and beneficial phreatophytes is not precise. Even a phreatophyte with no economic value may have value in terms of wildlife habitat or esthetics.

Haws (1970) indicates that there are phreatophytes along the following stream reaches: the Weber River in Morgan and Henefer Valleys; the downstream reach of Cottonwood Creek; downstream reaches of Dalton and Deep Creeks; East Canyon Creek in Morgan Valley, near Porterville, and south of East Canyon Reservoir; downstream reach of Hardscrabble Creek; Lost Creek downstream from the reservoir; and the upstream reach of Chalk Creek. It is possible that wells drilled near phreatophytes in these areas would have little effect on the flow of the Weber River and its tributaries.

## SIMPLIFIED DIGITAL-COMPUTER MODEL OF THE ALLUVIUM OF MORGAN VALLEY AND LOWER EAST CANYON CREEK

In order to gain insight into the alluvial aquifer-Weber River hydrologic system in the central Weber River area, a simplified digital model of Morgan Valley and the downstream part of East Canyon Creek Valley was constructed. The model was calibrated under steady-state conditions, and used to estimate effects of additional withdrawal of ground water from wells on the hydrologic system.

## Design and Assumptions

The digital-computer model is a two-dimensional finite-difference model developed by Trescott, Pinder, and Larson (1976). The version of the model used in this study simulated an aquifer under water-table conditions, leakage
between the aquifer and streams through a riverbed, an areal recharge function which was used to simulate recharge from irrigation, and discharge by evapotranspiration as a linear function of depth to water. The model therefore included all the major hydrologic features of the Morgan Valley area.

The area included in the model is shown on plate 5. It includes Morgan Valley from Gateway to Upper Weber Canyon, the downstream part of the Cottonwood Creek area, and the valley along East Canyon Creek to just downstream from Richville. The model includes 2,856 nodes in a $28 \times 102$-node grid, but only l,095 of the nodes-an area of about 17 square miles ( $44 \mathrm{~km}^{2}$ )-are within the active part of the model which simulates the alluvial aquifer. All nodes are square and equal in size- 0.016 square mile ( $0.11 \mathrm{~km}^{2}$ ). The boundary of the active part of the model was located at the contact between alluvium where alluvium has a thickness greater than about 10 feet ( 3 m ) and older rock units. This contact was inferred from geologic maps and abrupt increases in land-surface slope shown on the topographic quadrangles, and is included on plate 5.

Also shown on plate 5 are the nodes which simulate the Weber River and the downstream reach of East Canyon Creek, wells producing during 1979-80, and hypothetical wells used to simulate potential effects of additional groundwater development.

Initial estimates of water levels were made from the water-level contour map (pl. 3), and altitudes of the ground surface (used in the computation of evapotranspiration) were estimated from $7 \frac{1}{2}$-minute topographic quadrangles. Maximum evapotranspiration was assumed to be 3 feet ( 0.9 m ) per year. When the depth to water declines below 10 feet ( 3 m ), evapotranspiration is assumed to stop.

The hydraulic conductivity of the alluvium was estimated initially from specific capacities of the Morgan city wells. The average specific capacity of the three wells is about 200 gallons per minute per foot [41 (L/s)/m], which indicates a transmissivity of about 90,000 feet squared per day $(8,000$ $\mathrm{m} / \mathrm{d}$ ), and a hydraulic conductivity of about 450 feet per day ( $140 \mathrm{~m} / \mathrm{d}$ ) or 0.005 foot per second ( $0.002 \mathrm{~m} / \mathrm{s}$ ) (p. 24). Saxon ( 1972, p. 82) stated that the U.S. Bureau of Reclamation determined the hydraulic conductivity of the alluvium along East Canyon Creek at the dam to be about 480 feet per day ( 150 $\mathrm{m} / \mathrm{d}$ ) or 0.006 foot per second ( $0.002 \mathrm{~m} / \mathrm{s}$ ), close to the estimate made using data from the Morgan city wells. A hydraulic conductivity of 0.005 foot per second ( $0.002 \mathrm{~m} / \mathrm{s}$ ) corresponds to a typical value for coarse sand (sample 11 in Davis and DeWeist, 1966, table ll.1). The specific yield of the alluvium was assumed to be 0.10.

The altitude of the base of the aquifer was estimated by subtracting inferred alluvium thickness from ground-surface elevations. Average alluvium thicknesses for each model node were estimated from drillers' logs and ranged from 100 to 200 feet ( 30 to 60 m ).

River nodes were located along the Weber River and East Canyon Creek and the downstream reach of Cottonwood Creek. Altitudes of the hydraulic heads in the river were estimated from topographic quadrangles. The vertical hydraulic conductivity of the riverbed initially was assumed to be $1 / 10$ of the hydraulic conductivity of the aquifer, or 0.0005 foot per second ( $0.0002 \mathrm{~m} / \mathrm{s}$ ); and its thickness was assumed to be 1 foot ( 0.3 m ).

Areal recharge was assumed to come only from irrigation-recharge from direct precipitation on the modeled area was assumed to be negligible. As discussed on p. 33, the irrigation water applied in excess of crop consumptive use is about 1.9 feet ( 0.58 m ) per year, which is assumed to infiltrate to the water table. The area recharged by excess irrigation water was determined from the maps compiled by Haws (1970), which show areas of various irrigated crops.

It also was assumed that crops irrigated in areas where the water level is less than 10 feet ( 3 m ) below the land surface obtain part of their water directly from the zone of saturation. In these areas, the consumptive use of irrigation water was decreased by the quantity assumed to be transpired directly from the zone of saturation (which could be a maximum of 1.8 feet [ 0.55 m ] of water per year). As an example, if crops are grown in a node where the depth to water is 7.5 feet $(2.3 \mathrm{~m})$, then direct transpiration from the zone of saturation was assumed to be $[(10-7.5) / 10] \times 3$ feet ( 1 m ) per year, or 0.75 foot ( 0.23 m ) per year. The consumptive use of irrigation water was then decreased by 0.75 foot ( 0.23 m ) to ( $1.8-0.75$ ) $=1.05$ feet ( 0.32 m ) per year for that node, and recharge from irrigation was increased by 0.75 foot to (1.9 +0.75 ) $=2.65$ feet ( 0.81 m ) per year.

Recharge from tributary creeks at the edge of the valley, underflow of these creeks, and seepage from rock units older than the alluvium was estimated during steady-state model simulations by making all nodes along the boundary constant hydraulic-head nodes. The model then computed the inflow at each constant hydraulic-head node that was required to maintain the local water-table gradient. During transient-state, predictive simulations of the model, these boundary inflows were simulated by wells recharging at a constant rate.

Existing wells in Morgan Valley and along the downstream reach of East Canyon Creek were located in nodes (pl. 5) and their 1979 discharge was simulated, in the case of public-supply and industrial wells. Domestic wells were assumed to discharge 1 acre-foot ( $1,200 \mathrm{~m}^{3}$ ) each per year.

The model is more of an idealized model with the general characteristics of Morgan Valley than a detailed model of the valley. Because of a lack of data on areal variations in hydraulic conductivity of alluvium, specific yield, areal water-table configuration (most known values of hydraulic head were measured at the sides of the valley), seepage to the river, and areal distribution and rate of recharge from irrigation, the model is only an approximation of Morgan Valley's hydrologic system. Even land-surface altitudes are not sufficiently accurate because the contour intervals on available topographic maps are 20 and 40 feet ( 6 and 12 m ). However, the model includes the major hydrologic features of the valley and was useful in approximating and evaluating the effects of future ground-water development.

The model was calibrated only under steady-state conditions. Over the long term, recharge and discharge in Morgan Valley and along the downstream reach of East Canyon Creek are approximately in balance, or at steady state. The area's ground-water system has never been, except for short periods such as parts of a year or possibly 1 or 2 years of much above-average or much below-average precipitation and streamflow, under transient conditions.

The model was adjusted until its steady-state water levels were within about 5 to 10 feet ( $1.5-3 \mathrm{~m}$ ) of the values from the maps showing water-level contours, and the seepage to streams was between 50 and 80 cubic feet per second ( 1.4 and $2.3 \mathrm{~m}^{3} / \mathrm{s}$ ). In many instances, differences between computed water levels and water levels from the water-table contour map were due to errors in the map, or errors in interpolating river altitudes. The seepage to the river was adjusted by changing the hydraulic conductivity of the alluvium and the riverbed. The original values of 0.005 and 0.0005 foot per second $(0.0015$ and $0.00015 \mathrm{~m} / \mathrm{s})$ for alluvium and river bed hydraulic conductivity, respectively, were decreased to 0.0007 and 0.00007 foot per second ( 0.0002 and $0.00002 \mathrm{~m} / \mathrm{s}$ ). These decreases seem reasonable because the original values were based on specific capacities of the Morgan city wells, which were larger than the average specific capacity of all wells completed in alluvium in Morgan Valley (table 4). Recharge from irrigation and the evapotranspiration function were not modified during calibration because there was little basis on which to do so.

The final steady-state calibration simulation had totals for the entire model of 58.7 cubic feet per second $\left(2.00 \mathrm{~m}^{3} / \mathrm{s}\right)$ for inflow from boundary nodes (recharge from the edge of the valley, excess of boundary inflows over boundary outflows), 26.1 cubic feet per second ${ }_{3}\left(0.74 \mathrm{~m}^{3} / \mathrm{s}\right.$ ) for recharge from irrigation, 64.5 cubic feet per second ( $1.83 \mathrm{~m}^{3} / \mathrm{s}$ ) for discharge to streams, 17.6 cubic feet per second $\left(0.50 \mathrm{~m}^{3} / \mathrm{s}\right)$ for discharge by evapotranspiration, and 0.7 cubic feet per second $\left(0.02 \mathrm{~m}^{3} / \mathrm{s}\right)$ for discharge from wells (actual well discharge was 0.12 cubic foot per second $\left(0.0034 \mathrm{~m}^{3} / \mathrm{s}\right)$ larger but discharge from wells in boundary nodes was included in boundary inflow/outflow).

Simulated Effects of Future Ground-Water Development
Withdrawals from additional wells, located in areas where more residential development and domestic wells are likely (pl. 5), were simulated to see what the effects would be on discharge to streams and discharge by evapotranspiration. The following degrees of development were simulated for periods of 5 years in separate simulations of the model:
(1) 1 well, at the edge of the valley near Milton, discharging 0.0014 cubic foot per second ( $4.0 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$ );
(2) 1 well near Stoddard, in an area of evapotranspiration adjacent, to a phreatophyte area, discharging 0.0014 cubic foot per second ( $4.0 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$ );
(3) 10 wells, each discharging 0.0014 cubic foot per second ( $4.0 \times 10^{-5}$ $\mathrm{m}^{3} / \mathrm{s}$ ) ( 2 wells in Mountain Green, 2 in Peterson, 2 in Milton, 2 in Littleton, 1 south of Stoddard, and 1 near Morgan);
(4) 100 wells, including those in (3), each discharging 0.0014 cubic foot per second ( $4.0 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$ ) ( 10 wells at Mountain Green, 10 at Peterson, 5 at Enterprise, 5 at Milton, 5 at Littleton, 20 near Morgan, 5 near Richville, 5 northeast of Richville, 5 southeast of Littleton, 10 in the Stoddard area, 10 between Milton and Peterson, and 10 southeast of Mountain Green) ;
(5) 1 well as in (1) , dişchąrging 100 times its original rate, or 0.14 cubic foot per second ( $4.0 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$ );
(6) 1 well as in (2) , dischąrging 100 times its original rate, or 0.14 cubic foot per second ( $4.0 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$ ) ; and
(7) 100 wells as in (4), each discharging 10 times its original rate, or 0.014 cubic foot per second ( $4.0 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}$ ).

Selected results of the simulations, as indicated by model inflow and outflow, are as follows:

Simulation number	Source of water diverted to the well (s), at the end of the 5-year period, in percent of the total discharge rate			Source of water discharged throughout the entire 5 years, in percent of the total volume		
	Seepage to streams	Evapo-transpiration	Storage	Seepage to streams	Evapo-transpiration	Storage
1	88	$\mathrm{l}_{6}$	$\mathrm{l}_{6}$	94.4	4.2	1.4
2	80	20	-	74	21	5
3	83	16	${ }_{1}$	81	16	3
4	87	13	--	86	12	2
5	96	4	--	94.5	4.2	1.3
6	Result	similar to	(2)	Result	similar	to (2)
7	Result	similar to	(4)	Result	similar	to (4)

${ }^{1}$ Quantity is so small it may not be accurate because it is of the same order of magnitude as the error in the results.

The results of the model simulations indicate that most of the simulated additional withdrawals were balanced by decreases in seepage to the Weber River and the downstream reach of East Canyon Creek and that a lesser quantity was balanced by decreases in evapotranspiration. The simulations also indicated that with new withdrawals from wells, the system would reach effective
steady state within 100 to 450 days. This indicates that pumping from new wells will be balanced by decreases in other forms of discharge within one or two irrigation seasons.

## SUMMARY AND CONCLUSIONS

Ground water in the central Weber River area is used much less than surface water-only 2,800 acre-feet $\left(3,5 \mathrm{hm}^{3}\right)$ was during 1979 and 1980 compared to about 70,000 acre-feet ( $86 \mathrm{hm}^{3}$ ) of surface water diverted annually for irrigation. Because ground water has been little developed, no detailed studies have been made of its occurrence. This reconnaissance was made to gain insight into potential effects of additional ground-water development on the hydrologic system.

Most ground water that can be developed readily by wells is in the alluvium along the Weber River and along the downstream reaches of its major tributaries, and is fresh. The alluvium is very permeable near Morgan and likely is as permeable at other locations. Older semiconsolidated to consolidated rocks commonly contain fresh water at shallow depths but have smaller permeabilities and yields to wells. The estimated volume of recoverable ground water in storage in Morgan Valley and along the downstream reach of East Canyon Creek (most of the Morgan Valley-Round Valley subarea) is about 170,000 acre-feet ( $210 \mathrm{hm}^{3}$ ); this is about 50 percent of the average annual flow of the Weber River at Gateway and about four times the estimated minimum annual ground-water recharge in the subarea.

Total annual recharge and discharge of ground water in the entire study area is at least 84,000 acre-feet ( $100 \mathrm{hm}^{3}$ ) and may be as much as one-third greater. Recharge from irrigation may be about 50 percent of the total. Long-term recharge and discharge are approximately in balance, and no longterm changes occurred in ground-water storage during 1936-80.

Along most reaches of the Weber River from Coalville to Gateway, ground water moves toward and seeps into the river. Discharge from wells (as of 1979-80) probably has been balanced by increases in recharge or decreases in other forms of discharge.

That part of withdrawal from additional wells that is not returned to the ground-water system ultimately (after some withdrawal from ground-water storage) will be balanced by increases in recharge or decreases in other forms of discharge, mostly seepage to streams or evapotranspiration. Most of these changes probably will decrease streamflow; however, withdrawal from future wells balanced by transpiration from nonirrigated phreatophytes will not affect surface-water flow. Simulation of additional wells in Morgan Valley using a simplified digital-computer model indicated that most of the withdrawals from these wells will be balanced by decreases in seepage to the Weber River and the downstream reach of East Canyon Creek, and a lesser quantity will be balanced by decreases in evapotranspiration.

The simplified digital-computer model of the Morgan Valley-lower East Canyon Creek area is adequate to give only a general assessment of the effects of additional wells. A more detailed model would be required to analyze the
specific effects of additional withdrawals of ground water from particular wells on the hydrologic system. Such a model would require water-level measurements throughout the Morgan Valley area, probably requiring construction of many shallow observation holes. The altitude of the ground surface at each hole would have to be surveyed to more accurately define the water table. Data on hydraulic conductivity and specific yield would be needed and more quantitative data on seepage of ground water to the river collected. More information is needed also on the areal distribution of irrigation and quantities of water applied, as well as on the quantity that seeps to the water table. Areas and rates of transpiration of ground water by nonirrigated phreatophytes and crops and the depths to water below which evapotranspiration ceases would have to be better defined. Such a detailed model could predict the effects of well withdrawals on seepage to streams and evapotranspiration more accurately than the simplified model constructed for this study.

Baker, C. H., Jr., 1970, Water resources of the Heber-Kamas-Park City area, north-central Utah: Utah Department of Natural Resources Technical Publication 27, 79 p.

Davis, S. N., and DeWiest, R. J. M., 1966, Hydrogeology: New York, John Wiley, 463 p.

Eardley, A. J., 1944, Geology of the north-central Wasatch Mountains, Utah: Geological Society of America Bulletin, v. 55, no. 7, p. 819-894.

Haws, F. W., 1970, Water related land use in the Weber River drainage area: Utah Water Research Laboratory, Utah State University, Report PR-WG40-4, unpaginated.

Haws, F. W., Jeppson, R. W., and Huber, A. L., 1970, Hydrologic inventory of the Weber River study unit: Utah Water Research Laboratory, Utah State University, Report PR-WG40-6, 131 p.

Hintze, L. F., 1980, Geologic Map of Utah: Utah Geological and Mineral Survey, scale 1:500,000.

Hurr, R. T., 1966, A new approach for estimating transmissivity from specific capacity: Water Resources Research, v. 2, no. 4, p. 657-664.

Johnson, E. B., 1968, Weber River distribution system, annual report, 1967: Report of the Weber River Water Commissioner, 143 p .

1971, Weber River distribution system, annual report, 1970: Report of the Weber River Water Conmissioner, 143 p.

1980, Weber River distribution system, annual report, 1979: Report of the Weber River Water Commissioner, 148 p.

Mullens, T. E., 1971, Reconnaissance study of the Wasatch, Evanston, and Echo Canyon Formations in part of northern Utah: U.S. Geological Survey Bulletin l3ll-D, p. Dl-D3.

Mullens, T. E., and Laraway, W. H., 1964, Geology of the Devils Slide Quadrangle, Morgan and Summit Counties, Utah: U.S. Geological Survey Mineral Investigations Field Studies Map MF-290, scale 1:24,000.

1973 [1974], Geologic map of the Morgan 7夝' Quadrangle, Morgan County, Utah, U.S. Geological Survey Mineral Investigations Field Studies Map MF-318, scale 1:24,000.

National Oceanic and Atmospheric Administration, Environmental Data Service, 1979, Climatologic data, annual summary, Utah, 1978: v. 80, no. 13, 18 p.

Saxon, F. C., 1972, Water-resource evaluation of Morgan Valley, Morgan County, Utah: University of Utah, unpublished Master of Science thesis, 118 p .

Stokes, W. L., ed., 1964 , Geologic map of Utah: University of Utah, scale 1:250,000.

Thompson, K. R., 1982, Reconnaissance of the quality of surface water in the Weber River basin, Utah: Utah Department of Natural Resources Technical Publication 76.

Threet, R. L., 1959, Geomorphology of the Wasatch-Uinta Mountains junction: Guidebook to the Geology of the Wasatch and Uinta Mountains Transition Area, Intermountain Association of Petroleum Geologists, loth Annual Field Conference, p. 24-33.

Trescott, P. C., Pinder, G. F., and Larson, S. P., 1976, Finite-difference model for aquifer simulation in two dimensions with results of numerical experiments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 7, Chapter Cl, 1.16 p.
U.S. Bureau of the Census, 1980, Preliminary report, 1980 census of population and housing, Utah: Report PHC80-P-46, 7 p.
U.S. Geological Survey, 1980, Water-resources data for Utah, water year 1979: U.S. Geological Survey Open-File Report UT-79-1, 605 p.
U.S. Weather Bureau, 1963 , Normal annual and May-September precipitation (1931-60) for the State of Utah: Map of Utah, scale 1:500,000.

Williams, N. C., and Madsen, J. H. Jr., 1959, Late Cretaceous stratigraphy of the Coalville area, Utah: Guidebook to the Geology of the Wasatch and Uinta Mountains Transition Area, Intermountain Association of Petroleum Geologists, l0th Annual Field Conference, p. 122-125.

Location: See text for explanation of well- and spring-numbering system.
Depth of well: Depth given is depth of hole drilled unless a part of the hole is known to be plugged or sealed: it is not known whether the interval between the bottom of casing and the bottom of hole, if any, is a source of water to the well.
Casing diameter: Diameter of smallest size casing at the land surface
Altitude of land surface: Above NGVD of 1929, interpolated from topographic maps.
Water level: In feet below land surface, F, flowing; P, pumping; R, recently pumped; S, nearby well pumping; water levels measured by the U.S. Geological Survey given in feet and tenths of a foot.
Date water level measured: R, measurement was reported.
Type of pump: S, submersible, J, iet; $T$, turbine: $P$, piston; $C$, centrifugal
Discharge: F, flowing; R, reported; B, bater test.
Use of water: $H$, domestic; I, irrigation; S, stock; P, public supply; C , commercial; R, recreation; N , industrial; U , unused; Z , other
Principal aquifer: $111 A L V M$, alluvial deposits; 120TRTR Tertiary System: 123NRWD, Norwood Tuff; 124WSTC, Wasatch Formation; 125EVNS, Evanstonl?l Formation, 211 ECCN, Echo Canvon Conglomerate: 211FRNR, Frontier Formation: 211 WNSP, Wanship Formation of local usage (not adoptedby the U.S. Geological Survey).
Other data available: C, chemical analysis in table 8; L, drillers' log in table 6; W, water-level measurements in table 7

Location	Owner	Date completed	Depth of well (feet)	Casing diameter (inches)	Depth cased	Depth to first opening (feet)	Altitude of land surface (feet)	Water level (feet)
(A.2-5)4bed 1	Coalville	6. 3.61	192	10	55	55	5,630	F
9 bac 1	do.	6.18.77	500	8	320	150	5.700	21.6
9 cdb - 1	do.	12. 560	500	8	500	435	5,610	F
9 dac - 1	Cluff-Ward Pipeline Co.	-	-	-	-	-	5.630	-
10aaa 1	Blonquist, Howard	9-16.61	125	6	125	125	5,800	61.9
10 aaa - 2	Blonquist, Alfred C.	5. 7.75	230	8	230	95	5.800	62.4
10 abc - 1	Willoughby, Eart	6. 2.58	185	6	185	--	5.730	74.6
10bcb- 2	Moore, Doug	-	-	-	$\cdots$	-	5,705	F
11 aca 2	Burton, Sherman D.	7-16.70	55	6	55	51	5,730	22.7
1 lacb-3	Hicken, Alan	4. 74	180	6	180	--	5,740	50
$15 \mathrm{bdb} \cdot 1$	Mountain Fuel Supply Co.	7-17-47	150	6.6	150	66	5,900	64
$17 \mathrm{bad} \cdot 1$	Coalvilte	1963	123	6	120	82	5.580	F
18bac S 1	do.	-	-	-	-	-	5,950	-
20 dbd 2	Sharp, John	1974	250	6	220	-	5,655	81.5R
$20 \mathrm{ddc} \cdot 2$	Hansen, G. T.	8. 5.78	56	6	56	45	5,630	3.1
21dcd 1	Coatville	9.15-79	402	8	402	159	5,690	7.6
28 dcb 1	Hoytsville	8.27 .74	202	8	131	80	5,675	P
(A-3-2)1cac- ${ }^{\text {- }}$	Kiddy	10. 2.71	110	6	110	100	5.100	30
2 bab 1	Durrant, Ken A.	10-20-79	118	6	117	102	5,060	20.1
$2 \mathrm{dcb} \cdot 1$	Wiggill, Vern G.	10.14.75	120	6	110	100	5,080	14.5
4 aad 1	Hansen, N. \& E.	9.23 .72	268	6	268	220	5,085	19.0
4 acd 1	Mezenen, Bert F.	6. 5.75	160	6	160	150	5,095	2.6
4claa- 1	Ecker	$9.20-74$	260	6	260	200	5,210	92.6
4 cab 1	Anderson, Laurie	519.77	190	6	190	175	5,140	43.3
$4 \mathrm{dbb}-1$	Ukena, Dawson	11.8.71	135	6	135	98	5.120	5.3
11 caa- 1	Dickson, Norris P.	1. -74	190	6	190	125	5,135	42.7R
11cdd 1	Forsey, Jack	1. 5-70	302	8	302	106	5,190	70.7
12bba. 1	Lewis, James	10-10-67	160	6	157	136	5,095	7.2
$12 \mathrm{cab}-1$	Corpany, David R.	2. 75	310	6	300	-	5,100	-
$12 \mathrm{cac} \cdot 1$	Wilson, Date	1. -72	140	6	140	102	5,120	17.3
$13 \mathrm{bba} \cdot 1$	Olsen, Dick	7.17-79	161	6	160	100	5,150	0.0
14dad 1	Rowser, Robert 1.	3-1.77	95	6	90	90	5,140	6.8
14 dbc - 1	Creager, Bud L.	7. 2.76	200	6	200	112	5,170	42.4
$14 \mathrm{dcb}-1$	West, Duane	4-30-55	71	6.6	71	60	5,180	45.7
23abb-1	LDS Church	81078	176	6	175	123	5,190	50.4
24bab- 1	Kippen, Charles	6.27 .70	131	6	130	102	5.180	23.6
24 bbc - 1	Porter, Cole	12. 73	105	6	102	95	5,150	5.3
$24 \mathrm{bcc}-1$	Kilbourne, Grace	4.22-46	31	36	31	-	5,160	22.7
24 caa 1	Crook, Wallace F.	12. 73	125	6	122	100	5,165	11.3
24 cba. 1	Adams, Hyrum	1924	19	24	-	-	5,155	13.3
24 cdd - 1	Leak, Gary W.	5. 3.76	125	6	125	100	5.180	23.5
25 baa 1	Wingate, Clarence	4.23 .48	81.5	6	70	70	5,185	18.4
25 caa. 1	Carter, Bud	4.15-69	112	6	111	100	5.280	25.4
25ded-1	Carter, T. Ross	61254	26	30	26	-	5,275	23.1
26aab 1	Breshears, Walter H.	8.18-76	350	6	350	300	5,300	69.0
26aac 1	Mortenson, Parley	10.26-51	87	6	81	81	5,300	65.3
26 acb - 1	Green, Chad	5-17.79	396	6	286	276	5,340	75.7
$26 a c c 1$	Castle, Francis M.	3.28-56	122	6	104	85	5,340	66.4
$26 a d d-1$	Phillips, Marvin	4. 1-48	83	6	79	79	5,300	23.0
26bda- 1	Mikesell, Darreil E.	10. 3.67	122	6	120	92	5,339	18.1
$36 \mathrm{adb}-1$	Mathews, Kent L.	10-1.74	-	-	-	-	5,300	13.7
(A.3.3)31 cbd 1	Iverson, D. M.	5. 3.69	30	4	30	30	5,270	8.1
(A.3.4)3add-1	Eagle Ranch Preserve	7.16.75	265	6	265	105	5,690	16.5
3 cab -S1	do.	-	-	-	...	...	5,530	
$3 \mathrm{ccc}-1$	Union Pacific Railroad	1.27.46	65	6	65	50	5,340	4.8
4 aba 1	Anderton, Charles 1.	6.15.59	38	6	38	--	5,320	14.6
$4 \mathrm{add}-1$	Winters, Seth	8-28-53	35	6	35	28	5.310	12.0
$4 \mathrm{ddb}-1$	Nichols, Allen	-	33	--	--	-	5,325	5.7
4ddd-1	Boyer, Ed	1. 72	125	6	123	105	5,325	3.2
9 aaz -1	Tweed, Glen B.	7-29-48	16	2	16	14	5,325	8.4


Date   water level measured	Type of pump	Discharge (gallons per minute)	Date discharge measured	Use of water	Principal aquifer	Other data available	Remarks
-	-	0.02F	8.23-79	S	211WNSP	C,L	-
8.23 .79	S	300 R	6.18-77	U	211FRNR	L	Gravel-packed, 115 to 320 feet
-	S	33R	12. 5-60	P	211FRNR	C,L	
--	-	-.	-	H, I, S	111ALVM	C	-
9.27.79	-	15R.B	9-16.61	U	211FRNR	-	-
9.27.79	5	10R, B	5. 7.75	H,S	211 FRNR	C,L	Drilled to 125 feet 2.2.75 and deepened to 230 feet 5-7.75.
8.2479	-	78, B	6. 2.58	U	211FRNR	-	Casing assumed to be 185 teet.
$\cdots$	$\because$	$55^{\text {F }}$	9-27-79	U	211FRNR	C	Flow drained into adjacent gully through buried pipe.
10. 4.79	S	40R, B	716.70	H	211FRNR	c	-
$4.74 R$	S	10R, B	4. 74	H,I	$211 F R N R$	C, L.	-
7-18.47R	J	225R, B	7.18 .47	$\mathrm{N}, \mathrm{H}$	211FRNR	C,L	-
-	S	100R	8.23-79	P	211 WNSP	C, L	Drilled to 193 feet and cased to 191 feet $7 \cdot 23-62$; deepened(?) to 123 feet and cased to 120 feet in 1963(?), May represent deepening after partial caving.
--	-	-	-	P, S,	211 WNSP	c	IC Springs
8.2279	S	6R	8.22 .79	H, I,S,	211WNSP	C, L	-
8.22 .79	-	15R,B	8. 5.78	$u$	124WSTC	-	-
9.27-79	-	${ }^{-}$	-	P	120tRTR	L	Pilot hole drilled to 515 feet 3-27.79; log avaitable; gravel packed 149 to 365 feet.
-	T	340	8.31 .79	P	111ALVM	C, L	Discharge estimated from totaling meter.
10. 2.71 R	S	45R,B	10. 2.71	H, S	111ALVM	C	-
4.10.80	S	20R, $B$	10.20.79	H, I, S	123NRWD	-	_
6.11.79	S	40R,B	10-14.75	H	123NRWD	C, L	-
5.18-79	S	10R, B	9.23.72	H	123NRWD	C	--
8.10 .79	S	10R,B	6. 5.75	H	123NRWD	c	-
8-10-79	S	10R, B	9.20.74	H	123NRWD	c	-
5.18 .79	S	30R, B	5.19 .77	H,I,S	124WSTC	-	-
8-10-79	S	4F,R	11.8.71	H	123NRWD	C,L	-
10-6.79	S	20R, B	1. $\quad .74$	H	123NRWD	C, L	-
6.12.79	S	3R,B	1. 5.70	H,I,S	124WSTC	c	-
6.11 .79	S	25R, B	10-1067	H,S	111ALVM	C	-
-	S	8R,B	2. 75	H	123NRWD	1	Driled to 105 feet $10-74$; reportedly bailed 15 gallons per minute after casing perforated from 100 to 105 feet; deepened to 310 feet 2-75.
6.11 .79	S	15R, B	1. 72	H,I,S	111ALVM	c	-
7.17 .79	$\stackrel{-}{-}$	100R.B	7.17-79	H,I	123NRWD	$c$	Gravel-packed 100 to 160 feet.
6.1179	S	25R, B	3. 1.77	H,S	123NRWD	c	Grel packed 100 to 60 feer.
921.79	S	15R.B	7. 276	H,I,S	123NRWD	c	-
6.12 .79	S	20R	4.30-55	H	111 ALVM	-	--
5. 3.79	$s$	20R, B	8-10-78	H	124WSTC	-	-
6.13.79	S	15R, B	6.27.70	H, ${ }^{\text {l }}$	-	-	-
6.19 .79	S	12R,8	12. 73	H	111 ALVM	c	-
6.13 .79	$\cdots$	-	-	H	11 IALVM	$c$	Casing assumed to be 31 feet.
5. 3.79	S	40R, ${ }^{\text {B }}$	12. 73	H	123NRWD	C, L	Casing asumed to be 31 taer.
9-25.79	$P$	-	-	H	111ALVM	C, W	-
9-21.79	5	208, B	5. 3-76	H,I,S	111ALVM	-	-
6.20-79	S	30R, B	4.23-48	H	124WSTC	c	--
6-19.79	S	20R,B	4.15-69	H	124WSTC	c	-
6-18.79	-	12R	6-15-54	H	124WSTC	c	Casing assumed 26 feet.
6.19 .79	S	15R, B	8-18-76	H,I,S	124WSTC	C,L	-
6.20-79	S	20R,B	10-26.51	H	123NRWD	C	-
6.13.79	-	68	5.17.79	H	123NRWD	L	Gravel-packed with pea gravel, 276-396 feet.
12. 6.79	5	1R,B	3.28-56	H	123NRWD	c	-
6.18.79	S	30R, B	4. 1.48	H	123NAWD	c	-
613.79	S	4R, B	10. 3.67	H	123NRWD	c	--.
62079			-	H	111 ALVM	C	-
61879	5		7	H	111ALVM	C	.
81579	-	14 R	71675	H.IZ	211WNSP	L	
	-		-	P	211WNSP	-	Temperature $6.0^{\circ} \mathrm{C}$; specific conductance 485 micromhos per centimeter at $25^{\circ} \mathrm{C}$.
81579	--	60 R	1.27 .46	u	111ALVM	-	Casing assumed 65 feet.
813.79	-	3R, B	6-15.59	S	111ALVM	-	-
828 53A	S	35R, 8	82853	H	111ALVM	c	-
9.25 .79	.	--	-	U	111 ALVM	w	-
10279	-	25R, B	1. 72	-	211 WNSP	L	-
8.15-79	S	12R	7.30.48	U	111 ALVM	-	Drilled in basement of house, top of casing 6 feet below land surface.

Table 5.--Records or

Location	Owner	Date completed	Depth of well (feet)	Casing diameter (inches)	Depth cased	Depth to first opening (feet)	Altitude of land surface (feet)	Water level (feet)
(A.3-4)24dbd 1	Dilree, Cora	7-10.75	130	6	76	65	5.475	45.9R
25 abc - 1	Echo Mutual Water Co.	9-15-53	52	8	47	46	5,442	19.1
(A.35)17ade 1	Utah Dept. Transportation	5. 969	200	8	200	124	5,630	15.5P
17 cbc -S 1	Echo Mutual Water Co.	-	-	$\cdots$	--	-	5,760	-
17 dac -2	Utah Dept. of Transportation	1974	197	8	197	-	5.750	14.7
19aaa 1	do.	9.6 .55	93	6	93	-	5.598	65.7
29 cdd 1	Echo Resort	5.19 .69	185	8	136	120	5,590	74.1
$30 \mathrm{bcd}-1$	Weber River Water Users	-	54	-	-	-	5,500	29.2
(A.3.6)25ccb -	Staley, Claud	3.12.58	80	6	80	--	6,215	55.4
34aba 1	Jacobson, Kenneth	7. 264	85	6	85	42	7.000	-
$34 \mathrm{acb}-1$	-	-	-	-	-	-	6,050	7.1
(A.3-7)31dcb 1	Jones, Allen G.	3-16.50	58	6	58	58	6,290	9.4
(A-4.2)4cdc. 1	Skeen, Blaine	8. 1.66	121	6	121	100	5.120	74.5
5 Sda 1	Webb	8.24 .78	156	6	155	147	4,960	48.7
5 bdd 1	Morgan Enterprises	8-1768	315	8	302	175	4,965	--
$6 \mathrm{dbc}-1$	Peterson Pipeline Co.	6.26 .67	215	12	139	-	4,910	-
Baaa 1	Morgan Enterprises	8-10.67	175	8	175	162	4,960	42.3
$8 \mathrm{bcc}-1$	Morris, Dana	5.10.77	137	6	137	110	4,940	32.0
$8 \mathrm{ccd} \cdot 1$	Betournay	1910	44	36	44		4,995	24.4
8 ccd 2	Bowen, Gary	10-74	215	6	215	100	5,005	
$8 \mathrm{cdc} \cdot 1$	Cox, Roberig 6.	12. 1-76	160	6	160	110	4,990	67.0
$9 \mathrm{bbc} \cdot 1$	Wood, G. B.	9. 4.65	170	6	169	--	4,960	39.7
16 dab - 1	Morris, LeRoy	1972	132	6	132	--	5,020	602
16 dab 2	O'Driscoll, Gale	8.24 .65	188	6	183	154	5.040	100
$17 \mathrm{abc}-1$	Layton	10. 8-68	350	8	300	300	5,000	65
17 abd 2	Sloan, Richard	$5 \cdot 21.65$	63	6	63	63	4,980	34.3
17 baa 1	Duncan, Kenneth A.	4.28 .67	204	6	200	160	5,000	53.0
17 dbb .1	Lofgren, John	9.10.68	101	6	100	80	4,990	34.7
17dca-2	Smith, Leon	10.10-74	210	6	210	150	5,010	41.3
20aba-2	Turner, Don	11. 6-75	203	6	203	160	5,005	32.3
20 add - 1	Nelson, W. Brent	10-29-75	100	6	100	95	5,010	33.0
$21 \mathrm{cbb}-1$	Nelson, Carl E.	5-16-66	160	6	160	140	5,020	25.9
21 cbb 2	Christensen, Ronald	7-19-72	235	6	235	180	5,010	18
$21 \mathrm{cca} \cdot 1$	Jenson, Robert C.	9-22-71	118	6	118	118	5,030	31.2
$21 \mathrm{cdb}-2$	Mecham, Steven E.	6-1.76	135	6	135	105	5,035	30.5
21 dda 1	Dillree, Don B.	9.30-67	125	6	125	101	4,990	2.4
22 bac 4	Baugh, David L.	10-5.78	205	6	205	132	5,045	59.3
22 bcd 1	Thompson, C. E.	6. 8-72	105	6	-	-	4,990	4.8
$22 \mathrm{caa}-2$	Heiner, C. P.	9-29.73	160	6	160	160	5,020	39.9
22cda. 1	Pentz, Jay I.	6-15-76	105	6	105	85	4.990	4.0
25dbc-S 1	Morgan	-	-	-	-	-	5,210	-
26abd 1	Rees, Hal	11-2.77	162	6	162	152	5,120	115.7
$26 \mathrm{bba} \cdot 1$	Smith, Emma L.	11. 7.62	55	6	55	55	5,075	36.5
$26 \mathrm{ccd}-1$	Little, Jessie C.	1936	26	-	-	-	5,030	6.3
28 acc - 1	-	1980	-	6	-	-	5,020	7.4
$28 \mathrm{bad}-1$	Peterson, B, M.	6-15-73	215	6	215	180	5,030	20.6
28 bbd -1	Oliver, Dan \&i Vick	2.15.77	110	6	100	100	5,080	15
28bbd-2	Argyle, Rell	1978	-	6	-	-	5,060	11.0
33aba 1	Noyes, V. M.	4. 8.77	156	6	156	126	5,030	13.4
33ada 1	Giles, Arthur	11.25 .58	338	6	338	148	5,045	---
34aab-1	Webster, Francis	10-30-68	127	6	127	$\cdots$	5,025	6.6
$34 \mathrm{bcc} \cdot 1$	Johnson, Carivle G.	7. 2.69	83	6	83	75	5.040	18.3
34 ccb 3	S. Littleton Pipeline Co.	6-23.69	200	8	100	30	5,060	8
$35 \mathrm{ccc}-1$	Oliver, Movie T.	6. 5-67	130	4	130	110	5,070	4.8
$36 \mathrm{bad} \cdot 1$	Morgan	5.15.63	175	12	170	80	5.070	40
36 bca 1	do.	62179	190	12	190	110	5.060	26.0
36 cbd 1	do.	6.10.36	101	8	101	61	5,070	32.2
(A-4-3)27abd-1	Taggart's Gas Station	5.25.67	84	6	84	76	5,180	11.8
28 bcc - 1	Rees, Joe	5.12-35	60	6	60	-	5.145	
31 bec -	Morgan Co.	1937	40	6	40	-	5,080	18.5
$31 \mathrm{cab} \cdot 1$	Como Springs Resort	1. 35	40	6	--	--	5.080	2.2
31 cab 51	do.	-	-	-	$\overline{-}$	-	5,120	14
$31 \mathrm{cbb} \cdot 1$	Morgan Fur Farm	9. 4.41	15	2.5	15	12	5,075	14.5
32 abc -1	Round Valley Resort	$8 \cdot 10.70$	117	8	117	102	5,150	49
32abd 1	Ercanbrack, Weldon	$4 \cdot 10.35$	127	8	127	103	5,180	81.7
(A-4-4)4adb 1	Pentz, Larry	52676	70	8	70	70	5.480	45.7
16 bca 1	Windley, Rickie D.	4-25-79	102	-	102	100	5,370	22
$19 \mathrm{dca}-1$	Ideal Cement Co.	1958	45	48	45	-	5,260	8.9
19dda- 1	do.	1958	45	48	45	--	5,260	8.5
20bad 1	Moulding, Gloria T.	11.21 .78	90	6	90	62	5,300	8.1

selected weils atal spring Contimued

Date water level measured	$\begin{aligned} & \text { Type } \\ & \text { of } \\ & \text { pump } \end{aligned}$	Discharge (galions per minute)	Date discharge measured	Use of of water	Principal aquifer		Remarks
9.28 .79	S	30R,B	7.10.75	H,I,C	211ECCN	C, L	-
$4.2880$	--	50R	9.15-53	U	111ALVM	1	-
	...	60R	5. 9.69	H	211ECCN	-	-
	-	3 F	10. 5.79	u	211 ECCN	c	One of Beckwith Springs.
10579	S	560 R	74	H	211 ECCN	-	-
10579	S	5R.B	9. 6.55	H	211 ECCN	c	Casing assumed to be 93 feet.
9.2779	S	40R, B	5-19.69	H, I, R	111ALVM	C,L	-
9-28-79	S		-	H	111ALVM	C	-
42880	S	8R.B	3.12.58	U	124WSTC	-	-
-	S	2R,B	7. 264 .	H	211 NSSP	C	-
10. 4.79	--	-	--	U	-	-	-
4.2880	-	30R.B	3-16.50	H	124WSTC	$\stackrel{-}{\square}$	-
5.17.79	S	5R, 8	8. 1.66	H	123NRWD	c	-
8.2979	S	30R.B	824.78	H	123NRWD	-	-
-		149R	$8 \cdot 17.68$	P	123NRWD	C. $L$	-
-	-	-	-	$u$	123NRWD	L	-
5.31-79	-	75R, B	8-10-67	P	111ALVM	C, L	-
9.27 .79	S	10R, B	$5 \cdot 10.77$	H	111ALVM	c	-
9.25 .79	-	-	-	U	111ALVM	W	-
	S	30R,B	10. 74	H	123NRWD	L	-
5.10.79	s	10R. $B$	12. 1.76	H	123NRWD	c	-
5-17.79	S	25R,B	9. 4.65	H	111ALVM	-	-
9-27.79	S	-	-	H	-	c	-
8.24.65R	S	30R, B	8.24.65	H	111ALVM	L	-
10-10-688	S	20R, B	10.8 .68	H	123NRWD	L	Gravel packed 295 to 350 feet.
5-10.79	S	10R, B	5-21.65	H	111ALVM	c	-
5.10.79	S	16R	4.28 .67	H,I,S	123NRWD	-	-
10-6.79	S	30R, B	9-10-68	H	111ALVM	-	-
5.11-79	S	108, ${ }^{\text {B }}$	10-10.74	H	123NRWD	L	-
5-10-79	S	10R.B	11.6 .75	H	123NRWD	c	-
510.79	-	15R, B	10-29.75	H, I, S	111ALVM	-	-
9.27 .79	S	10R, B	5-16-66	$\mathrm{H}^{\text {H }}$	123NRWD	c	-
7.19728	-	10R.B	7-19.72	H	123NRWD	L	-
$5 \cdot 10.79$	S	10R, B	9.22.71	H	123NRWD	..	-
51179	S	10R.B	61.76	H	123NRWD	-	
92079	S		-	H	111ALVM	C.L	-
51679	S	30R.B	10578	H.S	123NRWD	c	-
$6 \quad 179$	S	10R, B	6. 8.72	H	111ALVM	-	Probably cased to 105 feet.
51679	S	10R.B	929.73	H	--	-	-
9-20 79	S	108, B	6-1576	H	111ALVM	c	-
	$\cdots$	${ }^{-}$	-	P	-	-	Robinson Spring; temperature $10^{\circ} \mathrm{C}$, specific conductance 515 micromhos per centimeter at $25^{\circ} \mathrm{C}$.
5.17 .79	S	15R,B	11-2.77	H, $\mathrm{I}, \mathrm{S}$,	123NRWD	C, L	-
9.21 .79	S	5R.B	11-7.62	H	111ALVM	c	-
9. 7.78	-	-	-	I	111ALVM	c,w	-
4. 8.80	--	-	-	H	--	-	-
$5 \cdot 11.79$	S	10R, ${ }^{\text {B }}$	6-15.73	H	123NRWD	c	Drilled to 42 feet 10-5-75 and deepened to 110 feet $2 \cdot 15 \cdot 77$.
2-15-77R	S	20R, B	2-15-77	H	123NRWO	c	
5-11.79	-	-	-	-	-	-	Drilled to 42 feet 10-5-75 and deepened to 110 feet 2-15.77. -
9. 7.79	S	10R, B	48.77	H	123NRWD	-	
	--	30R,B	11.25 .58	H	123NRWD	L	Dug to 22 feet in 1900; deepened to 164 feet 9.6 .46 and perforated 148 to 158 feet; deepened to 338 feet 11.2558 , casing assumed 338 feet.
5.1779	S	40R, B	10.30 .68	H.IS	111ALVM	C	-
10.6.79	S	35R, B	7. 2.69	$\mathrm{H}, \mathrm{S}$	111ALVM	c	-
6.2369 R	T	40R, B	6-23-69	P	111ALVM	C. L	-
9. 6.79	S	20R	6. 5.67	H	123NRWD	c	-
5.16 .63 R	T	450R	5.16.63	P	111ALVM	c	-
4.11 .80	T	2,550R	6.21.79	$p$	111ALVM	C, L	-
4.11 .80	$T$	315R	6-10.36	P	111ALVM	c	--
8.13.79	S	45R, 8	5-25.67	c	111ALVM	c	
...	S	40R	$5 \cdot 12 \cdot 35$	H	111ALVM	c	Casing assumed 60 feet.
9. 3.80	-	36R	9.22.37	1	111ALVM	w	-
92579				$u$	111ALVM	w	Como Sprines.
				R	-	c	
62019	S	10 H	9641	11	111 ALVM		Como Springs.
\% 10 O	S	HOHH	81010	1,1	124WSTC	L	Casing assumat 15 leet.
$111!5$	s	36,14	41035	11	1)nwstc	c	
$10: 10$	:	(i)N, ${ }^{\text {( }}$	$526 \%$	1	124WSTC	C	
1193		2H.H.B	42b19	H,1	1נEVNS	1	
1749	1			N, ${ }^{\text {P }}$	111ALVM		
17.19	1			N, P	111ALVM	c	
$813 \%$	s	90R	112178	H	111ALVM	c	Casing assumed 90 reet.


Location	Owner	Date completed	Depth of well (feet)	Casing diameter (inches)	Depth cased	Depth to first opening (feet)	Altitude of land surface (feat)	Water level (feet)
(A-44)33dec 1	Anderton. Charles I.	4. 4.58	45	6	45	25	5,316	9.3
(A. 51 123bec 1	Nelson, C. S.	11. 72	126	6	125	105	5,065	35
25 add 1	Nance, Russell	1915	30		-		4,900	24.0
$25 a d d$ 2	do.	10-1068	128	6	128	92	4,900	18.0
25 bca. 1	Love, Hugh W	10.74	113	6	113	102	4,870	13.1
$25 t c a 2$	Warner, Paul F.	12. 3.66	$50 \%$	6	142	142	4,875	$\cdots$
25bda 1	Warner, Lloyd R .	12.846	121	6	121	58	4.870	14.0
25 cbc - 1	Utah Dept. of Transportation	9.30 .65	175	8	175	130	4,870	10.2
26 aca 1	Associated Steel Foundries Co.	8.30 .72	200	10	194	118	4.860	7.5
$26 \mathrm{bcd} \cdot 1$	Poll, Verland	7.28 .65	120	6	118	73	4,825	2.6
$27 \mathrm{bcd} \cdot 1$	Adams, Brent W.	7.31 .75	190	6	190	100	4,960	70.8
27cdb 1	U.S. Bureau of Reclamation	6.22 .57	142	6	142	132	4.835	22.5
$27 \mathrm{dba}-1$	France, E. R.	1933	150	6	-	--	4,835	1.4
(A-5.2)19cda-1	Browning Arms Co.	4. 4.63	170	12	166	63	4,965	9.2
19 dbd 1	do.	1. -73	187	8	187	105	4.990	6.0
$30 \mathrm{cab}-1$	Wilkinson, Harry	6. 5.71	145	10	145	76	4,920	54.9 P
$30 \mathrm{cbc}-1$	LDS Church, Peterson	6. 8-62	144	8	144	122	4,920	45.1
$30 \mathrm{ccd}-1$	Wilkinson, Harry	8-29-78	180	8	180	180	4.900	56.7P
31 bad- 1	Wilkinson, Max	11-13-64	176	6.5	176	140	4.925	47.4
31 bba- 1	Lang	11. 9.46	129	6	129	123	4,865	11.2
31 dca- 1	Union Pacific Railroad	3-28-46	69	5	69	49	4,890	11.2
$31 \mathrm{dcc}-1$	Olsen, Reinhardt	1934	20	72	20	-	4,885	6.6
(A-5-4)26dba 1	Lost Creek Ranch	10. 3.77	84	6	81	75	5,645	19.5
35abc-1	do.	8. 1-72	84	8	84	76	5.610	16

wells and ypriags-Continued

Date water level measured	Type of pump	Discharge (gallons per minute)	Date discharge measured	$\begin{aligned} & \text { Use } \\ & \text { of } \\ & \text { water } \end{aligned}$	Principal aquifer	$\begin{gathered} \text { Other } \\ \text { data } \\ \text { davailable } \end{gathered}$	Remarks
8.13.79	S	12R,B	4. 4.58	H.S	111ALVM	C	-
11. 72 R	S	25R,B	11.72	H	123NRWD	C.L	-
92579	-	-	-	U	111ALVM	W	$\cdots$
$5-25.79$	S	20R,B	10-10.68	H, 1	111ALVM	-	$\cdots$
41080	S	30R,B	10. 74	H	123NRWD	C	-
	--	-	--	$u$	123NRWD	1	Drilled 174 feet 11.2 .66 ; deepened to 507 feet 12.3.66. not completed, insufficient water.
5-25 79	-	24R	12. 8.46	S	123NRWD	-	Deepened from 37 feet 12.8 .46 ; casing assumed 121 feet.
5.3179	S	250R	9.13.64	P.1	111ALVM	C, L	-
$5 \cdot 31.79$	S	22R	8-30-72	1	123NRWD	L	--
4.10-80	$\ldots$	35R,B	7-28.65	P	123NRWD	C	-
5-24.79	S	4R,B	7.31 .75	H, I	124WSTC	C, L	--
5.24 .79	S	50R	1957	H	111ALVM	-	-
9-25.79	-	-	-	U	-	w	-
5-25-79	T	350R	4. 4.63	H	111ALVM	C,L	-
5-25-79	S	60 F	1. 73	N	123NRWD	-	-
52579	-	40R	6. 5.71	H	111ALVM	L.	-
4-10-80	S	150R,B	6. 8.62	H	111ALVM	C	-
5-25-79	--	400R	$8-29.78$	P	111ALVM	-	-
6. 1.79	-	15R, B	11-13.64	H	123NRWD	L	-
6. 1.79	S	22R	11. 9.46	H	111ALVM	C	-
6. 1.79	--	15R	3-28-46	H	111ALVM	-	-
4-10-79	c	$\stackrel{-}{ }$	-	1	111ALVM	C	-
8-30-79	-	24R, $B$	10. 3.77	H,IS	124WSTC	C, L	-
8. 1.72 R	-	40R,B	8. 1.72	H	124WSTC	C	-

Well nuiber: See text for explanation of well-numbering system.
Altitudes: Given in feet above NGVD of 1929 and interpolated from topographic panps.
Thickness: Given in feet.
Depth: Given in feet below the land surface. Depths to tase of alluvium were estimated from logs; estimated desipnation of rock units below the alluvium was from logs and geolofic maps.

Material	Thickness	Depth	Material	Thickness	Depth	Material	Thickness	Depth
(A-2-5)4bed-1. Log by M.			(A-2-5)11acb-3. Log by			(A-2-5)21ded-1. Log by		
Church Drilline Co. Alti-			Petersen Bros. Drilling Co.			Wright Drilling Co. Alti-		
tude 5,630. Depth to the			Altitude 5,740. Depth to			tude 5,690. Depth to base		
base of alluvium 7 feet,			base of alluvium 55 feet.			or alluvium 33 feet. Rock		
Rock below alluvium is			Rock unit below alluvium			unit below alluvium is of'		
Wanship Formation of local			is Frontter Formation.			the Tertiary System		
usage ( not adopted by the			Topsoil ....................	2	2	(Wasatch or Evanston(?)		
U.S. Geological Survey).			Gravel and clay, brown .....	33	35	Formations).		
Clay	4	4	Clay, red, brown ..	20	55	Clay .......................	8	8
Conglomerate	3	7	Clay, blue	8	63	Cravel and water ...........	25	33
Shale, gray	13	20	Conglomerate and clay; some			Bedrock, red shale .........	4	37
Shale, sandy, tan	14	34	water	32	95	Conglomerate	5	42
Sandstone	2	36	Clay, brown	7	10 ?	Sandy shale	12	54
Shale, gray	13	49	Conglomerate and clay;			Sandstone and shale layers	11	65
Shale, dark-gray	34	83	water	33	135	Gray shale ..................	15	80
Shale, gray	6	89	Clay, brown .....	5	140	Red shale	35	115
Sandstone	2	91	Conglomerate and clay ......	23	163	Sandstone and shale layers	21	136
Soapstone	20	111	Clay	2	165	Red shale	6	142
Shale, sandy, gray	3	114	Conglomerate and clay, blue.	15	180	Sandstone	12	154
Soapstone	14	128				Conglomerate; water	29	183
Shale, tan	8	136	(A-2-5)15bdb-1. Log by			Gravel and red shale	18	201
Soapstone	8	144	Livingston and Wilson. Al-			Shale, red, sandy	54	255
Sandstone	3	147	titude 5,900. Depth to			Conelomerate; water	20	275
Shale, tan	6	153	base of alluvium 65 feet.			Shale, red, sandy	22	297
Soapstone	14	167	Rock unit below alluviun			Conglomerate; water	8	305
Sandstone	8	175	is Frontier Formation.			Shale, red, sandy	9	314
Soapstone	8	183	Clay, soft, gray	65	65	Conglomerate; water	47	361
Sandstone	5	188	Sandstone, hard ............	5	70	Shale, red .......	-	361
Soapstone ...................	4	192	Sand, loose; water	25	95			
			Clay, soft, gray ...........	4	99	(A-2-5)28deb-1. Log by Cec		
(A-2-5)9bac-1. Log by			Coal . $\quad$....................	12	111	Stephenson Drilling. Alti-		
Uintah Basin Drilling Co.			Clay bentonitic	6	117	tude 5,675. Depth to base		
Altitude 5,700. Depth to			Coal .....	4	121	of alluvium 130 feet. Rock		
base of alluvium 95 feet.			Clay, yellow	1.5	122.5	unit below alluvium is		
Rock unit below alluvium			Sandstone, conglomeratic ...	2.5	125	Wasatch Formation.		
is Frontier Formation.			Clay, soft, gray	7	132	Topsoil ....................	12	12
Clay ...	95	95	Sandstone, hard ............	3	135	Clay, sand, and sandy clay .	8	20
Coal	5	100	Sandstone inter bedded with			Cobbles	10	30
Bedrock	100	200	gray streaks	15	150	Clay and sandstone blocks	20	50
Shale	20	220				Sandstone	2	52
Bedrock	180	400	( A-2-5) 17bad-1. Log by M.			Clay, sand, and sandy clay	6	58
Shale	100	500	Church Drilling Co. Deepening log by Hubbard Dril-			Sand, gravel, cobbles, and cemented gravel .............	17	75
( $\mathrm{A}-2-5$ ) $9 \mathrm{db}-1 . \quad$ Log by M.			ling Co. Altitude 5,580.			Gravel and cobbles .........	25	100
Church Drilling Co. Alti-			Depth to base of alluvium			Sand and gravel	30	130
tude 5,610. Depth to base			24 feet. Rock unit below			Limestone, solid	27	157
of alluvium 28 reet. Rock			alluvium is Wanship Form-			Shale, red	45	202
unit below alluvium is			ation (of local usage).			hale,		
Frontier Formation.			Fill, manmade .............	8	8	(A-3-2)2dcb-1. Log by		
Eoulders ..........	8	8	Topsoti ....................	3	11	Petersen Bros. Drilling Co.		
boulders; water seepage ....	4	12	Clay and boulders ..........	13	24	Altitude 5,080. Depth to		
Clay and boulders	16	28	Shale, gray	38	62	base of alluviun 60 feet.		
Shale, red .......	10	38	Sandstone	6	68	Hock unit below alluvium		
Chips; water seepage .......	1	39	Shale, blue .................	13	81	is Norwood Turs.		
Shale, multi-colored .......	21	60	Shale, gray-green ..........	8	89	Clay, silt, and topsoil ....	2	2
Sand, dry .................	3	63	Shale, gray	4	93	Clay, silt, cobbles, and		
Shale, red, colored streaks.	9	72	Sandstone	12	105	fill dirt	13	15
Sandstone, brown ...........	8	80	Shale, blue	10	115	Gravel, cobbles, and		
Shale, gray ................	5	85	Shale, gray ................	8	123	boulders; some surface		
Shale, ereen ...............	2	87	Sandstone	8	131	water	25	40
Shale, red ................	21	108	Shale, gray . ...............		138	Clay, red ..................	4	44
Shale, light-gray ..........	50	158	Shale, blue	47	185	Sand, gravel, and cobbles;		
Stale, $\tan$.................	9	167	Sandstone .................	9	194	some water	16	60
Limestone, brown ...........	24	191	Deepening (may represent			Shale, red ....	10	70
Shale, red .................	162	353	redrilling of a caved well)			Shale, brownish-red ........	25	95
Siltstone	5	358	Shale, gray, dense .........	9	109	Conglomerate ...............	25	120
Shale, red .................	37	395	Shale, blue ................	3	112			
Soapstone	19	414	Sandstone, gray ...........	4	116	( $\mathrm{A}-3-2) 4 \mathrm{dbb}-1 . \quad$ LoE by		
Shale, gray	44	458	Sandstone, gray with shale			Petersen Bros, Drilling Co.		
Soapstone ..	19	477	particles	7	123	Altitude 5,120. Depth to		
Siltstone	13	490				base of alluvium 43 feet.		
Shale, tan	10	500	$\begin{gathered} (\text { A-2-5)20dbd-2. Log by } \\ \text { Petersen Bros. Drilling Co. } \end{gathered}$			Hock unit below alluviun is Norwood Tuff.		
(A-2-5) t0aar-2. Log by			Altitude 5,655, Depth to			Topsoil $\ldots$...................	3	3
Wasatch Drilling (0-125			base of alluvium 55 feet.			Gravel, cobbles, and		
feet) and Petersen Bros.			Hock unit below alluvium			topsoil ..................	8	11
Drilling Co. (125-230			is Wanship Formation (or			Clay and cobbles, gray .....	12	23
feet). Altitude 5,800.			local usage).			Cobbles . ...................	1	24
Depth to base of alluvium			Topsoil $\ldots$..................	12	4	Clay and gravel, gray ......	6	30
23 feet. Rock unit below			Sand and eravel, brown .....	12	14	Clay and eravel, brown;		
alluviun is Frontier Form- ation.			Clay, brown .................	21	35	water $\qquad$ Gravel and reddish-brown	13	43
ation. clay and gravel $\ldots \ldots . . . . .$.	23	23	Gravel, small, and sand, brown $\qquad$	20	55	Gravel and reddish-brown   shale; water $\qquad$	7	50
Clay, red ..................	7	30	Clay, blue .................	10	65	Shale, reddish brown .......	2.4	74
Clay .......................	20	50	Clay, light-gray, dusty ....	15	72	Gravel and reddish-brown		
Limestone, black ...........	5	55	Clay, blue; some water .....	15	87	shaie ...................	2	76
Clay .........................	35	90	Clay, blue, dense ..........	48	135	Cravel and shale; water ....	5	81
Sandstone .................	5	95	Clay, light-blue ...........	13	148	Gravel and reddish-brown		
Clay, red; some water ......	10	105	Clay, gray, hard, dusty	92	240	shale; water ......	15	96
Sandstone . . ...............	10	115	Hardpan and limestone;			Sand and reddish-brown		
Clay, red ..................	10	125	small amount of water ....	10	250	shale ...................	14	110
Limestone	7	132				Clay, brown ................	16	126
Clay and gravel, red .......	83	215				Hardpan ....................	9	135
Gravel .................	15	230						


Material	rhickness	Depth	Material	Thickness	Depth	Material	Thickness	Depth
(A-3-2)11caa-1. Los by			(A-3-2)26acb-1.--Continued			(A-4-2) 5bbd-1.--Continued		
Petersen Bros. Drilline co.			Clay, brown, hard thin rock			Clay and boulders, brown...	18	25
Altitude 5, 135. Depth to			streaks	65	355	Gravel and boulders ........	34	59
base of alluviun 60 feet.			Clay and gravel	9	364	Clay, blue ................	41	100
Rock unit below alluvium			Clay ..........	10	374	clay, sand, and gravel .....	75	175
is Norwood Tuff.			Clay and gravel ............	2	376	Gravel; water	5	180
Silt	4	4	Clay, brown ................	3	379	Clay, brown ........		250
cıay ........................	21	25	Clay and gravel ............	1	380	Clay and gravel .............	18	268
Clay, gravel, and cobbles ..	7	32	Clay and streaks of shale..	16	396	Clay and gravel; Little		
Clay, dense	9	41				water .............	${ }^{9}$	277 289
Clay, gravel, and cobbles ..	19	60	( A-3-4)3add-1. Log by			Clay and gravel, sandy .....	12	289
Bedrock hardpan ............	130	190	Petersen Bros. Drilling co.			Clay, sand, and gravel .....	16	305
			Altitude 5,690. Depth to			Bedrock, gray shale ........	10	315
( $\mathrm{A}-3-2$ ) $12 \mathrm{cab-1}$. LoE by			base of alluvium 45 feet.					
Petersen bros. Drilling co.			Rock unit below alluvium			( $4-4-2) 6 \mathrm{dbc-1}$. Log by J. S.		
Altitude 5,100. Depth to			is Wanship Forwation (of			Lee and Sons. Altitude		
base of alluvium 90 feet.			local usage).			4,910. Depth to base of		
fock unit below alluvium			Silt and topsoll ...........	4	4	alluvium 138 feet. Hock		
is Norwood tuff.			Gravel, cobbles, and			unit below alluvium is		
Clay .......................	4	4	boulders, hard drilling ..	21	25	Norwood Tuff.		
Clay, gravel, and cobbles ..	42	46	Gravel; water at approx-			Sand, gravel, and boulders	24	24
Clay, red	17	63	imately 40 gallons per			Clay, gray	34	58
Coboles and boulders .....	27	90	minute.	20	45	Clay, sandy	41	99
Conelomerate, red; water 15			Conglomerate, broken	45	90	Conglomerate	20	119
gallons ver minute .......	15	105	Conglomerate, hard ........	105	195	Clay, sticky ........	3	122
Shale, red ................	24	129	Bedrock, sandstone, hard...	25	220	Clay and gravel, hard	16	138
Conglomerate, red; water at			Sandstone, soft; water .....	45	265	Bedrock, pummy stone .......	44	182
160 fees ...............	31	160				Gray shale .................	33	215
Sandstone, red ............	80	240	( 4 -3-4) 4ddd-1. log by					
Limestone, broken; water .	20	260	Petersen Bros. Drilling co.			( $1-4-2$ ) 8aaa-1. Log by L. S.		
Sandstone, red, hard .......	40	300	Altitude 5,325 . Depth to			Lee and Sons. Altitude		
Sandstone, red, broken; water $\qquad$	10	310	base of alluvium 76 feet. Rock unit below alluvium			4,960. Depth to base of alluvium is greater than		
			is Wanshtp Formation (of			175 feet.		
			topsoil usage).	1	1	Clay and gravel, hard ........	6	8
Altitude 5,165. Depth to			Clay, gravel, cobbles, and			Clay, brown	11	19
base or alluvium 66 feet.			Doulders ................	6	7	Gravel, dry ................	36	55
Rock unit below alluviun			Clay and sand, sort; with			clay, brown	23	78
is Norwood Tuff.			some water ...........	2	9	Sand, brown	76	54
Cliuy, silt, and surface   soll	4	4	Clay, gravel, and hardpan, very hard and tight .....	31	40	Gravel; water ................. Clay and gravel, sandy-	18	172
Clay, sand, and gravel;			Gravel; water ..............	25	65	brown	3	175
water ...................	18	22	Clay and gravel, hard and					
Clay, dense, tight .........	25	47	t1ght ..................	3	68	(A-4-2)8ced-2. Log by		
Clay, gravel, and cobbles ..	19	66	Clay and gravel, softer;			Petersen Bros. Drilling Co.		
Hardpan and conglonerate...	32	98	water	8	76	Altitude 5,005. Depth to		
Conglomerate; water ........	22	120	Shale, extremely hard; water	6	82	base of alluvium 42 feet. Rock unit below alluvium		
(A-3-2)26aab-1. Log by			Shale, softer	41	123	is Norwood Tuff.		
Petersen Bros. Drilling Co.			Shale	2	125	Clay and surface soil ......	6	6
Altitude 5,300. Depth to						Clay, sand, gravel, and		
base of alluvium 10 feet.			(4-3-4) 24 dbd -1. Log by			cobbles	36	42
Rock unit below alluvium			Petersen Bros. Drilling co.			Bedrock conglowerate .......	48	90
is Norwood Tuff to 308			Altitude 5,475. Depth to			Shale, red; water at 2		
feet; below 308 feet rock			base of alluvium 60 feet.			gallons per minute .	50	140
unit is Wasatch Formation.			Rock unit below alluvium			Shale, red; water at 3		
Clay, brown ................	10	10	is Echo Canyon Con-			gallons per minute	55	195
Clay, white ................	30	40	Elomerate.			Shale, red; water at 20		
Clay and sand, no water ....	12	52	Topsoll	4	4	gallons per minute .......	20	215
Clay, white ................	28	80	Gravel and cobbles	6	10			
Shale, white ..............	5	85	Gravel and clay ............	20	30	(A-4-2) $16 \mathrm{dab-2}$. Log by J.		
Ciay, red, and shale .......	56	141	Clay, brownish-red	30	60	Petersen and Sons. Alti-		
Clay, blue, and sand; no water $\qquad$	19	160	Water at 30 gallons per minute $\qquad$	18	78	tude 5,040. Depth to base of alluvium 176 feet. Hock		
Clay, red ..................	23	183	Conglomerate ...............	52	130	unit below alluvium is		
Clay, blue, and sand; no						Norwood Tuff.		
water ....................	13	196	( $\mathrm{A}-3-4$ ) 25abc-1. Log by J. v.			Topsoil $\ldots$..................	2	2
Clay, red ..................	9	205	Stoddard Drillers Inc. Al-			Clay, yellow ...............	23	25
Clay, brown ...............	15	220	titude 5,442. Depth to			Gravel ....................	5	30
Shale, different color; some water $\qquad$	28	248	base of alluvium is greater than 52 feet.			Clay, yellow ..............	6	35 41
Clay, red ..................	17	265	Clay ........................	20	20	Clay and sand ...............	45	86
Shale and clay .............	43	308	Clay and gravel .............	15	35	Clay .....................	4	90
Sandstone, iractured; water			gravel .................	11	46	Clay, sand, and gravel .....	22	112
at 15-20 gallons per			Gravel with little clay and			Gravel; no water ...........	8	120
minute	42	350	rock	4	50	Sand and gravel ...	8	128
			Gravel ......................	2	52	Clay with streaks of eravel;		
$\underset{\text { (A-3-2)26acb-1 }}{\text { Billings }}$ Drilling ${ }^{\text {cog }}$ co.			( $A-3-5$ )290dd-1. Log by Ben			kater Sand and gravel a	32	160 171
Altitude 5,340. Depth to			B. Gardner Drilling co.			Clay, yellow and gravel ....	5	176
base of alluvium 74 feet.			Altitude 5,590. Depth to			Clay, blue .................	12	188
Rock unit below alluvium			base of alluvium 126 feet.					
is Norwood Tuff.			Rock unit below alluvium			(A-4-2)17abe-1. Log by Ben		
Topsoil ...........	3	3	ts Wanship Formation (of			B. Gardner. Altitude 5,000.		
Clay, sand, gravel, cobbles,			local usage).			Depth to base of alluvium		
red, and thin clay			Clay, gravel, and boulders.	54	54	92 feet. Rock unit below		
streaks ................	42	45	Gravel and boulders; water	14	68	alluvium is Norwood Tuff.		
Boulderss, very hard ........	1	46	Clay, gravel, and boulders	32	100	Silt . ......................	1	1
Sand, eravel, cobbles, and			Gravel and boulders; water	9	109	Silt and boulders ..........	19	20
Doulders .................	28	74	Clay, gravel, and boulders	13	122	Boulders; small quantity of		
Clay, red, and thin rock			Gravel and boulders; water	4	126	water	2	22
layers ..................	37	111	Conglomerate ................	35	161	clay, gravel, and boulders.	48	70
Clay, blue speckled ........	13	124	Shale, red ................	5	166	Clay, sand, gravel .........	22	92
Clay, white, sandy, sort ...	10	134	Shale, blue ................	19	185	Clay, white ...............	7	99
Clay, blue, white ..........	12	146				Clay and sand; small		
Clay, brown ...............	63	209	(A-4-2) 5bbd-1. Log by J. S.			quantity of water	56	15,5
Clay, white, blue streaks ..	6	215	Lee and Sons. Altitude			Clay and fravel; sima 11		
Clay, brown, hard streaks ..	36	251	4,965. Depth to base or			quantity of water ........	12	167
Clay, blue .................	36	287	alluvium 59 feet. Hock			Clay, white	21	188
clay, rock streaks .........	1	288	unit below alluvium is			Sand; water .................	25	213
Clay ......................	1	289	Norwood Tuff.			Clay and sandy	44	257
Shale .....................	1	290	Topsoil ........................   Gravel and boulders	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	3	Sand; water ................	4	261


Material	Thickness	Depth	Material	Thickness	Depth	Material	Thickness	Depth
(A-4-2)17abc-1.--Continued			(a-4-2)36bca-1.--Continued			(A-5-1)26aca-1.--Continued		
Sand and eravel; water ${ }^{\text {a }}$. .	39	300	Gravel; water	64	105	Coboles	13	41
Sand and cravel, streaks;			Sand	3	108	Clay, dense	6	47
small quantity of water ..	50	350	Sand, gravel, and			Sand	2	49
(A-4-2) 17 dca-2. Log by			boulders; water	78	186	Clay and white shale	38	87
George C. Norris. Altitude			Clay, gravel, and boulders.	3	189	Gravel and cobbles,		
5,010 . Depth to base of			( $1-4-3$ )32abc-1. Lof by			cemented	1.3	100
alluvium 150 feet. Hock			Charles W. Stoddard. Al-			Clay and blue shale	18	118
unit below alluvium is			titude 5, 150. Depth to			Gravel, cemented; water	13	131
Norwood Tuff.			base of alluvium 85 feet.			Clay and blue shale	4	135
Clay, hard .....	28	28	Rock unit below alluvium			Clay, gravel, and		
Boulders, large	6	34	is Wasatch Formation.			conglomerate; water	2	155
Clay and sand, soft ........	36	70	Clay	25	25	Clay, white	9	164
Clay, hard .................	60	130	Gravel, pea .........	2	27	Gravel; water ....	1	65
Clay and gravel	10	140	Clay	17	44	Clay, gravel, and white,		
Clay, sort ....	10	150	Gravel .....................	8	52	hard shale	13	178
Clay and sandstone	40	190	Clay	33	85	Clay and white, soft shale	22	00
Clay, sand, gravel, and			Boulders and shale	7	92	( $\mathrm{A}-5-1$ )27bed-1. LoE by		
fine sand ..........	20	210	Gravel	12	104	Petersen Bros. Drilling Co.		
( $1-4-2$ )21cbb-2. Log by			Shale	4	108	Altitude 4,960. Depth to		
George C. Morris. Alti-			Eoulders	9	117	base of alluvium 80 feet.		
tude 5,010. Depth to base			( A-4-4) 16 bea-1. Log by Gary			Rock unit below alluvium		
of alluvium 40 reet. Rock			Petersen and Sons. Alti-			is Wasatch Formation.		
unit below alluvium is			tude 5,370. Depth to base			Clay, silt, and topsoil ....	2	2
Norwood Tuff.			of alluvium 45 feet. Rock			Gravel, coboles, and		
Topsoil ....................	12	12	unit below alluvium is			Doulders	28	30
Clay and gravel, gray ......	28	40	Evanston(?) Formation.			Gravel; water at 2 gallons		
Clay, gray ...............	40	80	Clay, silt, and topsoil	${ }^{2}$	2	per minute	1	31
Clay and coarse gravel .....	80	160	Clay, red	20	22	Gravel, cobbles, and		
Sandstone .................	68	228	Clay, sand, and gravel,			boulders; water at 4-5		
Shale	7	235	light-brown	23	45	gallons per minute .......	29	60
(A-4-2)21dda-. 1 Log by J .			Conglomerate, broken	5	50	Clay, cobbles, and sone red		
G. Lee Drilling Co. Alti-			Conglomerate, hard .....	30	80	shale	20	60
tude 4,990. Depth to base			Conglomerate, broken	18	98	Conglonierate, broken	10	90
of alluvium greater than 120 feet.			Conglonerate, soft; water	4	102	Conglowerate, hard, red	33	23
120 feet.			(A-5-1)23bee-1. Log by			Conglomerate, hard, broken;		
Topsoil and gravel	3	3	Petersen Bros. Drilling co.			water at 3-4 gallons per		
Sand	4	7	Altitude 5,065. Depth to			minute	67	190
Gravel and boulders	12	19	base of alluvium 21 feet.			( A-5-2)19eda-1. Log by J. S.		
Sand	63	82	Rock unit beiow alluvium			Lee and Sons. Altitude		
Gravel $\ldots \ldots \ldots \ldots \ldots \ldots .$.	38	120	is Norwood Tuff.			4,965. Depth to base of		
( $4-4-2) 26 a d \mathrm{~d}-1$. Log by J.			Silt and surface soil ......	1	1	alluvium 153 feet. Kock		
Gary Petersen and Sons.			Cobbles and boulders .......	11	12	unit below alluvium is		
Altitude 5,120. Depth to			Clay and gravel, brown .....	9	21	Norwood Tuff.		
base of alluvium 16 reet.			Clay and sand, dense .......	11	32	Topsoil and boulders	6	6
Rock unit below alluvium is			Clay, green ...............	4	36	Boulders	12	18
Terttary and Quaternary			Clay and sand, brown	5	41	Gravel and boulders	43	61
conglomerate (to 97 feet?)			Clay and shale, blue	17	58	Gravel, clean; water	22	83
and Norwood Tuff (?).			Clay and shale, gray .......	12	70	Clay and gravel ....	70	153
Clay, light-brown ..........	16	16	Clay and shale, blue .......	19	89	Bedrock, blue shale	17	170
Clay, cobbles, and boulders.	11	27	Clay, bedrock, fractured			(A-5-2)30cab-1. Log by		
Clay and boulders .........	39	66	shale, gray; with water ..	37	126	Petersen Eros. Drilling Co.		
Clay, gravel, cobbles, and boulders	18	84	(A-5-1)25bea-2. Log by J. S. Lee and Sons (0 to 174			Altitude 4,920. Depth to base of alluvium 116 feet.		
Clay, dark-brown ...........	13	97	feet) and Charles W.			Rock unit below alluvium		
Clay, gravel, and cobbles,			Stoddard (177 to 507			is Norwood Tuff.		
light-red ...............	7	104	feet). Altitude 4,875.			Silt and topsoil	2	2
Clay, red ..................	15	119	Depth to base of alluvium			Clay and silt	5	7
Clay, gravel, cobbles, and			83 feet. Rock unit below			Cobbles ....	9	16
boulders, red ............	23	142	alluvium is Norwood Tuff.			Clay, tight, dense	11	27
Clay, gravel, and cobbles	10	152	Gravel and boulders ........	18	18	Cobbles	13	40
Cravel; water at 15 gallons			Sand, brown .................	65	83	Gravel and cobbles, dark-		
per minute . ${ }^{\text {c............. }}$		152	Clay, blue, sandy ..........	64	147	brown; water .........	29	69
Clay, gravel, and cobbles ..	8	160	Bedrock, blue shale ........	27	174	Cobbles, light-brown; no		
Gravel; water at 10 gallons			No record .................	,	177	water ...............	7	76
per minute ......	2	162	Shale, brown, white ........	58	235	Gravel and dark-brown		
(4-4-2)33ada-1. Log by J.			Clay, brown ................	3	238	cobbles; water ...	11	87
G. Turner (22 to 162 reet)			snale, brown ...	6	243	clay	5	92
and Larry W. Dalton (162			Clay, brown, sticky ........	19	263	Gravel and cobbles; water..	24	116
to 338 feet), interpreted			Sand .......................	3	266	Clay, red	29	145
by J. I. Steiger. Altitude			Clay, brown, sticky ........	12	278	(A-5-2)31bad-1. Log by john		
5,045 feet. Depth to base			Clay, blue	5	283	A. Nak Drilling Co. Alti-		
of alluvium 62 feet. Rock			Clay, brown, sticky .........	32	315	tude 4,925. Depth to base		
unit below alluvium is			Shale, brown ...............	47	362	of alluvium 113 feet. Rock		
Norwood Tuff.			Shale, blue ................	28	390	unit below alluviur is		
Dug, no record .............	22	22	Clay, blue and white shale .	32	422	Norwood Tuff.		
Sand	15	37	Clay, blue and light-blue			Topsoil	15	15
Clay, reddish, and sand ....	25	62	shale .................	16	438	Gravel ......................	5	20
Sandstone, brownish ........	20	82	Shale, brown, white ........	69	507	Clay, red .................	10	30
Sandstone, gray ............	63	145	(4-5-1)25cbe-1. Log by			Clay, sandy	33	63
Sand ..................	2	147	Petersen Bros. Drilling co.			Clay and sand ..............	50	113
Gravel .....................	15	162	altitude 4,870. Depth to			Sand and sandstone; some		
Shale, sticky ..............	61	223	base of alluvium 175 feet.			water	22	135
Boulders .....	6	229	Rock unit below alluvium			Gravel and sandstone .......	41	176
Shale, gumbo ...............	109	338	Norwood Tuff (\%).			(A-5-4) $26 \mathrm{dba}-1$. Log by J.		
( $4-4-2$ ) 3 cecb-3. Log by Ben			Clay, sand, and cobbles ....	18	18	Gary Petersen and Sons.		
B. Gardner Drilling Co.			Sand ............	55	73	Altitude 5,645. bepth to		
Altitude 5,060. Depth to			Sand and gravel ............	46	119	base of aliuvium 81 feet.		
base of alluvium 59 or 151 feet. Rock untt below			Gravel; much water .........	34	153	Rock urit below alluvium		
feet. Rock unit below			Clay and gravel; water .....	5	158	Is Wasatch Formation.		
alluviun is Norwood Tuff. Silt and topsoll			Gravel, clean; water .......	8	166	Clay, nard, dense, lieht-		
	4	4	Gravel, hard, tight ........	3	169	brown ..............	10	10
Clay and sand Clay, gravel, and boulders;	20	24	Gravel, clean; water .......	6	175	Clay and silt ..............	26	36
Clay, gravel, and boulders; water $\ldots \ldots . . . . . . . . . . . . . . ~$			Clay, yellow ..	-	175	Gravel; water at 5 gailons		
water ...................	35	59	( -5-1) $^{\text {a }}$ aca-1. Log by			per minute ........	-	36
Clay, sand, and gravel .....	84	143	Petersen Bros. Drilling Co.			Clay, hard, dense, red .....	29	65
Clay, brown, and sand ......	$\begin{array}{r}8 \\ \hline 5\end{array}$	151	Altitude 4,860. Depth to			Clay, gravel, cobbles, and		
Clay, white and sand .......	25	176	base or alluvium 49 feet.			boulders ................	4	69
Shale, white ..............	24	200	Rock unit below alluvium			Clay, dense, red ...........	3	72
(A-4-2)36bca-1. Log by J. S.			is Norwood Tuff.			Clay, light-brown ....	3	75
Lee and Sons. altitude			Silt and surface soil ......	-	2	Gravel; water at 25 gallons		
5.060 . Depth to base of			Clay, silt, gravel, and			per minute ........	6	81
alluvium ereater than 189			cobbles; small amount			Eedrock, limestone ...	3	${ }^{84}$
feet.			surface water ............	. 15	17			
Sand, gravel, and boulders Sand, dry .............	25 16	25 41	Clay Gravel and	- ${ }^{3}$	20 28			

Table 7.--Water levels in observation wells, 1936-80
Well number: See text for explanation of well-numbering system.
Altitude of land surface: Above National Geodetic Vertical Datum of 1929, interpolated from topographic maps Water levels: In feet below land surface. $P$, pumping; $R$, recently pumped.
(A- 3-2) $24 \mathrm{CBA}-1$ ALT. 5155

OCT	16.	1936	14.39	AUG	24.	1942	12.44	DEC	12.	1955	16.90
DEC	11		16.25	DEC	13		16.69	DEC	20,	1956	16.83
MAR	11,	1937	16.35	MAR	31,	1943	16.25	MAR	25,	1957	17.18
AUG	03		10.53	SEP	18		14.14	DEC	09		17.39
SEP	22		13.60	DEC	10		16.65	MAR	17.	1958	16.85
NOV	04		16.25	A PR	14.	1944	16.15	DEC	18		16.84
DEC	14		16.67	DEC	13		16.77	MAR	20,	1959	16.97
FEB	07.	1938	16.90	MAR	23,	1945	16.76	DEC	09		16.82
MAR	15		15.65	NOV	22		16.55	MAR	22.	1960	16.84
MAY	31		13.02	MAR	30,	1946	16.94	NOV	30		16.21
AUG	20		12.20	DEC	12		16.37	MAR	21.	1961	17.08
OCT	16		15.90	MAR	12,	1947	15.84	JAN	12,	1962	16.63
DEC	11		16.62	DEC	15		16.81	MAR	08		16.57
MAR	14,	1939	16.60	MAR	26,	1948	16.94	DEC	18		17.68
MAY	01		15.35	JAN	12,	1949	16.56	MAR	06,	1963	17.15
JUN	22		10.47	MAR	29		13.25	AUG	30		13.40
AUG	29		15.19	DEC	06		16.94	DEC	09		16.98
OCT	30		12.40	APR	06,	1950	14.89	MAR	04,	1964	17.91
JAN	09,	1940	16.75	DEC	12		16.53	OCT	20		16.16
FEB	14		16.86	A PR	04,	1951	16.04	DEC	10		17.88
APR	04		16.30	DEC	27		16.80	MAR	08,	1965	16.96
JUN	26		11.45	APR	17.	1952	12.98	JUL			8.48
AUG	30		16.20	DEC	29		15.10	OCT	18		17.05
NOV	30		16.42	APR	03.	1953	16.75	DEC	13		16.98
MAR	14.	1941	16.75	DEC	09		16.81	MAR	16,	1966	16.66
SEP	27		15.78	APR	19,	1954	16.47	SEP	12		14.12
DEC	12		16.81	DEC	08		16.70	APR	12,	1967	17.15
MAR	09,	1942	16.45	MAR	31.	1955	16.99	MAR	14,	1968	17.20

(A-3-4) 4DDB-1 ALT. 5325

(A- 4-2) 8CCD- 1 ALT. 4995

NOV	24.	1939	30.40	DEC	06.	1949	19.32	MAR	21,	1961	32.89
AUG	30,	1940	26.09	APR	06,	1950	18.45	JAN	12,	1962	30.73
NOV	24		18.57	DEC	12		19.52	MAR	08		16.73
MAR	14,	1941	17.56	A PR	04,	1951	17.17	DEC	18		32.04
SEP	27		17.57	DEC	27		19.37	MAR	06,	1963	30.83
DEC	12		19.61	A PR	17,	1952	14.49	AUG	30		33.20
MAR	09.	1942	31.75	DEC	29		35.79	DEC	09		30.28
AUG	24		18.77	A PR	03.	1953	18.65	MAR	11.	1964	41.09
DEC	13		21.66	DEC	09		20.25	OCT	20		19.37
MAR	31.	1943	17.43	APR	19,	1954	17.08	DEC	10		20.40
SEP	18		20.20	DEC	08		20.18	MAR	08,	1965	19.61
DEC	10		20.21	MAR	31.	1955	16.64	JUL	27		16.95
APR	14,	1944	17.80	DEC	12		27.40	OCT	18		18.67
DEC	13		17.97	DEC	20,	1956	19.79	DEC	13		23.17
MAR	23,	1945	16.14	MAR	25.	1957	20.36	MAR	16,	1966	14.47
NOV	22		25.12	DEC	09		20.81	SEP	12		33.21
MAR	30,	1946	21.65	MAR	17,	1958	18.60	A PR	12,	1967	34.75
DEC	12		21.81	DEC	18		32.88	MAR	14.	1968	28.59
APR	12,	1947	17.00	MAR	20,	1959	27.65	SEP	16		26.97
MAR	26,	1948	17.36	DEC	09		25.40	MAR	24,	1,969	32.37
JAN	12,	1949	20.17	MAY	22,	1960	22.68	MAR	19,	1970	24.89
MAR	29		17.71	NOV	30		19.76	AUG	21		32.86

(A-4-2)26CCD-1 ALT. 5030


SEP	22,	1937
NOV	04	
DEC	14	
FEB	07,	1938
APR	15	
AUG	20	
OCT	16	
DEC	11	
MAR	14,	1939
MAY	01	
JUN	22	
AUG	29	
OCT	30	
JAN	08,	1940
APR	04	
AUG	30	
NOV	30	
DEC	12,	1941
DEC	13,	1942
MAR	31,	1943
OCT	18	
DEC	10	

19.25
21.85
23.00
28.25
25.28
30.00 p
21.46
22.98
23.41
30.27 p
29.55 P
20.02 R
22.32
23.76
23.72
21.05
22.45
23.52
22.75
23.28
19.98
22.98

24.29
23.75
24.11
22.76
25.00
23.41
23.93
23.89
24.10
24.10
21.85
24.84
22.01
22.70
22.53
22.87
22.70
22.89
20.94
23.97
24.62
24.90
(A-4-3) $31 \mathrm{CAB}-1$
ALT. 5080

SEP	22, 1937
NOV	04
DEC	14
APR	15.1938
MAY	31
AUG	20
OCT	16
DEC	11
MAR	14, 1939
MAY	01
JUN	22
AUG	29
OCT	30
JAN	08, 1940
EEB	14
APR	04
JUN	26
AUG	30
NOV	30
MAR	14, 1941
SEP	27
DEC	02
MAR	09, 1942
AUG	24
DEC	13
SEP	18, 1943

2.80
3.30
3.47
2.53
1.05
2.54
3.20
3.09
2.98
3.27
2.79
2.66
3.44
3.37
3.56
3.70
2.65
2.92
2.62
3.54
2.32
2.94
2.93
2.89
2.73
3.03

DEC	10, 1943
APR	14, 1944
DEC	13
MAR	23, 1945
NOV	22
MAR	28, 1946
DEC	12
APR	12, 1947
DEC	15
MAR	26, 1948
JAN	12, 1949
MAR	29
DEC	06
APR	06, 1950
DEC	12
APR	04, 1951
DEC	27
APR	17, 1952
DEC	29
A PR	03, 1953
DEC	09
APR	19, 1954
DEC	08
MAR	31, 1955
DEC	12
DEC	20, 19

2.45
2.72
2.42
2.77
2.30
2.35
1.97
2.30
1.88
1.91
1.91
1.99
1.95
1.93
1.83
2.15
2.13
1.95
3.00
3.09
2.65
2.82
3.92
4.17
4.07
4.05

DEC	09.	1957	3.54
MAR	17.	1958	3.60
DEC	18		3.83
MAR	20,	1959	4.07
DEC	09		3.89
MAR	22,	1960	3.94
NOV	30		4.08
MAR	21.	1961	4.14
JAN	12,	1962	4.16
MAR	08		3.88
DEC	18		3.65
MAR	06,	1963	3.96
AUG	30		2.31
DEC	09		3.09
MAR	04.	1964	3.84
OCT	20		2.74
DEC	10		3.50
MAR	08,	1965	3.52
JUL	27		1.77
OCT	18		2.56
DEC	13		3.36
MAR	16,	1966	3.13
SEP	12		2.49
A PR	12,	1967	3.53
MAR	14,	1968	2.05
SEP	16		2.30


MAR	24,	1969	2.08
MAR	19,	1970	3.26
AUG	21		2.12
MAR	25.	1971	3.23
SEP	21		2.38
MAR	23,	1972	2.51
SEP	29		2.43
MAR	20,	1973	2.81
SEP	10		2.28
MAR	21,	1974	2.83
SEP	13		2.16
MAR	19.	1975	2.99
SEP	09		1.90
MAR	04,	1976	2.66
SEP	13		2.15
MAR	04.	1977	3.33
SEP	08		2.64
MAR	14.	1978	4.93
SEP	07		3.59
MAR	28,	1979	2.78
SEP	25		2.17
MAR	19,	1980	3.15
APR	11		2.90
SEP	05		1.99

Table 7.--Water levels in observation wells, 1936-80--Continued


Well or spring number: See text for explanation of well- and spring-numberinp system.
Date of sample: Year-month-date
Date of sample: Year-month-date.

 samples were collected and analyod by the U.S. fieological Survey rxcept where noted.

Location (well or spring number)	$\begin{gathered} \text { Date } \\ \text { of } \\ \text { sample } \end{gathered}$	Geologic unit	Depth of well. (ft)	Temperature, water ( ${ }^{\circ} \mathrm{C}$ )	Discharge (g gm )	```Spe- cific con- duct- ance (umhos/cm at 25*}\textrm{C```	$\begin{gathered} \mathrm{pH} \\ \text { field } \\ \text { (units) } \end{gathered}$	Bicarbonate ( $\mathrm{mg} \mathrm{g} / \mathrm{L}$ as $\left.\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Car- } \\ & \text { bonate } \\ & \text { (mg/L } \\ & \text { as } \mathrm{CO}_{3} \text { ) } \end{aligned}$	$\begin{gathered} \text { Hard- } \\ \text { ness } \\ (\mathrm{mg} / \mathrm{L} \\ \text { as } \\ \left.\mathrm{CaCO}_{3}\right) \end{gathered}$	$\begin{gathered} \text { Hard- } \\ \text { ness, } \\ \text { noncar- } \\ \text { bonate } \\ \left(\mathrm{mg}^{2} / \mathrm{L}\right. \text { as } \\ \mathrm{CaCO} 3) \end{gathered}$	$\begin{aligned} & \text { Calcium, } \\ & \text { dis- } \\ & \text { solved } \\ & \text { (mg/L } \\ & \text { as Ca) } \end{aligned}$	Magnesium, dissolved (mg/L as Mg )
(A-2-5) $4 \mathrm{BCD}-1$	79-08-23	211 WNSP	192	20.0	. 02	710	6.3	--	--	290	99	73	26
(A-2-5) 9CDB- 1	79-08-23	211 FRNR	500	11.0	---	880	6.6	--	--	350	0	85	33
(A- 2- 5) 9DAC-S 1	79-10-04	111 ALVM	$\rightarrow{ }^{-}$	--	--	800	--	--	--	380	140	100	32
(A-2-5) 10AAA- 2	79-09-28	211 FRNR	230	11.5	--	900	--	--		180	0	46	17
(A- 2-5) $10 \mathrm{BCB}-2$	79-09-27	211 FRNR	--	12.5	5.0	3,200	--	--	--	2,300	2,000	640	180
(A- 2-5) $11 \mathrm{ACA}-2$	79-10-04	211 FRNR	55	--	--	910	--	--	--	180	0	46	17
(A-2-5) $11 \mathrm{ACB}-3$	79-09-27	211 FRNR	180	--	--	740	--	--	--	230	0	56	21
(A- 2-5) $15 \mathrm{BDB}-1$	79-08-31	211 FRNR	150	10.0	--	855	6.7	--	-	300	45	77	25
(A-2-5) $17 \mathrm{BAD}-1$	79-08-24	211 WNSP	123	13.0	--	440	6.4	--	--	180	0	44	17
(A- 2- 5) 18BAC-S 1	79-08-24	211 WNSP	--	--	--	680	6.5	--	--	310	42	100	15
(A-2-5) $200 \mathrm{BD}-2$	79-08-22	211 WNSP	250	--	6.0	500	6.6	--	--	61	0	14	6.3
(A- 2-5) $28 \mathrm{DCB}-1$	79-08-31	111 ALVM	131	11.0	340	600	6.1	--	--	280	7	78	20
(A-3-2) 1CAC- 1	79-10-06	111 ALVM	110	--		680	6.4	--	--	320	47	76	31
(A-3-2) 2DCB- 1	79-09-07	123 NRWD	120	--	--	650	5.4	--	--	300	34	84	23
(A- 3-2) 4AAD- 1	79-09-06	123 NRWD	268	--	--	640	6.1	--	--	260	45	61	25
(A-3-2) 4ACD- 1	79-09-06	123 RRWD	160	--	--	450	6.4	--	--	190	0	53	13
(A- 3-2) 4DAA- 1	79-09-06	123 NRWD	260	--	--	750	6.4	--	--	310	85	86	22
(A-3-2) 4DBB- 1	79-12-04	123 NRWD	135	--	--	560	--	--	--	200	0	49	19
(A- 3-2) $11 \mathrm{CAA}-1$	79-10-06	123 NRWD	190	--	--	580	6.7	--	--	220	18	51	22
(A-3-2) 11 CDD- 1	79-09-07	124WSTC	302	--	--	600	5.2	-	--	230	0	64	18
(A-3-2) $12 \mathrm{BBA}-1$	79-09-07	111 ALVM	160	--	--	630	5.0	--	--	300	32	83	23
(A- 3-2) $12 \mathrm{CAC}-1$	79-09-07	111 ALVM	140	--	--	680	5.2	--	--	310	28	82	25
(A-3-2) $13 \mathrm{BBA}-1$	79-12-04	123NRWD	161	12.0	--	560	6.6	--	--	250	18	73	10
(A- 3-2) $14 \mathrm{DAD}-1$	79-09-07	123NRWD	95.0	--	--	730	5.0	--	--	360	66	93	30
(A-3-2) $140 \mathrm{DC}-1$	79-09-21	123 NRWD	200	--	--	520	6.1	--	--	250	10	84	9.7
( $\mathrm{A}-3-2$ ) $24 \mathrm{BBC}-1$	79-09-27	111 ALVM	105	--	--	610	6.5	--	--	290	42	89	17
(A-3-2) $24 \mathrm{BCC}-1$	79-09-07	111 ALVM	31.0	--	--	340	5.1	--	--	160	0	48	9.8
(A-3-2) $24 \mathrm{CAA}-1$	79-09-07	123 NRWD	125	--	--	600	5.1	+-	--	280	42	85	17
(A-3-2) $24 \mathrm{CBA}-1$	79-09-27	111 ALVM	19.0	--	--	560	6.4	--	--	280	8	85	16
(A- 3-2)25BAA - 1	79-09-24	124 WSTC	81.5	--	--	640	6.4	--	--	300	0	86	20
(A-3-2) $25 \mathrm{CAA}-1$	79-09-24	124WSTC	112	--	--	1,180	6.0	--	--	500	200	150	31
(A- 3-2) $25 \mathrm{DCD}-1$	79-09-24	124WSTC	26.0	--	--	, 900	6.6	--	--	400	0	110	31
(A-3-2) $26 \mathrm{AAB}-1$	79-09-24	124WSTC	350	--	--	570	6.5	--	--	260	16	58	27
(A- 3-2) 26AAC- 1	79-09-24	123 NRWD	87.0	--	--	830	6.8	--	--	350	52	98	26
(1-3-2)26ACC- 1	79-12-06	123 NRWD	122	--	--	750	6.2	--	--	370	110	99	30
(A- 3- 2) 26ADD- 1	79-09-24	123NRWD	83.0	--	--	750	6.0	--	--	320	71	94	21
( $\mathrm{A}-3-2$ ) $26 \mathrm{BDDA}-11$	71-06-02	123 NRWD	122	--	--	50	8.4	--	--	1,073	--	284	113
(A- 3-2) 36ADB-1	79-09-24	111 ALVM	--	--	--	750	6.0	--	--	. 330	56	76	33
(A-3-3) $31 \mathrm{CBD}-1$	79-09-24	111 ALVM	30.0	13.0	--	560	6.6	--	--	270	44	75	21
(A- 3-4) 3CAB-S 1	81-01-23	211 WNSP	--	6.0	--	485	.	-	--	2	--		2
(A-3-4) 4ADD- 1	79-10-02	111 ALVM	35.0	--	--	660	6.5	--	--	300	40	87	20
(A- 3-4) $24 \mathrm{DBD}-1$	79-09-28	211 ECCN	130	--	--	940	--	- -	--	410	70	90	45
(A- 3- 5) 17CBC-S 1	79-10-05	211 ECCN	--	11.5	3.0	570	--	--	--	260	16	68	21
(A- 3-5)19AAA- 1	79-10-05	211 ECCN	93.0	--	--	1,000	--	--	--	--	--	8	- -
(A-3-5)29CDD- 1	79-09-27	111 ALVM	185	--	--	1,220	--	--	--	490	230	120	45
(A- 3-5) $30 \mathrm{BCD}-1$	79-09-28	111 ALVM	54.0	--	--	725	--	--	--	320	45	75	31
(A- 3-6) 34ABA- 1	79-10-04	211 WNSP	85.0	--	--	1.320	--	--	--	580	320	140	57
(A- 4- 2) 4CDC- 1	79-08-29	123NRWD	121	--	--	660	6.4	--	--	260	41	60	27
(A- 4- 2) 5BDD- 1	79-08-29	123 NRWD	315 175	--	--	480	6.3	--	--	220	28	61	16
(A- 4- 2) 8AAA- 1	79-08-29	111ALVM	175	--	--	600	6.4	--	--	210	0	51	21
( $\mathrm{A}-4-2$ ) 8BCC- 1	79-08-28	111ALVM	137	--	--	400	6.4	$\rightarrow$	--	190	9	56	12
(A- 4- 2) 8CDC- 1	79-08-30	12 3NRWD	160	--	--	420	5.3	--	--	170	0	49	12
(A- 4- 2) $16 \mathrm{DAB}-1$	79-09-28	---	132	--	--	800	6.7	--	--	340	15	88	28
(A- 4- 2) 17ABD- 2	79-09-06	111 ALVM	63.0	--	--	340	5.2	--	--	130	0	41	7.8
(A-4-2)20ABA- 2	79-09-06	123 RRWD	203	$\cdots$	--	520	5.1	--	--	210	21	69	9.4
(A-4-2) $21 \mathrm{CBB}-1$	79-09-27	123NRWD	160	--	--	450	6.6	--	--	190	0	61	9.9
(A- 4- 2) $211 \mathrm{DDA}-1$	79-09-20	111 ALVM	125	--	--	600	6.0	--	--	290	36	83	19
(A-4-2) $22 \mathrm{BAC}-4$	79-08-29	123NRWD	205	--	--	560	6.2	--	--	280	36	66	27
(A- 4- 2) 222 CDA - 1	79-09-21	111 ALVM	105	--	--	650	5.9	--	--	320	48	86	25
(A- 4- 2) $26 \mathrm{ABD}-1$	79-08-28	123NRWD	162	--	--	440	6.6	--	--	190	13	56	13
(A- 4- 2) $26 \mathrm{BBA}-1$	79-09-28	111 ALVM	55.0	--	--	540	7.0	--	--	280	34	61	32
(A- 4- 2) $266 \mathrm{CCD}-1$	79-09-25	111 ALVM	26.0	15.0	--	610	6.6	--	--	300	31	89	19
(A- 4- 2) $288 \mathrm{BAD}-1$	79-10-06	123 RWWD	215	,	--	340	6.4	--	--	150	0	48	6.3
(A-4-2) $28 \mathrm{BBD}-1$	79-09-06	123 NRWD	110	--	--	520		--					
(A- 4-2) $34 \mathrm{AAB}-1$	79-08-29	111 ALVM	127	--	--	570	6.4 6.4	--	--	220 290	16 31	$\begin{aligned} & 52 \\ & 87 \end{aligned}$	$\begin{aligned} & 21 \\ & 18 \end{aligned}$

analyses of ground water
degrees Celsius; gpm, gallons per minute; $\mu$ mhos $/ \mathrm{cm}$ at $25^{\circ} \mathrm{C}$, per liter; $\mu \mathrm{g} / \mathrm{L}, \mathrm{micrograms}$ per liter; ac-ft, acre-foot.]

```Sodium, dis- solved (mg/L as Na)```	Sodium ad-sorption ratio	Sodium percent	```Sodium + potas- sium, dis- solved (mg/L as Na)```	```Potas- sium, dis- solved (mg/L as K)```	Chloride, dissolved (mg / L as C1)	```Sulfate, dis- solved (mg/L as SO4)```	Eluoride, dissolved (mg/L as F)	$\begin{gathered} \text { Silica, } \\ \text { dis- } \\ \text { solved } \\ \text { (mg/L } \\ \mathrm{as}^{2} \\ \mathrm{SiO}_{2} \text { ) } \end{gathered}$	$\begin{gathered} \text { Boron, } \\ \text { dis- } \\ \text { solved } \\ (\mu \mathrm{g} / \mathrm{L} \\ \text { as } \mathrm{B}) \end{gathered}$	Iron, dis. solved ( $\mu \mathrm{g} / \mathrm{L}$ as Fe )	```Solids, residue at 180}\mp@subsup{}{}{\circ}\textrm{C dis- solved (mg/L)```	Solids, sum of constituents, dissolved (mg/L)	Solids dissolved (tons per ac-ft)
42	1.1	24	46	4.0	110	27	. 3	7.6	60	2,100	--	406	. 55
53	1.2	25	55	2.3	50	25	. 5	28	90	100	--	499	. 68
38	. 8	18	S	2.3	63	27	. 3	13	70	10	397	420	. 54
130	4.2	60	--	5.0	130	72	1.0	6.1	100	550	529	522	. 72
62	. 6	5	--	9.8	65	1,800	. 2	5.4	680	29,000	1,620	3,000	2.20
130	4.2	60	--	2.0	110	24	1.0	6.1	50	550	551	517	. 75
76	2.2	42	--	3.1	38	41	. 5	8.6	40	<10	441	425	. 60
57	1.4	39	57	. 3	86	62	. 6	22	70	20	--	480	. 65
14	. 5	14	20	6.2	14	18	. 5	13	30	400	-"	235	. 32
16	. 4	10	17	. 8	21	48	. 3	11	30	<10	--	374	. 51
82	4.6	73	86	3.5	43	1.4	1.2	7.6	1,600	300	--	269	. 37
15	. 4	10	17	1.7	16	18	. 2	16	50	40	--	327	. 44
34	. 8	27	39	4.5	61	26	. 2	38	60	<10	477	433	. 65
33	. 8	19	41	8.2	45	47	. 3	26	70	<10	-.	429	. 58
36	1.0	23	43	6.6	80	23	. 3	36	60	<10	--	394	. 54
21	. 7	19	29	7.6	30	13	. 3	49	40	<10	--	301	. 41
32	. 8	18	39	7.2	110	21	. 2	51	70	<10	\cdots	462	. 63
44	1.4	40	59	15	50	41	. 4	75	90	20	400	426	. 54
39	1.2	27	46	6.7	67	20	. 3	25	50	<10	360	351	. 49
50	1.4	31	57	7.0	36	23	. 2	30	80	<10		391	. 53
23	. 6	14	27	3.5	33	54	. 2	20	50	20	--	402	. 55
29	. 7	16	39	10	44	49	. 2	55	70	<10	--	463	. 63
29	. 8	25	38	8.9	49	14	. 2	65	60	10	406	393	. 55
29	. 7	15	33	3.5	44	65	. 2	21	60	20	--	460	. 63
17	. 5	13	22	4.5	27	12	. 2	46	30	<10	--	345	. 47
20	. 5	13	23	3.3	29	53	. 1	14	30	<10	--	376	. 51
7.3	. 3	9	11	4.1	7.3	11	. 2	15	30	<10	--	205	. 28
21	. 5	14	27	5.6	31	55	. 2	13	30	<10	--	372	. 51
17	. 4	12	19	1.5	23	17	. 3	19	30	<10	--	341	. 46
34	. 9	20	39	5.0	27	17	. 2	43	60	<10	--	419	. 57
62	1.2	21	67	5.4	230	50	. 3	45	70	20	--	754	1.03
55	1.2	23	60	4.8	69	39	. 3	26	100	<10	--	582	. .79
24	. 7	16	35	11	50	10	. 2	64	40	<10	--	389	. 53
50	1.2	23	56	5.5	90	38	. 3	37	70	20	--	525	. 71
37	. 8	24	41	3.9	40	120	. 2	12	70	20	529	499	. 72
38	. 9	20	43	4.8	92	23	.2	55	50	20	--	478	. 65
36	--	-	230	--	673	327	--	13	-	0	2,568	--	-
36	. 9	19	38	2.1	82	21	. 4	23	50	<10	2, -	436	. 59
21	. 6	14	23	2.0	35	43	. 2	11	30	80	--	347	. 47
-	--	--	--	--	--	--	--	--	--	--	--	--	--
31	. 8	23	36	4.7	50	35	. 2	11	160	10	400	395	. 54
49	1.1	20		6.2	74	65	. 4	12	230	<10	587	546	. 80
27	. 7	18	-	2.4	41	12	. 1	14	60	<10	342	330	. 47
---	--	--	--	5.2	80	87	1.0	--	200	,	635	-	. 86
78	1.5	26	--	1.8	130	140	. 3	14	110	<10	709	686	. 96
40	1.0	21	--	2.8	37	67	. 4	11	100	160	445	427	. 61
84	1.5	24	--	4.3	110	270	.3	14	100	10	871	836	1.18
29	. 8	28	38	8.9	70	49	. 2	56	50	<10	87	432	. 59
21	. 6	23	25	3.5	35	14	. 1	28	50	<10	--	293	. 40
29	. 9	22	33	4.3	45	27	. 2	36	40	<10	--	358	. 49
19	. 6	22	22	2.6	19	14	. 1	28	30	<10	--	259	. 35
19	. 6	25	22	2.6	19	14	.2	40	30	<10	--	270	.37
25	. 6	14	28	3.1	33	42	.2	26	60	<10	--	438	. 60
22	. 8	26	$2{ }^{2}$	2.7	15	16	. 1	19	50	<10	--	208	.28
28	. 8	12	34	3.9	50	17	. 4	47	50	<10	--	341	. 46
24	. 8	21	29	5.1	29	13	. 3	52	40	50	--	315	.43
17	. 4	11	20	2.6	26	36	.2	16	30	30	-	350	. 48
21	. 6	14	25	3.9	27	43	. 2	37	40	<10	--	369	. 50
22	. 5	13	26	3.6	30	62	. 3	13	60	<10	--	404	.55
24	. 8	21	25	1.3	30	13	.2	19	40	<10	--	265	.36
16	. 4	11	17	1.4	20	30	. 1	11	30	<10	--	322	. 44
19	. 5	12	26	6.8	26	33	.2	13	50	<10	--	368	. 50
15	. 5	21	18	2.9	18	3.5	.1	51	10	350	242	241	.35
22	. 7	17	34	12	43	27.5	. 3	59	50	<10	242	352	. 48
20	. 5	13	22	2.0	25	46	.1	15	30	<10	--	369	. 50

Table 8.--Chemical analyses

Jocation (well or spring number)	$\begin{gathered} \text { Date } \\ \text { of } \\ \text { sample } \end{gathered}$	Geologic unit	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (f.t) } \end{gathered}$	Temperature, water (${ }^{\circ} \mathrm{C}$)	Discharge (f pm)	```S pe- cific con- duct:. ance (umhos:cm at (```	$\begin{gathered} \mathrm{pH} \\ \text { field } \\ \text { (units) } \end{gathered}$	$\begin{aligned} & \text { Bicar- } \\ & \text { bonate } \\ & \text { (mg/L } \\ & \text { As } \\ & \mathrm{HCO} 3) \end{aligned}$	$\begin{aligned} & \text { Car- } \\ & \text { bonate } \\ & \text { (mg/L } \\ & \text { as CO} 3) \end{aligned}$	$\begin{gathered} \text { Hard- } \\ \text { ness } \\ (\mathrm{mg} / \mathrm{L} \\ \text { as } \\ \left.\mathrm{CaCO}_{3}\right) \end{gathered}$	Hardness. noncarbonate (mg/L as CaCO_{3})	$\begin{gathered} \text { Calcium, } \\ \text { dis- } \\ \text { solved } \\ \text { (ing/L } \\ \text { as Ca) } \end{gathered}$	Magnesium, dissolved (mg/L as Mg)
(A-4-2) $34 \mathrm{BCC}-1$	79-10-06	111 ALVM	83.0	--	--	460	6.1	--	--	210	33	64	13
($\wedge-4-2) 34 \mathrm{CCB}-3$	79-12-04	111 ALVM	200	10.0	--	640	6.4	--	--	330	10	99	20
(A-4-2) $35 \mathrm{CCC}-1$	79-09-06	123NRWD	130	--	--	610	5.9	--	--	290	44	88	18
(A-4-2) 36BAD- 1^{1}	71-06-03	111 ALVM	175	--	--	--	8.1	--	--	296	--	79	24
($\mathrm{A}-4-2$) $36 \mathrm{BCA}-1$	79-11-21	111 ALVM	190	11.0	\cdots	720	6.7	--	--	360	65	95	31
($\mathrm{A}-4-2$) $36 \mathrm{CBD}-1^{2}$	69-06-12	111 ALVM	101	--	--	645	7.8	327	--	298	30	88	19
(A-4-3) $27 \mathrm{ABD}-1$	79-10-02	111 LLVM	84.0	--	--	810	6.6	--	--	400	200	110	30
(A-4-3) $28 \mathrm{BCC}-1$	79-09-28	111 ALVM	60.0	--	--	510	6.4	--	--	250	20	72	17
(A-4-3) $31 \mathrm{CAB}-\mathrm{S} 1$	66-05-18	--	--	25.0	--	896	7.4	250	0	398	193	109	31
(A-4-3) 32ABD- 1	79-11-19	124 WSTC	127	10.0	--	925	6.5	--	--	490	190	120	45
($\mathrm{A}-4-4$) 4ADB- 1	79-10-02	124 WSTC	70.0	--0	--	270	6.4	--	--	130	10	39	7.8
(A-4-4) 19DDA- 1	79-12-04	111 ALVM	45.0	10.0	--	655	6.5	--	-*	270	41	82	16
(A-4-4) $20 \mathrm{BAD}-1$	79-10-02	111 ALVM	90.0	--	--	490	6.4	--	--	230	22	70	14
(A-4-4) $33 \mathrm{DCC}-1$	79-10-02	111 ALVM	45.0	--	--	540	6.6	--	--	260	27	75	17
(A-5-1)23BCC- 1	79-08-30	123 RWWD	126	--	--	520	5.7	--	--	150	0	37	13
(A- 5-1)25BCA ${ }^{\text {(}} 1$	79-08-29	123NRWD	113	--	--	600	6.2	9	--	200	0	50	19
(A-5-1) $25 \mathrm{CBC}-12$	65-09-23	111 ALVM	175	--	--	430	8.1	193	--	195	37	56	13
(A-5-1) $26 \mathrm{BCD}-1^{1}$	71-05-21	123 NRWD	120	--	--	--	8.1	--	--	306	--	88	21
(A-5-1)27BCD- 1	79-08-28	124WSTC	190	--	--	220	5.9	--	--	86	17	28	4.0
(A- 5- 2) 19CDA- 1^{1}	71-05-21	111 ALVM	170	--	--	--	8.1	--	--	213	--	59	16
(A-5-2) $30 C B C-1$	79-08-30	111 ALVM	144	10.0	--	470	5.4	--	--	210	38	65	11
(A- 5- 2) 31BBA- 1	79-12-06	111 ALVM	129	--	--	460	6.2	--	--	250	27	74	15
(A- 5- 2) 31DCC- 1	79-10-06	111 ALVM	20.0	11.0	--	560	6.2	--	--	260	41	75	18
$(A-5-4) 26 D B A-1$	79-08-30	124WSTC	84.0	--	--	550	6.1	--	--	300	40	79	25
(A-5-4) $35 \mathrm{ABC}-1$	79-08-30	124WSTC	84.0	--	--	440	5.8	--	--	230	35	66	17

[^0]| $\begin{gathered} \text { Sodium, } \\ \text { dis- } \\ \text { solved } \\ \text { (mg/L } \\ \text { as } \mathrm{Na} \text {) } \end{gathered}$ | Sodium ad-sorption ratio | Sodium percent | ```Sodium + potas- sium, dis- solved (mg/L as Na)``` | Potassium, dissolved (mg/L as K) | Chloride, dissolved (mg/L as C1) | ```Sulfate, dis- solved (mg/L as SO4)``` | Fluoride, dissolved (mg/L as F) | $\begin{gathered} \text { Silica, } \\ \text { dis- } \\ \text { solved } \\ \text { (mg/L } \\ \text { as } \\ \mathrm{SiO}_{2} \text {) } \end{gathered}$ | ```Boron, dis- solved (}\mu\textrm{g}/\textrm{L as B)``` | Iron, dissolved ($\mu \mathrm{g} / \mathrm{L}$ as Fe) | ```Solids, residue at 180}\mp@subsup{}{}{\circ}\textrm{C dis- solved (mg/L)``` | Solids, sum of constituents, dissolved (mg/L) | Solids, dissolved (tons per $a c-f t)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | . 4 | 16 | 20 | 4.9 | 27 | 38 | . 1 | 23 | 30 | <10 | 307 | 293 | . 42 |
| 25 | . 6 | 17 | 33 | 7.8 | 29 | 19 | . 2 | 40 | 70 | 20 | 431 | 432 | . 59 |
| 22 | . 6 | 14 | 28 | 6.0 | 33 | 53 | . 2 | 23 | 50 | <10 | -- | 394 | . 54 |
| -- | -- | -- | 32 | -- | 22 | 90 | -- | 6.0 | - | 0 | -- | 424 | -- |
| 27 | . 6 | 19 | 32 | 5.1 | 35 | 61 | . 4 | 21 | 60 | 20 | 470 | 456 | . 64 |
| -- | -- | -- | 17 | -- | 31 | 37 | . 1 | 13 | -- | -- | -- | 380 | -- |
| 40 | . 9 | 24 | 43 | 3.1 | 62 | 190 | . 2 | 11 | 70 | <10 | 597 | 567 | . 81 |
| 16 | . 4 | 12 | 18 | 2.3 | 20 | 26 | . 2 | 9.8 | 30 | <10 | - | 302 | . 41 |
| 34 | . 7 | -- | -- | 8.4 | 28 | 231 | 2.0 | 19 | 10 | | 622 | 586 | -- |
| 50 | 1.0 | 26 | 54 | 4.1 | 55 | 190 | . 6 | 21 | 50 | 20 | 687 | 666 | .93 |
| 6.9 | . 3 | 10 | 8.0 | 1.1 | 9.2 | 8.5 | . 1 | 8.1 | 20 | 20 | 165 | 153 | . 22 |
| 47 | 1.2 | 27 | 50 | 3.2 | 68 | 50 | . 2 | 10 | 30 | 10 | 346 | 415 | . 47 |
| 18 | . 5 | 18 | 21 | 2.5 | 24 | 40 | . 1 | 8.9 | 30 | 10 | 310 | 304 | . 42 |
| 17 | . 5 | 16 | 20 | 3.3 | 27 | 27 | . 1 | 12 | 50 | <10 | 333 | 317 | . 45 |
| 66 | 2.4 | 49 | 68 | 1.9 | 50 | 15 | . 3 | 15 | 50 | 1,800 | | 320 | . 44 |
| 55 | 1.7 | 48 | 59 | 3.6 | 25 | 50 | . 4 | 34 | 60 | 1,300 | -- | 401 | . 55 |
| -- | -- | -- | 20 | -- | 25 | 33 | . 3 | 15 | -- | 7 | -- | 268 | -- |
| 11^{--} | -- | \cdots | - | -- | 6.0 | 37 | - | 1.0 | -- | 0 | -- | 363 | - |
| 11 | . 5 | 22 | 12 | . 8 | 17 | 14 | . 2 | 10 | <20 | <10 | -- | 127 | .17 |
| -- | . | -- | 7.0 | $-$ | 1 | 70 | 6.0 | 1.0 | - | 0 | -- | 329 | . 17 |
| 19 | . 6 | 16 | 23 | 3.8 | 25 | 57 | . 2 | 26 | 30 | <10 | -- | 309 | . 42 |
| 14 | . 4 | 14 | 17 | 2.7 | 15 | 24 | . 2 | 24 | 40 | 20 | 306 | 301 | . 42 |
| 19 | . 5 | 18 | 22 | 3.3 | 34 | 31 | . 2 | 14 | 60 | 190 | 344 | 327 | . 47 |
| 16 | . 4 | 15 | 18 | 1.7 | 15 | 43 | . 2 | 12 | 50 | <10 | 3 | 348 | . 47 |
| 14 | . 3 | 15 | 16 | 1.6 | 16 | 30 | . 2 | 9.3 | 30 | <10 | -- | 274 | . 37 |

(*)-Out of Print

TECHNICAL PUBIICATIONS

*No. 1. Underground leakage from artesian wells in the Flowell area, near Fillmore, Utah, by Penn Livingston and G. B. Maxey, U.S. Geological Survey, 1944.

No. 2. The Ogden Valley artesian reservoir, Weber County, Utah, by H. E. Thomas, U.S. Geological Survey, 1945.
*No. 3. Ground water in Pavant Valley, Millard County, Utah, by P. E. Dennis, G. B. Maxey and H. E. Thomas, U.S. Geological Survey, 1946.
*No. 4. Ground water in Tooele Valley, Tooele County, Utah, by H. E. Thomas, U.S. Geological Survey, in Utah State Engineer 25th Biennial Report, p. 9l-238, pls. 1-6, 1946.
*No. 5. Ground water in the East Shore area, Utah: Part I, Bountiful District, Davis County, Utah, by H. E. Thomas and W. B. Nelson, U.S. Geological Survey, in Utah State Engineer 26th Biennial Report, p. 53-206, pls. 1-2, 1948.
*No. 6. Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah, by P. F. Fix, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S. Geological Survey, in Utah State Engineer 27th Biennial Report, p. 107-210, pls. l-10, 1950.

No. 7. Status of development of selected ground-water basins in Utah, by H. E. Thomas, W. B. Nelson, B. E. Lofgren, and R. G. Butler, U.S. Geological Survey, 1952.
*No. 8. Consumptive use of water and irrigation requirements of crops in Utah, by C. O. Roskelly and W. D. Criddle, Utah State Engineer's Office, 1952.

No. 8. (Revised) Consumptive use and water requirements for Utah, by W. D. Criddle, Karl Harris, and L. S. Willardson, Utah State Engineer's Office, 1962.

No. 9. Progress report on selected ground water basins in Utah, by H. A. Waite, W. B. Nelson, and others, U.S. Geological Survey, 1954.
*No. 10. A compilation of chemical quality data for ground and surface waters in Utah, by J. G. Connor, C. G. Mitchell, and others, U.S. Geological Survey, 1958.
*No. ll. Ground water in northern Utah Valley, Utah: A progress report for the period 1948-63, by R. M. Cordova and Seymour Subitzky, U.S. Geological Survey, 1965.
*No. 12. Reevaluation of the ground-water resources of Tooele Valley, Utah, by J. S. Gates, U.S. Geological Survey, 1965.
*No. 13. Ground-water resources of selected basins in southwestern Utah, by G. W. Sandberg, U.S. Geological Survey, 1966.
*No. 14. Water-resources appraisal of the Snake Valley area, Utah and Nevada, by J. W. Hood and F. E. Rush, U.S. Geological Survey, 1966.
*No. 15. Water from bedrock in the Colorado Plateau of Utah, by R. D. Feltis, U.S. Geological Survey, 1966.
*No. 16. Ground-water conditions in Cedar Valley, Utah County, Utah, by R. D. Feltis, U.S. Geological Survey, 1967.
*No. 17. Ground-water resources of northern Juab Valley, Utah, by L. J. Bjorklund, U.S. Geological Survey, 1968.

No. 18. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah, by J. W. Hood and K. M. Waddell, U.S. Geological Survey, 1968.

No. 19. An appraisal of the quality of surface water in the Sevier Lake basin, Utah, by D. C. Hahl and J. C. Mundorff, U.S. Geological Survey, 1968.

No. 20. Extensions of streamflow records in Utah, by J. K. Reid, L. E. Carroon, and G. E. Pyper, U.S. Geological Survey, 1969.

No. 21. Summary of maximum discharges in Utah streams, by G. L. Whitaker, U.S. Geological Survey, 1969.

No. 22. Reconnaissance of the ground-water resources of the upper Fremont River valley, Wayne County, Utah, by L. J. Bjorklund, U.S. Geological Survey, 1969.

No. 23. Hydrologic reconnaissance of Rush Valley, Tboele County, Utah, by J. W. Hood, Don Price, and K. M. Waddell, U.S. Geological Survey, 1969.

No. 24. Hydrologic reconnaissance of Deep Creek valley, Tooele and Juab Counties, Utah, and Elko and White Pine Counties, Nevada, by J. W. Hood and K. M. Waddell, U.S. Geological Survey, 1969.

No. 25. Hydrologic reconnaissance of Curlew Valley, Utah and Idaho, by E. L. Bolke and Don Price, U.S. Geological Survey, 1969.

No. 26. Hydrologic reconnaissance of the Sink Valley area, Tooele and Box Elder Counties, Utah, by Don Price and E. L. Bolke, U.S. Geological Survey, 1970.

No. 27. Water resources of the Heber-Kamas-Park City area, north-central Utah, by C. H. Baker, Jr., U.S. Geological Survey, 1970.

No. 28. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah, by R. M. Cordova, U.S. Geological Survey, 1970.

No. 29. Hydrologic reconnaissance of Grouse Creek valley, Box Elder County, Utah, by J. W. Hood and Don Price, U.S. Geological Survey, 1970.

No. 30. Hydrologic reconnaissance of the Park Valley area, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1971.

No. 31. Water resources of Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Harr, U.S. Geological Survey, 1971.

No. 32. Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah, by C. T. Sumsion, U.S. Geological Survey, 1971.

No. 33. Hydrologic reconnaissance of Hansel Valley and northern Rozel Flat, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1971.

No. 34. Summary of water resources of Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Harr, U.S. Geological Survey, 1971.

No. 35. Ground-water conditions in the East Shore area, Box Elder, Davis, and Weber Counties, Utah, 1960-69, by E. L. Bolke and K. M. Waddell, U.S. Geological Survey, 1972.

No. 36. Ground-water resources of Cache Valley, Utah and Idaho, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1971.

No. 37. Hydrologic reconnaissance of the Blue Creek Valley area, Box Elder County, Utah, by E. L. Bolke and Don Price, U.S. Geological Survey, 1972.

No. 38. Hydrologic reconnaissance of the Promontory Mountains area, Box Elder County, Utah, by J. W. Hood, U.S. Geological Survey, 1972.

No. 39. Reconnaissance of chemical quality of surface water and fluvial sediment in the Price River Basin, Utah, by J. C. Mundorff, U.S. Geological Survey, 1972.

No. 40. Ground-water conditions in the central Virgin River basin, Utah, by R. M. Cordova, G. W. Sandberg, and Wilson McConkie, U.S. Geological Survey, 1972.

No. 41. Hydrologic reconnaissance of Pilot Valley, Utah and Nevada, by J. C. Stephens and J. W. Hood, U.S. Geological Survey, 1973.

No. 42. Hydrologic reconnaissance of the northern Great Salt Lake Desert and summary hydrologic reconnaissance of northwestern Utah, by J. C. Stephens, U.S. Geological Survey, 1973.

No. 43. Water resources of the Milford area, Utah, with emphasis on ground water, by R. W. Mower and R. M. Cordova, U.S. Geological Survey, 1974.

No. 44. Ground-water resources of the lower Bear River drainage basin, Box Elder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1974.

No. 45. Water resources of the Curlew Valley drainage basin, Utah and Idaho, by C. H. Baker, Jr., U.S. Geological Survey, 1974.

No. 46. Water-quality reconnaissance of surface inflow to Utah Lake, by J. C. Mundorff, U.S. Geological Survey, 1974.

No. 47. Hydrologic reconnaissance of the Wah Wah Valley drainage basin, Millard and Beaver Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1974.

No. 48. Estimating mean streamflow in the Duchesne River basin, Utah, by R. W. Cruff, U.S. Geological Survey, 1974.

No. 49. Hydrologic reconnaissance of the southern Uinta Basin, Utah and Colorado, by Don Price and L. L. Miller, U.S. Geological Survey, 1975.

No. 50. Seepage study of the Rocky Point Canal and the Grey MountainPleasant Valley Canal systems, Duchesne County, Utah, by R. W. Cruff and J. W. Hood, U.S. Geological Survey, 1976.

No. 51. Hydrologic reconnaissance of the Pine Valley drainage basin, Millard, Beaver, and Iron Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1976.

No. 52. Seepage study of canals in Beaver Valley, Beaver County, Utah, by R. W. Cruff and R. W. Mower, U.S. Geological Survey, 1976.

No. 53. Characteristics of aquifers in the northern Uinta Basin area, Utah and Colorado, by J. W. Hood, U.S. Geological Survey, 1976.

No. 54. Hydrologic evaluation of Ashley Valley, northern Uinta Basin area, Utah, by J. W. Hood, U.S. Geological Survey, 1977.

No. 55. Reconnaissance of water quality in the Duchesne River basin and some adjacent drainage areas, Utah, by J. C. Mundorff, U.S. Geological Survey, 1977.

No. 56. Hydrologic reconnaissance of the Tule Valley drainage basin, Juab and Millard Counties, Utah, by J. C. Stephens, U.S. Geological Survey, 1977.

No. 57. Hydrologic evaluation of the upper Duchesne River valley, northern Uinta Basin area, Utah, by J. W. Hood, U.S. Geological Survey, 1977.

No. 58. Seepage study of the Sevier Valley-Piute Canal, Sevier County, Utah, by R. W. Cruff, U.S. Geological Survey, 1977.

No. 59. Hydrologic reconnaissance of the Dugway Valley-Government Creek area, west-central Utah, by J. C. Stephens and C. T. Sumsion, U.S. Geological Survey, 1978.

No. 60. Ground-water resources of the Parowan-Cedar City drainage basin, Iron County, Utah, by L. J. Bjorklund, C. T. Sumsion, and G. W. Sandberg, U.S. Geological Survey, 1978.

No. 61. Ground-water conditions in the Navajo Sandstone in the central Virgin River basin, Utah, by R. M. Cordova, U.S. Geological Survey, 1978.

No. 62. Water resources of the northern Uinta Basin area, Utah and Colorado, with special emphasis on ground-water supply, by J. W. Hood and F. K. Fields, U.S. Geological Survey, 1978.

No. 63. Hydrology of the Beaver Valley area, Beaver County, Utah with emphasis on ground water, by R. W. Mower, U.S. Geological Survey, 1978.

No. 64. Hydrologic reconnaissance of the Fish Springs Flat area, Tooele, Juab, and Millard Counties, Utah, by E. L. Bolke and C. T. Sumsion, U.S. Geological Survey, 1978.

No. 65. Reconnaissance of chemical quality of surface water and fluvial sediment in the Dirty Devil River basin, Utah, by J. C. Mundorff, U.S. Geological Survey, 1978.

No. 66. Aquifer tests of the Navajo Sandstone near Caineville, Wayne County, Utah, by J. W. Hood and T. W. Danielson, U.S. Geological Survey, 1979.

No. 67. Seepage study of the West Side and West Canals, Box Elder County, by R. W. Cruff, U.S. Geological Survey, 1980.

No. 68. Bedrock aquifers in the lower Dirty Devil River basin area, Utah, with special emphasis on the Navajo Sandstone, by J. W. Hood and T. W. Danielson, U.S. Geological Survey, 1980.

No. 69. Ground-water conditions in Tboele Valley, Utah, 1976-78, by A. C. Razem and J. I. Steiger, U.S. Geological Survey, 1980.

No. 70. Ground-water conditions in the Upper Virgin River and Kanab Creek basins area, Utah, with emphasis on the Navajo Sandstone, by R. M. Cordova, U.S. Geological Survey, 1981.

No. 71. Hydrologic reconnaissance of the Southern Great Salt Lake Desert and summary of the hydrology of West-Central Utah, by Joseph S. Gates and Stacie A. Kruer, U.S. Geological Survey, 1981.

No. 72. Reconnaissance of the quality of surface water in the San Rafael River basin, Utah, by J. C. Mundorff and Kendall R. Thompson, U.S. Geological Survey, 1982.

No. 73. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water, by R. W. Mower, U.S. Geological Survey, 1982.

No. 74. Seepage study of the Sevier River and the Central Utah, McIntyre, and Leamington Canals, Juab and Millard Counties, Utah, by L. R. Herbert, R. W. Cruff, Walter F. Holmes, U.S. Geological Survey, 1982.

No. 75. Consumptive use and water requirements for Utah, by A. Leon Huber, Frank W. Haws, Trevor C. Hughes, Jay M. Bagley, Kenneth G. Hubbard, and E. Arlo Richardson, 1982.

No. 76. Reconnaissance of the quality of surface water in the Weber River basin, Utah, by K. R. Thompson, U.S. Geological Survey, 1984.

WATER CIRCULARS

No. 1. Ground water in the Jordan Valley, Salt Lake County, Utah, by Ted Arnow, U.S. Geological Survey, 1965.

No. 2. Ground water in Tooele Valley, Utah, by J. S. Gates and O. A. Keller, U.S. Geological Survey, 1970.

BASIC-DATA REPORTS

*No. 1. Records and water-level measurements of selected wells and chemical analyses of ground water, East Shore area, Davis, Weber, and Box Elder Counties, Utah, by R. E. Smith, U.S. Geological Survey, 1961.

No. 2. Records of selected wells and springs, selected drillers' logs of wells, and chemical analyses of ground and surface waters, northern Utah Valley, Utah County, Utah, by Seymour Subitzky, U.S. Geological Survey, 1962.

No. 3. Ground-water data, central Sevier Valley, parts of Sanpete, Sevier, and Piute Counties, Utah, by C. H. Carpenter and R. A. Young, U.S. Geological Survey, 1963.
*No. 4. Selected hydrologic data, Jordan Valley, Salt Lake County, Utah, by I. W. Marine and Don Price, U.S. Geological Survey, 1963.
*No. 5. Selected hydrologic data, Pavant Valley, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
*No. 6. Ground-water data, parts of washington, Iron, Beaver, and Millard Counties, Utah, by G. W. Sandberg, U.S. Geological Survey, 1963.

No. 7. Selected hydrologic data, Tooele Valley, Tooele County, Utah, by J. S. Gates, U.S. Geological Survey, 1963.

No. 8. Selected hydrologic data, upper Sevier River basin, Utah, by C. H. Carpenter, G. B. Robinson, Jr., and L. J. Bjorklund, U.S. Geological Survey, 1964.
*No. 9. Ground-water data, Sevier Desert, Utah, by R. W. Mower and R. D. Feltis, U.S. Geological Survey, 1964.

No. 10. Quality of surface water in the Sevier Lake basin, Utah, by D. C. Hahl and R. E. Cabell, U.S. Geological Survey, 1965.
*No. 11. Hydrologic and climatologic data, collected through 1964, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.

No. 12. Hydrologic and climatologic data, 1965, Salt Lake County, Utah, by W. V. Iorns, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1966.

No. 13. Hydrologic and climatologic data, 1966, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1967.

No. 14. Selected hydrologic data, San Pitch River drainage basin, Utah, by G. B. Robinson, Jr., U.S. Geological Survey, 1968.

No. 15. Hydrologic and climatologic data, 1967, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1968.

No. 16. Selected hydrologic data, southern Utah and Goshen Valleys, Utah, by R. M. Cordova, U.S. Geological Survey, 1969.

No. 17. Hydrologic and climatologic data, 1968, Salt Lake County, Utah, by A. G. Hely, R. W. Mower, and C. A. Horr, U.S. Geological Survey, 1969.

No. 18. Quality of surface water in the Bear River basin, Utah, Wyoming, and Idaho, by K. M. Waddell, U.S. Geological Survey, 1970.

No. 19. Daily water-temperature records for Utah streams, 1944-68, by G. L. Whitaker, U.S. Geological Survey, 1970.

No. 20. Water-quality data for the Flaming Gorge area, Utah and Wyoming, by R. J. Madison, U.S. Geological Survey, 1970.

No. 21. Selected hydrologic data, Cache Valley, Utah and Idaho, by L. J. McGreevy and L. J. Bjorklund, U.S. Geological Survey, 1970.

No. 22. Periodic water- and air-temperature records for Utah streams, 1966-70, by G. L. Whitaker, U.S. Geological Survey, 1971.

No. 23. Selected hydrologic data, lower Bear River drainage basin, Box Elder County, Utah, by L. J. Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1973.

No. 24. Water-quality data for the Flaming Gorge Reservoir area, Utah and Wyoming, 1969-72, by E. L. Bolke and K. M. Waddell, U.S. Geological Survey, 1972.

No. 25. Streamflow characteristics in northeastern Utah and adjacent areas, by F. K. Fields, U.S. Geological Survey, 1975.

No. 26. Selected hydrologic data, Uinta Basin area, Utah and Colorado, by J. W. Hood, J. C. Mundorff, and Don Price, U.S. Geological Survey, 1976.

No. 27. Chemical and physical data for the Flaming Gorge Reservoir area, Utah and Wyoming, by E. L. Bolke, U.S. Geological Survey, 1976.

No. 28. Selected hydrologic data, Parowan Valley and Cedar City Valley drainage basins, Iron County, Utah, by L. J. Bjorklund, C. T. Sumsion, and G. W. Sandberg, U.S. Geological Survey, 1977.

No. 29. Climatologic and hydrologic data, southeastern Uinta Basin, Utah and Colorado, water years 1975 and 1976, by L. S. Conroy and F. K. Fields, U.S. Geological Survey, 1977.

No. 30. Selected ground-water data, Bonneville Salt Flats and Pilot Valley, western Utah, by G. C. Lines, U.S. Geological Survey, 1977.

No. 31. Selected hydrologic data, Wasatch Plateau-Book Cliffs coal-fields area, Utah, by K. M. Waddell and others, U.S. Geological Survey, 1978.

No. 32. Selected coal-related ground-water data, wasatch Plateau-Book Cliffs area, Utah, by C. T. Sumsion, U.S. Geological Survey, 1979.

No. 33. Hydrologic and climatologic data, southeastern Uinta Basin, Utah and Colorado, water year 1977, by L. S. Conroy, U.S. Geological Survey, 1979.

No. 34. Hydrologic and climatologic data, southeastern Uinta Basin, Utah and Colorado, water year 1978, by L. S. Conroy, U.S. Geological Survey, 1980.

No. 35. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah, by R. W. Mower, U.S. Geological Survey, 1981.

No. 36. Surface-water and climatologic data, Salt Lake County, Utah, Water Year 1980, by G. E. Pyper, R. C. Christensen, D. W. Stephens, H. F. McCormack, and L. S. Conroy, U.S. Geological Survey, 1981.

No. 37. Selected ground-water data, Sevier Desert, Utah, 1935-82, by Michael Enright and Walter F. Holmes, U.S. Geological Survey, 1982.

No. 38. Selected hydrologic data, Price River Basin, Utah, water years 1979 and 1980, by K. M. Waddell, J. E. Dodge, D. W. Darby, and S. M. Theobald, U.S. Geological Survey, 1982.

No. 39. Selected hydrologic data for Northern Utah Valley, Utah, 1935-82, by Cynthia L. Appel, David W. Clark, and Paul E. Fairbanks, U.S. Geological Survey, 1982.

No. 40. Surface water and climatologic data, Salt Lake County, Utah, water year 1981, with selected data for water years 1980 and 1982, by H. F. McCormack, R. C. Christensen, D. W. Stephens, G. E. Pyper, J. F. Weigel, and L. S. Conroy, U.S. Geological Survey, 1983.

No. 41. Selected hydrologic data, Kolob-Alton-Kaiparowits coal-fields area, south-central Utah, by Gerald G. Plantz, U.S. Geological Survey, 1983.

INFORMATION BULLETINS
*No. 1. Plan of work for the Sevier River Basin (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1960.
*No. 2. Water production from oil wells in Utah, by Jerry Tuttle, Utah State Engineer's Office, 1960.
*No. 3. Ground-water areas and well logs, central Sevier Valley, Utah, by R. A. Young, U.S. Geological Survey, 1960.
*No. 4. Ground-water investigations in Utah in 1960 and reports published by the U.S. Geological Survey or the Utah State Engineer prior to 1960, by H. D. Goode, U.S. Geological Survey, 1960.
*No. 5. Developing ground water in the central Sevier Valley, Utah, by R. A. Young and C. H. Carpenter, U.S. Geological Survey, 1961.
*No. 6. Work outline and report outline for Sevier River basin survey, (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1961.
*No. 7. Relation of the deep and shallow artesian aquifers near Lynndyl, Utah, by R. W. Mower, U.S. Geological Survey, 1961.
*No. 8. Projected 1975 municipal water-use requirements, Davis County, Utah, by Utah State Engineer's Office, 1962.

No. 9. Projected 1975 municipal water-use requirements, weber County, Utah, by Utah State Engineer's Office, 1962.
*No. 10. Effects on the shallow artesian aquifer of withdrawing water from the deep artesian aquifer near Sugarville, Millard County, Utah, by R. W. Mower, U.S. Geological Survey, 1963.
*No. ll. Amendments to plan of work and work outline for the Sevier River basin (Sec. 6, P. L. 566), U.S. Department of Agriculture, 1964.
*No. 12. Test drilling in the upper Sevier River drainage basin, Garfield and Piute Counties, Utah, by R. D. Feltis and G. B. Robinson, Jr., U.S. Geological Survey, 1963.
*No. 13. Water requirements of lower Jordan River, Utah, by Karl Harris, Irrigation Engineer, Agricultural Research Service, Phoenix, Arizona, prepared under informal cooperation approved by Mr. W. W. Donnan, Chief, Southwest Branch (Riverside, California) Soil and Water Conservation Research Division, Agricultural Research Service, U.S.D.A., and by W. D. Criddle, State Engineer, State of Utah, Salt Lake City, Utah, 1964.
*No. 14. Consumptive use of water by native vegetation and irrigated crops in the Virgin River area of Utah, by W. D. Criddle, J. M. Bagley, R. K. Higginson, and D. W. Hendricks, through cooperation of Utah Agricultural Experiment Station, Agricultural Research Service, Soil and Water Conservation Branch, Western Soil and Water Management Section, Utah Water and Power Board, and Utah State Engineer, Salt Lake City, Utah, 1964.
*No. 15. Ground-water conditions and related water-administration problems in Cedar City Valley, Iron County, Utah, February, 1966, by J. A. Barnett and F. T. Mayo, Utah State Engineer's Office.
*No. 16. Summary of water well drilling activities in Utah, 1960 through 1965, compiled by Utah State Engineer's Office, 1966.
*No. 17. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by O. A. Keller, U.S. Geological Survey, 1966.
*No. 18. The effect of pumping large-discharge wells on the ground-water reservoir in southern Utah Valley, Utah County, Utah, by R. M. Cordova and R. W. Mower, U.S. Geological Survey, 1967.

No. 19. Ground-water hydrology of southern Cache Valley, Utah, by L. P. Beer, Utah State Engineer's Office, 1967.
*No. 20. Fluvial sediment in Utah, 1905-65, A data compilation by J. C. Mundorff, U.S. Geological Survey, 1968.
*No. 21. Hydrogeology of the eastern portion of the south slopes of the Uinta Mountains, Utah, by L. G. Moore and D. A. Barker, U.S. Bureau of Reclamation, and J. D. Maxwell and B. L. Bridges, Soil Conservation Service, 1971.
*№. 22. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by B. A. LaPray, U.S. Geological Survey, 1972.
*No. 23. Bibliography of U.S. Geological Survey water-resources reports for Utah, compiled by B. A. LaPray, U.S. Geological Survey, 1975.

No. 24. A water-land use management model for the Sevier River Basin, Phase I and II, by V. A. Narasimham and Eugene K. Israelsen, Utah Water Research Laboratory, College of Engineering, Utah State University, 1975.

No. 25. A water-land use management model for the Sevier River Basin, Phase III, by Eugene K. Israelsen, Utah Water Research Laboratory, College of Engineering, Utah State University, 1976.

No. 26. Test drilling for fresh water in Tboele Valley, Utah, by K. H. Ryan, B. W. Nance, and A. C. Razem, Utah Department of Natural Resources, 1981.

No. 27. Bibliography of U.S. Geological Survey Water-Resources Reports for Utah, compiled by Barbara A. LaPray and Linda S. Hamblin, U.S. Geological Survey, 1980.

MAP SHOWING SELECTED HYDROLOGIC-DATA SITES AND NORMAL ANNUAL PRECIPITATION FOR 1931-60 IN THE CENTRAL WEBER RIVER AREA, MORGAN AND SUMMIT COUNTIES, UTAH.

	correlation of map units	
Qu	DESCRIPTION OF MAP UNITS Alluvial, lake, and glacial deposits Older coarse-grained deposits, some of volcanic origin Conglomerates and other rocks, mostly coarse-grained clastics, some of volcanic origin Clastic rocks Older clastic rocks Principally limestone Principally limestone and dolomite Quartzite and sandstone Farmington Canyon complex CONTACT EXPLANATION -BOUNDARY OF STUDY AREA AND DRAINAGE OF WEBER RIVER AND ITS TRIBUTARIES BETWEEN MORGAN COUNTY LINE AND HOYTSVILLE Including drainage of East Canyon Creek from its mouth to the Summit County line	
Q		
Ku		
Jkis		
retis		
Pess		
pef		
Qt		
TKcg		
$\mathrm{JF}_{\mathrm{ss}}$		
$\mathrm{JF}_{1 / 5}$		
Pels		
Peess		
pef		

GEOLOGIC MAP OF THE CENTRAL WEBER RIVER AREA, MORGAN AND SUMMIT COUNTIES, UTAH.

MAP SHOWING THE LOCATION OF INVENTORIED WELLS AND SPRINGS AND WATER-LEVEL CONTOURS, FALL 1980, IN THE MORGAN VALLEY-ROUND VALLEY SUBAREA, MORGAN COUNTY, UTAH.

[^0]: Sample collected by Saxon (1972), analyzed by Utah Department of Agriculture. Sample collected by Saxon (1972), analyzed by Utah Department of Health.

