Groundwater of Pahvant Valley

Greg Gavin, Paul Inkenbrandt, Trevor Schlossnagle, and Rebecca Molinari

<u>greggavin@utah.gov</u> <u>paulinkenbrandt@utah.gov</u>

MALE REAL PROPERTY AND

Utah Geological Survey

Outline

Background

- Location, Motivation, Conceptual
- Observed Impacts
 - Water Levels, Clear Lake, Subsidence
- Possible Drivers
 - Climate, Management
- Budget
 - Storage Changes
 - Recharge

Background - Study Area

- Includes areas from McCornick to Kanosh
- East-west from Pahvant Range to Cricket Mountains
- Does not include Deseret, Delta, or Cove Fort
- Focus on area of greatest groundwater use and supply

Background - Research Motivation

- Important Agricultural Area
- Regional declines in groundwater elevations
- Concerns about land subsidence
- Clear Lake WMA important bird refuge and recreation spot
- Securing groundwater for future generations

Background - Hydrogeology

- Groundwater Flows from Pahvant Range to NW
- Ends at Clear Lake
- Some slow underflow to Sevier
- Recharge in Alluvial Fans and Basalt
- More clay in west

Background - Previous Work

"Between the alluvial slope on the east and the lava fields on the west there is a belt of low level land in which the groundwater table is nearly at the surface. Here there are many springs and seeps, and wells obtain water at only slight de Time first/actes an wells obtain water at only slight de Time first/actes an wells obtain water in sufficient q "Water-foreirigetiones of randotted han 905 cert the Bright ant 5 c of Pahvanile (a lag for the top is the superior discharge with draws is continue for the form of the superior of about 96 of both by ratifications in the superior of

recharge and by variations in the The elimination of recharge from pumped from an of recharge from for 20 years, is projected to cause up to 8 feet near the canal." - Ho

DNR

Utah Geological Survey

Impacts - Clear Lake

- Only naturally occurring downgradient discharge point in Pahvant Valley
- Clear Lake is fed by the Ice Springs Basalt of the Volcanic aquifer
- Ecologically important

Utah Geological Survey

Impacts - Clear Lake

Least Chub (lotichthys Phlegethontis)

State conservation species

Utah Geological Survey

Impacts - Clear Lake

Management practices or climate signals?

Utah Geological Survey

Impacts - Groundwater Levels 1986 to 2022

- Total decline in water level was 163 feet in USGS monitoring well site no. 391313112234201
- Valley-fill average regional decline of 26 feet

	Decline Rate (ft/yr)	Avg Decline (ft)
Flowell	-0.12	16
Greenwood	-0.39	31.5
Kanosh	-0.15	18.8
McCornick	-1.33	74.3
Meadow	-0.34	41.5
Pahvant	-0.12	14.8

Utah Geological Survey

Impacts - Subsidence

- Sinking of land caused by GW decline
- Seen in other parts of the West
- Can measure ground drop using satellites (InSAR)

Modified from Galloway et. al., 1999

geology.utah.gov

Impacts - Subsidence

- Subsidence Measured by InSAR
- Floating well pads
- No fissures observed yet

Explanation

Road Extrusive Rock - Groundwater District Hanging well pad **USGS Site** 385650112243601 Displacement (2014 - 2020)inches; <0 is down -6 - -5 -5 - -4 -4 - -3 -3 - -2 -2 - -1 -1-0 0 - 11 - 2 2 - 33-4

Drivers - Precipitation & Groundwater

Drivers - Precipitation & Pumping

- What's the relationship between precip and pumping?
- ~1 yr lag between precip and pumping
- generally an inverse relationship
- as precip goes down, pumping generally goes up
- other variables are likely influencing pumping as well

Fillmore WY precip vs Valley wide total pumpage

Drivers - Groundwater Pumping

Utah Geological Survey

Drivers - Spring Flow & Pumping

Utah Geological Survey

DNR

Drivers - Groundwater level change & Pumping

Drivers - Consumptive Use

- Increase in greenness
- Increase in Evapotranspiration (ET)
- 20,000 ac-ft increase since 2000
- Denser, greener plots
- More consumptive use

Utah Geological Survey

Drivers - Consumptive Use

Greenness at field 1007

geology.utah.gov

Utah Geological Survey

DNR

Budget - Storativity

Utah Geological Survey

Budget - Confinement

Budget - Groundwater Storage

Cumulative Change in Groundwater Storage vs. Year

geology.utah.gov

Year

Budget - 2022

Category	Description	Mean (ac-ft)	Std. Dev (ac-ft)
Wells	Irrigation Wells	143,362	7881
	Stock Wells	26	2
	Domestic Wells	808	63
	Municipal Wells	1270	30
	Industrial Wells	137	15
	Total Wells	145,603	7880
Springs and Shallow Groundwater	Groundwater ET (includes Clear Lake Flow)	3917	1567
	Other Valley Springs	907	100
	Total Groundwater ET and Springs	4824	1663
Total Discharge		150,427	8056
Change In Storage		-81,549	5539
Recharge		68,878	9775

Budget - Groundwater Recharge

Year	Discharge	Storage	Recharge
2016	117,981	-36,560	81,422
2017	113,451	4670	118,120
2018	131,941	-68,493	63,448
2019	110,699	83,764	194,463
2020	150,415	-71,810	78,605
2021	154,574	-124,475	30,099
2022	149,790	-81,549	68,241
AVG	132,693	-42,065	90,628
Med	131,941	-68,493	78,605

Storage vs Recharge

Groundwater Storage Change (ac-ft)

Summary

- Drivers
 - >60,000 ac-ft increase pumping 1990-present (avg 1900 ac-ft/yr)
 - 14,000 ac-ft from former Central Utah Canal stopped 1988
 - Dry years = less recharge and more pumping
- Impacts
 - 1 million ac-ft storage loss 1990-present
 - Clear Lake drying up (500 ac-ft/yr decrease)
 - Avg 26 ft groundwater level decline across region
 - Maximum groundwater decline of 163 feet in McCornick
 - >15 inches subsidence in past decade

THANK YOU

Quaternary age Basaltic tuff and ash of Pahvant Butte

Pahvant Butte elev. 5751 ft

Utah Geological Survey