Summary of Remote Sensing
Hydrology Lab’s Research in
Parowan Valley, Utah



The Remote Sensing Hydrology Lab - vision

Develop groundwater methods that integrate in-situ data with the
wealth of satellite and ground-based geophysical datasets,
Improving predictive capabilities and enabling groundwater
evaluation in data-sparse regions.




The Remote Sensing Hydrology Lab - datasets

In-situ Satellite

Ground-based

AR

Airborne




My background

* BS in Geology at Brigham Young University (2014)
* PhD in Geophysics at Stanford University (2018)

e Assistant Professor at Missouri University of Science and Technology
(2018-2022)

 Assistant Professor at Colorado State University (2022-present)
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Why Parowan Valley?

* I’'m motivated to study this area because there is an intersection of
* High-quality data availability
* Groundwater management priority
 Compelling science questions
e Local partnerships



Authors on projects shown here (in addition
to myself)

Jiawei Li, PhD student . .
Katherine Grote, Associate Professor,

Missouri University of Science and Technology

Jim Butler, Senior Scientist, Kansas Geological Survey




Outline of work that has been done to date —
contact me for a copy of the papers

* Analysis of key drivers of subsidence in the valley (published)

* Modeling ground deformation with satellite and groundwater level
data (published)

* Water budget analysis using satellite, groundwater level, and
pumping data (currently under review)

* Geophysical survey of the top ~150 ft of the valley (analysis in
progress)

Ryan.G.Smith@colostate.edu
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Subsidence rates over other aquifers in the US
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What causes subsidence?

* Three things are needed:
* Groundwater pumping
 Significant clay in the aquifer system being pumped
* Confining unit

Crass section along row 355 A’

Examplein California:the Corcoran Clay
confines the deep aquifers, causing
pressurization
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Cross Section 1

The Little Salt Lake

Most coarse grain including

1 585 - Sand, Sand gravel, gravel

Most fine grain including
1 554 - Clay, Clay- Sand,

Silt, Clay- Silt- Sand

1 524 Mix of fine and coarse grain including
Silt- sand- gravel, Clay-Sand-Gravel

1494 The DEM surface of the cross-section

Most coarse grain including
Sand, Sand gravel, gravel

Most fine grain including

Clay, Clay- Sand,

Silt, Clay- Silt- Sand

Mix of fine and coarse grain including
Silt- sand- gravel, Clay-Sand-Gravel

Cross Section The DEM surface of the cross-section

7 Parowan

Cross Section 1

Parowan

Cross Section 2
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Yearly subsidence compared with
precipitation

Annual Precipitation (mm)
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Outline of work that has been done to date —
contact me for a copy of the papers

* Analysis of key drivers of subsidence in the valley (published)

* Modeling ground deformation with satellite and groundwater level
data (published)

* Water budget analysis using satellite, groundwater level, and
pumping data (currently under review)

* Geophysical survey of the top ~150 ft of the valley (analysis in
progress)

Ryan.G.Smith@colostate.edu
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Modeling ground deformation with satellite
and groundwater level data (published

QO Model location

O Reference pixel
Watershed boundary

Paragonah fault
system

- ¢ Main agricultural area

Principal groundwater
flow directions ‘




Long-term subsidence rate in the southern

part of Parowan Valley
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Subsidence and uplift over time at one

location

Head, m
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Subsidence and uplift over time at one
location is controlled by groundwater levels
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We simulated groundwater levels to model

deformation

- This model can predict subsidence
based on changes in groundwater
level (head)

- The model can also estimate the
elastic (recoverable) and inelastic
(permanent) portions of subsidence
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Our model accurately predicts subsidence
and rebound
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Most of the long-term subsidence is

permanent (inelastic)
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Outline of work that has been done to date —
contact me for a copy of the papers

* Analysis of key drivers of subsidence in the valley (published)

* Modeling ground deformation with satellite and groundwater level
data (published)

 Water budget analysis using satellite, groundwater level, and
pumping data (currently under review)

* Geophysical survey of the top ~150 ft of the valley (analysis in
progress)

Ryan.G.Smith@colostate.edu
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Water budget approach: compare total annual
pumping with average annual change in head
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Water budget approach: compare total annual
pumping with average annual change in head
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There’s some uncertainty in this value!

2005 Pumping at which there is

1.0 1 no changein head|> no
change in aquifer storage
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There’s some uncertainty in this value!
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We also know that there is some storage coming
into the aquifer from clays that will go away once
drawdown stops

Fine-grained
intervals

/

B Primary aquifer
T (sand)




Another approach for storage change:
multiply change in head by storativity
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We can then estimate storage change in both the
aquifer (sands and gravels) and the clays

Clay storage change Sands and gravels storage change
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Storage change estimates from this study, compared with

USGS groundwater model (Broo

Cumulative change in storage, 105 m?

ks 2017, black line)
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Lots of uncertainty in storage change
estimates!

Average annual storage loss, 2005-2012 (acre-feet) |[Average
annual
This study, pumping,
Brooks Marston range (best |Validation, [2005-2012
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Lots of uncertainty in storage change

estimates!

- Each of these storage change estimates is
much lower than that of Marston (2017), who
used a water budget approach

- In water budgets, recharge is very difficult to
estimate

- Possible explanationsfor discrepancy:

- Marston (2017) under-estimated
recharge

- Mountainaquifers are being depleted
and considered a source of ‘inflow’ in our
water balanceapproach
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Outline of work that has been done to date —
contact me for a copy of the papers

* Analysis of key drivers of subsidence in the valley (published)

* Modeling ground deformation with satellite and groundwater level
data (published)

* Water budget analysis using satellite, groundwater level, and
pumping data (currently under review)
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Geophysical survey —thanks so much to the
community for helping us do this!

- November 2021
- Conducted with a towed Time-domain
ElectroMagnetic system (tTEM)
- Towed behind an ATV at ~8 mph
- Images resistivity from the surface to a depth of
~150 ft
- This can be used to identify aquifers
(sands/gravels) and aquitards(clays and other
fines) in the subsurface
- Resistivity of common materials
- Sand: 40-200 ohm m
- Clay:5-20 ohmm
- Freshwater: >6 ohm m
- Brackish water: 0.6-10 ohm m




It appears that the water conductivity is fairly consistent
except for one spot in the north, and one near Little Salt
Lake

Legend
Ground Water

Conductivity
~ 1080 pS/cm

I 230 uS/cm
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Mean resistivity from tTEM compared with % clay
from drillers’ logs

tTEM Mean Resistivity
Ohm
_2.46

Clay Ratio

Value
High : 0.78

“Low : 0.07
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tTEM Trace 110
Northern Parowan Valley
Nov 2021
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tTEM Trace 100

Northern Parowan Valley

Nov

Lithology Classification for Well Log
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tTEM Trace 120
Northern Parowan Valley
Nov 2021
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tTEM Trace 180
Northern Parowan Valley

Nov 2021
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tTEM Trace 230
Centeral Parowan Valley
Nov 2021
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tTEM Trace 300
Centeral Parowan Valley
Nov 2021

Lithology Classification for Well Log
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tTEM Trace 270
Centeral Parowan Valley
Nov 2021

Lithology Classification for Well Log
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tTEM Trace 290
Centeral Parowan Valley
Nov 2021

Lithology Classification for Well Lo
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Future tTEM work

* Could be used to identify best locations for managed aquifer recharge

* Could better inform texture (relative amount of sands/clays) of the
valley for modeling



Questions?

Ryan.G.Smith@colostate.edu

www.remote-sensing-hydrology.com
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